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Abstract

This paper proposes a simple yet
effective framework for semi-supervised
dependency parsing at entire tree level,
referred to asambiguity-aware ensemble
training. Instead of only using 1-
best parse trees in previous work, our
core idea is to utilize parse forest
(ambiguous labelings to combine
multiple 1-best parse trees generated
from diverse parsers on unlabeled data.
With a conditional random field based
probabilistic dependency parser, our
training objective is to maximize mixed
likelihood of labeled data and auto-parsed
unlabeled data with ambiguous labelings.
This framework offers two promising
advantages. 1) ambiguity encoded in
parse forests compromises noise in 1-best
parse trees. During training, the parser is
aware of these ambiguous structures, and
has the flexibility to distribute probability
mass to its preferred parse trees as long
as the likelihood improves. 2) diverse
syntactic structures produced by different
parsers can be naturally compiled into
forest, offering complementary strength
to our single-view parser. Experimental
results on benchmark data show that
our method significantly outperforms
the baseline supervised parser and
other entire-tree based semi-supervised
methods, such as self-training, co-training
and tri-training.

Introduction

}@suda.edu.cn

of supervised parsers. For example, Koo and
Collins (2010) and Zhang and McDonald (2012)
show that incorporating higher-order features into
a graph-based parser only leads to modest increase
in parsing accuracy. In contrast, semi-supervised
approaches, which can make use of large-scale
unlabeled data, have attracted more and more
interest. Previously, unlabeled data is explored to
derive useful local-context features such as word
clusters (Koo et al., 2008), subtree frequencies
(Chen et al., 2009; Chen et al., 2013), and word
co-occurrence counts (Zhou et al., 2011; Bansal
and Klein, 2011). A few effective learning meth-
ods are also proposed for dependency parsing to
implicitly utilize distributions on unlabeled data
(Smith and Eisner, 2007; Wang et al., 2008;
Suzuki et al., 2009). All above work leads to
significant improvement on parsing accuracy.

Another line of research is to pick up some
high-quality auto-parsed training instances from
unlabeled data using bootstrapping methods, such
as self-training (Yarowsky, 1995), co-training
(Blum and Mitchell, 1998), and tri-training (Zhou
and Li, 2005). However, these methods gain
limited success in dependency parsing. Although
working well on constituent parsing (McClosky et
al., 2006; Huang and Harper, 2009), self-training
is shown unsuccessful for dependency parsing
(Spreyer and Kuhn, 2009). The reason may be that
dependency parsing models are prone to amplify
previous mistakes during training on self-parsed
unlabeled data. Sagae and Tsujii (2007) apply
a variant of co-training to dependency parsing
and report positive results on out-of-domain text.
Sggaard and Rishgj (2010) combine tri-training
and parser ensemble to boost parsing accuracy.
Both work employs two parsers to process the

Supervised dependency parsing has made greghjapeled data, and only select as extra training

progress during the past decade.
is very difficult to further improve performance
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However,

llata sentences on which the 1-best parse trees of

the two parsers are identical. In this way, the auto-
parsed unlabeled data becomes more reliable.
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wy He saw & deéq ridiAn‘g5 a bicycle; ir:s they parkoy 11

Figure 1: An example sentence with an ambiguous parse forest

However, one obvious drawback of these methodsotorious challenge for parsing. Reserving such
is that they are unable to exploit unlabeled datauncertainty has three potential advantages. First,
with divergent outputs from different parsers. noise in unlabeled data is largely alleviated, since
Our experiments show that unlabeled data wittparse forest encodes only a few highly possible
identical outputs from different parsers tends to beparse trees with high oracle score. Please note
short (18.25 words per sentence on average), artiat the parse forest in Figure 1 contains four
only has a small proportion of 40% (see Table 6)parse trees after combination of the two different
More importantly, we believe that unlabeled datachoices. Second, the parser is able to learn useful
with divergent outputs is equally (if not more) features from the unambiguous parts of the parse
useful. Intuitively, an unlabeled sentence withforest. Finally, with sufficient unlabeled data, it is
divergent outputs should contain some ambiguoupossible that the parser can learn to resolve such
syntactic structures (such as preposition phrasencertainty by biasing to more reasonable parse
attachment) that are very hard to resolve andrees.
lead to the disagreement of different parsers. To construct parse forest on unlabeled data, we
Such sentences can provide more discriminativemploy three supervised parsers based on different
instances for training which may be unavailableparadigms, including our baseline graph-based
in labeled data. dependency parser, a transition-based dependency
To solve above issues, this paper proposegarse.r (Zhang and Nivre, 2011), ar_1d a generative
’ constituent parser (Petrov and Klein, 2007). The

a more general and effective framework for
. . : 1-best parse trees of these three parsers are aggre-
semi-supervised dependency parsing, referred to

as ambiguity-aware ensemble trainingDifferent gated in different ways. Evaluation on labeled data

from traditional self/co/tri-training which only use shows the oracle accuracy of parse forest is much

1-best parse trees on unlabeled data, our <3lpproa§fl1gher than that of 1-best outputs of single parsers

: . see Table 3). Finally, using a conditional random

adopts ambiguous labelings, represented by parge S .
leld (CRF) based probabilistic parser, we train

forest, as gold-standard for unlabeled sentences. . . o

a better model by maximizing mixed likelihood

Flgu_re L shows an example sente_nce with a%f labeled data and auto-parsed unlabeled data
ambiguous parse forest. The forest is formed b

WO parse trees. respectively shown at the upper ith ambiguous labelings. Experimental results
P ' P y P on both English and Chinese datasets demon-

and lower sides of the sentence. The differences -
o trate that the proposed ambiguity-aware ensem-
between the two parse trees are highlighte . .
le training outperforms other entire-tree based

using dashed arcs. The upper tree tafteer” L
) e methods such as self/co/tri-training. In summary,
as the subject ofriding” , whereas the lower . L
we make following contributions.

one indicates thathe” rides the bicycle. The
other difference is where the preposition phrase 1. We propose a generalized ambiguity-aware
(PP) “in the park” should be attached, which ensemble training framework for semi-

is also known as the PP attachment problem, a  supervised dependency parsing, which can

458



make better use of unlabeled data, especially m m

when parsers from different views produce

divergent syntactic structures. h " h oo
(a) single dependency  (b) adjacent sibling

2. We first employ a generative constituent pars-_. _ _
er for semi-supervised dependency parsing'.:'gure 2. Two types of scoring subtrees in our

Experiments show that the constituent parseP€cond-order graph-based parsers.

is very helpful since it prod_uces more diver- Dependency featurds., (x, o, m):

gent structures for our semi-supervised parser wn, wm, th, tm, thi, tmt1, to, dir(h,m), dist(h,m)

than discriminative dependency parsers. Sibling featuredi, (x, h, m, s):
Wh, Ws, Wi,y Lhy by Esy Ert1, imt1, Est1
dir(h,m), dist(h,m)

3. We build the first state-of-the-art CRF-based
dependency parser. Using the prOb‘rjlblhs'['c'l'able 1. Brief illustration of the syntactic features.
parser, we benchmark and conduct systemat: -, ies the POS tag af.. b is an index
ic comparisons among ours and all previous,’ g i

. . : . betweenh andm. dir(i,j) anddist(i, j) denote
?r(;?r:isr:;appmg methods, including self/coftri- the direction and distance of the dependeficy).

2 Supervised Dependency Parsing We adopt the second-order graph-based depen-
. . B dency parsing model of McDonald and Pereira
Given an input sentence = wow; ...w,, the goal

L ; 2006) as our core parser, which incorporates

of dependency parsing is to build a dependenc . T
, B eatures from the two kinds of subtrees in Figt 2.

tree as depicted in Figure 1, denoted dy =

{(hym) : 0 < h < n,0 <m < n}, where(h, m) Then the score of a dependency tree is:
indicates a directed arc from thead word wy,

S d; = e * Taen(X, R,
to the modifier w,,,, andw, is an artificial node core(x, d; ) Z Waep * faep (%, h,m)

. {(h,m)}Cd
linking to the root of the sentence.

In parsing community, two mainstream meth- + > Wi £in(X, b, 5,m)
ods tackle the dependency parsing problem from {(h,s),(h,m)}Cd

different perspecjuves but achieve comparable G hare £10p(x, hum) and £,(x, h, 5, m) are the
curacy on a variety of languages. The graIOh_feature vectors of the two subtree in Fig. 2;
based method views the problem as finding an ' '

optimal tree from a fully-connected directed graph:VC‘f[ep{\‘jiebsasrsgreezuéfnrvrizﬁgvs Ct:ogrsr;lheoggitnprzgh_
(McDonald et al., 2005; McDonald and Pereira 9 y P 9

'trees.

2006; Carreras, 2007; Koo and Collins, 2010), For syntactic features, we adopt those of Bohnet
while the transition-based method tries to find a y ’ P

highest-scoring transition sequence that leads t82010) which include two categories correspond-

Ing to the two types of scoring subtrees in Fig. 2.
alegal dependency tree (Yamada and MatsumotQN% summarizey?he atomic fgatures used ingeach
2003; Nivre, 2003; Zhang and Nivre, 2011).

feature category in Table 1. These atomic features
2.1 Graph-based Dependency Parser are concatenated in different combinations to com-
(GParser) pose rich feature sets. Please refer to Table 4 of

. ._Boh 2010) for th lete f list.
In this work, we adopt the graph-based paradigm ohnet (2010) for the complete feature list

because it allows us to naturally derive conditional2.2 CRF-based GParser

probability _Of a dependency trad given' a SeN- pravious work on graph-based dependency pars-
tencex, which is required to compute likelihood ing mostly adopts linear models and perceptron
of both labeled and unlabeled data. Under th%ased training procedures, which lack probabilis-
graph-based model, the score of a dependency trgg explanations of dependency trees and do not

is factored into the scores of small subtrges need to compute likelihood of labeled training

Score(x,d;w) = w - f(x,d) 'Higher-order models of Carreras (2007) and Koo and
Collins (2010) can achieve higher accuracy, but has much
= Z Score(x7 P; w) higher time cost@(n*)). Our approach is applicable to these
pCd higher-order models, which we leave for future work.
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data. Instead, we build a log-linear CRF-basedot sufficiently covered in manually labeled
dependency parser, which is similar to the CRFdata. Therefore, exploiting such unlabeled data
based constituent parser of Finkel et al. (2008)may introduce more discriminative syntactic
Assuming the feature weights are known, the knowledge, largely compensating labeled training
probability of a dependency trekgiven an input data.

sentencex is defined as: To address above issues, we propaseiguity-
exp{Score(x,d; w)} aware ensemble trainingvhich can be interpreted
p(dfx;w) = 7 w) as ageneralized tri-trainingframework. The key
’ (1) idea is the use ombiguous labelinggor the
Z(x;w) = Z exp{Score(x,d’; w)} purpose of aggregating multiple 1-best parse trees
d'eV(x) produced by several diverse parsers. Here, “am-

biguous labelings” mean an unlabeled sentence
may have multiple parse trees as gold-standard
reference, represented by parse forest (see Figure
1). The training procedure aims to maximize
mixed likelihood of both manually labeled and
auto-parsed unlabeled data with ambiguous label-
N ings. For an unlabeled instance, the model is
L(D;w) = logp(di|xi; w) updated to maximize the probability of its parse
=1 forest, instead of a single parse tree in traditional
The training objective is to maximize the log tri-training. In other words, the model is free to
likelihood of the training dataC(D). The partial distribute probability mass among the trees in the

derivative with respect to the feature weigitss: ~ Parse forest to its liking, as long as the likelihood
improves (Tackstrom et al., 2013).

where Z(x) is the normalization factor ani(x)

is the set of all legal dependency treeszor
Suppose the labeled training data is

D = {(xi,d;)}Y,. Then the log likelihood

of Dis:

L(Diw) Bl di)

;W -

T*Z Z p(d|xi; w)f(x;,d) 3.1 Likelihood of the Unlabeled Data
d’e)(x;)

i=1
@ The auto-parsed unlabeled data with ambiguous
where the first term is the empirical counts and@Pelings is denoted &' = {(w;, i)}, where
the second term is the model expectations. Sinct 1S an unlabeled sentence, awdis the corre-
Y(x;) contains exponentially many dependencySplqnd'ng parse forest. Then the log likelihood of
trees, direct calculation of the second term D" Is:
prohibitive. Instead, we can use the classic inside-
outside algorithm to efficiently compute the model M
expectations withi) (n?) time complexity, where LDsw) =Y log [ > p(d'|u;w)
n is the input sentence length. i=1 d'eVi

3 Ambiguity-aware Ensemble Training wherep(d’|u;; w) is the conditional probability of

In standard entire-tree based semi-supervised’ givenu;, as defined in Eq. (1). For an unlabeled
methods such as self/co/tri-training, automaticallysentences;, the probability of its parse fore$t, is
parsed unlabeled sentences are used as additiolae summation of the probabilities of all the parse
training data, and noisy 1-best parse trees artées contained in the forest.

considered as gold-standard. To alleviate the Then we can derive the partial derivative of the
noise, the tri-training method only uses unlabeledog likelihood with respect tov:

data on which multiple parsers from different
views produce identical parse trees. However,

. . . p(d’ |ug, Vi; w)f(u;,d’
unlabeled data with divergent syntactic structuresyz(p’; w) M 2 (s Vi w)t(us, )

d’ev;
should be_ more useful. Intuitively, if several — ow —z; Y p(dfu w)f(ui, )
parsers disagree on an unlabeled sentence, it = areyius)
implies that the unlabeled sentence contains 3)

some difficult syntactic phenomena which arewherep(d’|u;, V;; w) is the probability ofd’ un-
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der the space constrained by the parse farest ~ Algorithm 1 SGD training with mixed labeled and
unlabeled data.

o exp{Score(u;,d’; w)} 1: Input: Labeled dat®D = {(x;,d;)}~,, and unlabeled
p(d'u, Vi w) = Z(u;, Vi w) dataD’ = {(w;, Vi) }}L,; Parametersl, Ny, M1, b
A 2: Output: w
Z(u;, Vi3 w) = Z exp{Score(u;,d’; w)} 3: Initialization: w(o? =0,k=0;
drev, 4: for ¢ = 1to I do {iterations
v 5: Randomly selectV; instances fromD and M;

] ) ) instances fronD’ to compose a new datasBt, and
The second term in Eqg. (3) is the same with the shuffle it.

second term in Eq. (2). The first term in Eq. (3) & TraverseD:: asmallbatctDy, € D at one step.
can be efficiently computed by running the inside- g Z"k;]z j ;Vk + 0k 5 VLD 3 W)
outside algorithm in the constrained search space: end for

Vi.
3.2 Stochastic Gradient Descent (SGD) parse the test data to find the optimal parse tree.
Trainin
ning d* = arg max p(d’|x; w)
We apply L2-norm regularized SGD training to d’ey(x)
iteratively learn feature weighte for our CRF- = arg max Score(x,d’; w)
based baseline and semi-supervised parsers. We d’ey(x)

follow the implementation in CRFsuifeAt each This can be done with the Viterbi decoding algo-

step, the algorithm apprgx_lmates a gradient WIthrithm described in McDonald and Pereira (2006)
a small subset of the training examples, and then

3 N
updates the feature weights. Finkel et al. (20085n O(n) parsing time.
show that SGD achieves optimal test performancg 3 Forest Construction with Diverse Parsers

with far fewer iterations than other optimization
. o To construct parse forests for unlabeled data, we
routines such as L-BFGS. Moreover, it is very ) . .
convenient to parallel SGD since computationsemIOIOy three diverse parsers, i.e., our baseline
GParser, a transition-based parser (ZP&thang

among examples in the same batch is mutuall%nd Nivre, 2011), and a generative constituen-
independent.

t parser (Berkeley Parsgr(Petrov and Klein,
Training with the combined labeled and unla- P ( Y S (

o - : 007). These three parsers are trained on labeled
beled data, the objective is to maximize the mixe

L . ata and then used to parse each unlabeled sen-

likelihood: tence. We aggregate the three parsers’ outputs on
, , unlabeled data in different ways and evaluate the

L(D;D) = L(D) + L(D) effectiveness through experiments.

Since D’ contains much more instances th&n 4 Experiments and Analysis
(1.7M vs. 40K for English, and 4M vs. 16K for ) )
Chinese), it is likely that the unlabeled data may'© Verify the effectiveness of our proposed ap-

overwhelm the labeled data during SGD training.Proach, we conduct experiments on Penn Tree-
Therefore, we propose a simple corpus-weightin?@k (PTB) and Penn Chinese Treebank 5.1 (CT-

strategy, as shown in Algorithm 1, Whefiég’k 5). For English, we follow the popular practice

is the subset of training data used At upda{te o spllttdata tm o tzrg ning d(iec;uons 5'21)2’3(16\/?_
and b is the batch sizey is the update step, opment (section 22), and test (section 23).  For

which is adjusted following the simulated anneaI-CTBs’ we adopt the data split of (Duan et al.,

ing procedure (Finkel et al., 2008). The idea is_2007)' We convert original bracketed structures

to use a fraction of training dataD() at each into dependency structures using Penn2Malt with

. : S its default head-finding rules.
iteration, and do corpus weighting by randomly
sampling labeled and unlabeled instances in a For unlabeled data, we follow Chen etal. (2013)

certain proportion &y vs. My). and use the B_LLIP WSQ corpus (Qharnlak _et al.,
. 2000) for English and Xinhua portion of Chinese
Once the feature weights are learnt, we can

3ht'[p://people.sutd.edu.sg/ ~yue_zhang/doc/
2http://WWW.chokkan.org/software/crfsuite/ 4https://code.googIe.com/p/berkeleyparser/
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Train | Dev | Test] Unlabeled results. We divide the systems into three types: 1)
PTB | 39,832| 1,700 2,416 1.7M . )

CTB5 | 16.091| 803 | 1.910 aM supervised single parsers; 2) CRF-based GParser
with conventional self/co/tri-training; 3) CRF-
Table 2: Data sets (in sentence number). based GParser with our approach. For the latter
two cases, we also present the oracle accuracy and

_ q ion 2 5 averaged head number per word (“Head/Word”)
Gigaword Version 2.0 (LDC2009T14) (Huang, of parse forest when applying different ways to

2009) for Chinese. We build a CRF-based bigrarrl:onstruct forests on development datasets.
part-of-speech (POS) tagger with the features de-

scribed in (Li et al., 2012), and produce POS tagsh Thhe first majo_r ro(;/v presents performanci of h
for all train/development/test/unlabeled sets (10-t € three supervised parsers. We can see that the

three parsers achieve comparable performance on
English, but the performance of ZPar is largely
inferior on Chinese.

way jackknifing for training sets). The tagging ac-

curacy on test sets #.3% on English an®4.0%

on Chinese. Table 2 shows the data statistics.
We measure parsing performance using the s- The second major rowshows the results when

tandard unlabeled attachment score (UAS), exwe use single 1-best parse trees on unlabeled

cluding punctuation marks. For significance testdata. When using the outputs of GParser itself

we adopt Dan Bikel's randomized parsing evalua{“Unlabeled — G”), the experiment reproduces

tion comparator (Noreen, 1989). traditional self-training. The results on both En-
_ glish and Chinese re-confirm thaelf-training
4.1 Parameter Setting may not work for dependency parsjngvhich

When training our CRF-based parsers with SGD|s consistent with previous studies (Spreyer and
we use the batch size= 100 for all experiments. Kuhn, 2009). The reason may be that dependency
We run SGD forI = 100 iterations and choose parsers are prone to amplify previous mistakes on
the model that performs best on developmentinlabeled data during training.
data. For the semi-supervised parsers trained with The next two experiments in the second ma-
Algorithm 1, we useN; = 20K and M; = 50K jor row reimplementco-training where another
for English, andN; = 15K and M; = 50K for  parser’s 1-best results are projected into unlabeled
Chinese, based on a few preliminary experimentsdata to help the core parser. Using unlabeled
To accelerate the training, we adopt parallelizecjata with the results of ZPar (“Unlabeled Z”)
implementation of SGD and employ 20 threads forsignificantly outperforms the baseline GParser by
each run. For semi-supervised cases, one iteratian30% (93.15-82.85) on English. However, the
takes about 2 hours on an IBM server having 2.0mprovement on Chinese is not significant. Using
GHz Intel Xeon CPUs and 72G memory. unlabeled data with the results of Berkeley Parser
Default parameter settings are used for training“Unlabeled«— B”) significantly improves parsing
ZPar and Berkeley Parser. We run ZPar for SCaccuracy by 0.55% (93.40-92.85) on English and
iterations, and choose the model that achieves.06% (83.34-82.28) on Chinese. We believe the
highest accuracy on the development data. Fafeason is that being a generative model designed
Berkeley Parser, we use the model after 5 splitfor constituent parsing, Berkeley Parser is more
merge iterations to avoid over-fitting the train- different from discriminative dependency parsers,
ing data according to the manual. The phraseand therefore can provide more divergent syntactic
structure outputs of Berkeley Parser are convertegtructures. This kind of syntactic divergence is
into dependency structures using the same heagelpful because it can provide complementary
finding rules. knowledge from a different perspective. Surdeanu
and Manning (2010) also show that the diversity of
parsers is important for performance improvement
Using three supervised parsers, we have manyhen integrating different parsers in the super-
options to construct parse forest on unlabeled datgised track. Therefore, we can conclude that

To examine the effect of different ways for forest Co_training he|ps dependency parsing, especia”y
construction, we conduct extensive methodologyyhen using a more divergent parser
study on development data. Table 3 presents the

4.2 Methodology Study on Development Data

The last experiment in the second major row
5http://www.cis.upenn.edu/ ~ dbikel/software.html is known astri-training, which onIy uses unla-
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English Chinese
UAS Oracle| Head/Word UAS Oracle| Head/Word
GParser 92.85 82.28
Supervised ZPar 92.50 — — 81.04 — —
Berkeley 92.70 82.46
Unlabeled— G (self-train) [92.88 | 92.85 82.14 | 82.28
Semi-supervised GParserUnlabeled— Z (co-train)y | 93.151 | 92.50 1.000 82.54 81.04 1.000
with Single 1-best Trees| Unlabeled— B (co-train) {93.401 | 92.70 ' 83.34} | 82.46 '
Unlabeled— B=Z (tri-train) | 93.501 | 97.52 83.10f | 95.05
Unlabeled— Z+G 93.187 [ 94.97] 1.053 [82.78 | 86.66] 1.136
Unlabeled— B+G 93.351 | 96.37| 1.080 |83.247 |89.72| 1.188
Semi-supervised GParsegrUnlabeled— B+Z 93.7811| 96.18 1.082 |83.8671| 89.54 1.199
Ambiguity-aware Ensembldunlabeled— B+(ZNG) |93.7711| 95.60 1.050 |84.2671| 87.76 1.106
Unlabeled— B+Z+G 93.501 | 96.95| 1.112 |83.30f | 91.50| 1.281

Table 3: Main results on development data. G is short for &gz for ZPar, and B for Berkeley Parser.
1 means the corresponding parser significantly outperfompsrsised parsers, arfdmeans the result
significantly outperforms col/tri-training at confidencedkof p < 0.01.

beled sentences on which Berkeley Parser an@Parser (“Unlabeled— B+G”), we get higher
ZPar produce identical outputs (“Unlabeled  oracle score (96.37% on English and 89.72% on
B=Z"). We can see that with the verification of Chinese) and higher syntactic divergence (1.085
two views, the oracle accuracy is much highercandidate heads per word on English, and 1.188
than using single parsers (97.52% vs. 92.85% oonn Chinese) than “Unlabeled- Z+G”, which
English, and 95.06% vs. 82.46% on Chinese)verifies our earlier discussion that Berkeley Pars-
Although using less unlabeled sentences (0.7Mer produces more different structures than ZPar.
for English and 1.2M for Chinese}ri-training  However, it leads to slightly worse accuracy than
achieves comparable performance to co-trainingco-training with Berkeley Parser (“Unlabeled
(slightly better on English and slightly worse on B”). This indicates that adding the outputs of
Chinese). GParser itself does not help the model.

The third major row shows the results of = Combining the outputs of Berkeley Parser and
the semi-supervised GParser with our proposedPar (“Unlabeled— B+Z"), we get the best per-
approach. We experiment with different com-formance on English, which is also significantly
binations of the 1-best parse trees of the thredetter than both co-training (“Unlabeled B”)
supervised parsers. The first three experimentand tri-training (“Unlabeled<— B=Z") on both
combine 1-best outputs of two parsers to compos&nglish and Chinese. This demonstrates that
parse forest on unlabeled data. “Unlabeled proposed approach can better exploit unlabeled
B+(ZNG)” means that the parse forest is initializeddata than traditional self/co/tri-training More
with the Berkeley parse and augmented with theanalysis and discussions are in Section 4.4.
intersection of dependencies of the 1-best outputs During experimental trials, we find that “Unla-
of ZPar and GParser. In the last setting, the parskeled«— B+(ZNG)” can further boost performance
forest contains all three 1-best results. on Chinese. A possible explanation is that by

When the parse forests of the unlabeled dataising the intersection of the outputs of GParser
are the union of the outputs of GParser and ZPaand ZPar, the size of the parse forest is better
denoted as “Unlabeled- Z+G”, each word has controlled, which is helpful considering that ZPar
1.053 candidate heads on English and 1.136 operforms worse on this data than both Berkeley
Chinese, and the oracle accuracy is higher thaRarser and GParser.
using 1l-best outputs of single parsers (94.97% Adding the output of GParser itself (“Unlabeled
vs. 92.85% on English, 86.66% vs. 82.46%+« B+Z+G") leads to accuracy drop, although the
on Chinese). However, we find that althoughoracle score is higher (96.95% on English and
the parser significantly outperforms the supervise®1.50% on Chinese) than “Unlabeled B+Z".
GParser on English, it does not gain significant imWe suspect the reason is that the model is likely to
provement over co-training with ZPar (“Unlabeled distribute the probability mass to these parse trees
«— Z") on both English and Chinese. produced by itself instead of those by Berkeley

Combining the outputs of Berkeley Parser andParser or ZPar under this setting.
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Sup | Semi UAS

McDonald and Pereira (2006) 91.5 Li et al. (2012)jjoint] 82.37

Koo and Collins (2010pigher-order] | 93.04| — Supervised Bohnet and Nivre (2012joint] | 81.42
Zhang and McDonald (201 3)igher-order] | 93.06 Chen et al. (2013pigher-order] | 81.01
Zhang and Nivre (201 1pigher-order] | 92.9 This work 81.14
Koo et al. (2008)higher-order] | 92.02 | 93.16 Semi Chen et al. (2013pigher-order] | 83.08

Chen et al. (2009igher-order] | 92.40 | 93.16 This work 82.89
Suzuki et al. (2009igher-order,cluster]| 92.70 | 93.79

Zhou et al. (2011jhigher-order] | 91.98 | 92.64 . .

Chen of a|_((201361h:gh:_2:d§3 9276 | 9377 Table 5: UAS comparison on Chinese test data.

Thiswork | 92.34| 93.19

Unlabeled data | UAS |#Sent Len | Head/Word Oracle

. . NULL 9234 0 | — —
Table 4: UAS comparison on English test data. consistentritrain | 92.94) 0.7M | 18.25|  1.000 | 97.65

Low divergence | 92.94| 0.5M | 28.19| 1.062 96.53
High divergence| 93.03| 0.5M | 27.85| 1.211 | 94.28
In summary, we can conclude ttair proposed ALL 93.19/1.7M|24.15] 1.087 | 96.09

ambiguity-aware ensemble training is significant-
ly better than both the supervised approaches andable 6: Performance of our semi-supervised
the semi-supervised approaches that use 1-be§iParser with different sets of “Unlabeled-
parse trees Appropriately composing the forest B+Z” on English test set. “Len” means averaged
parse, our approach outperforms the best results gentence length.
co-training or tri-training by 0.28% (93.78-93.50)
on English and 0.92% (84.26-83.34) on Chinese. 5, chinese test data. Li et al. (2012) and Bohnet
and Nivre (2012) use joint models for POS tagging
and dependency parsing, significantly outperform-
We adopt the best settings on development dating their pipeline counterparts. Our approach can
for semi-supervised GParser with our proposethe combined with their work to utilize unlabeled
approach, and make comparison with previougiata to improve both POS tagging and parsing
results on test data. Table 4 shows the results.  simultaneously. Our work achieves comparable
The first major row lists several state-of-the-accuracy with Chen et al. (2013), although they
art supervised methods. McDonald and Pereiradopt the higher-order model of Carreras (2007).
(2006) propose a second-order graph-based pars@gain, our method may be combined with their
but use a smaller feature set than our work. Koawork to achieve higher performance.
and Collins (2010) propose a third-order graph- _
based parser. Zhang and McDonald (2012) ex#-4 Analysis
plore higher-order features for graph-based deTo better understand the effectiveness of our pro-
pendency parsing, and adopt beam search fquosed approach, we make detailed analysis using
fast decoding. Zhang and Nivre (2011) proposehe semi-supervised GParser with “Unlabeled
a feature-rich transition-based parser. All workB+Z" on English datasets.
in the second major row adopts semi-supervised Contribution of unlabeled data with regard
methods. The results show that our approacho syntactic divergence: We divide the unlabeled
achieves comparable accuracy with most previoudata into three sets according to the divergence of
semi-supervised methods. Both Suzuki et althe 1-best outputs of Berkeley Parser and ZPar.
(2009) and Chen et al. (2013) adopt the higherThe first set contains those sentences that the two
order parsing model of Carreras (2007), and Suzuparsers produce identical parse trees, denoted by
ki et al. (2009) also incorporate word cluster“consistent”, which corresponds to the setting for
features proposed by Koo et al. (2008) in their systri-training. Other sentences are split into two sets
tem. We expect our approach may achieve highesccording to averaged number of heads per word
performance with such enhancements, which wén parse forests, denoted by “low divergence” and
leave for future work. Moreover, our method “high divergence” respectively. Then we train
may be combined with other semi-supervised apsemi-supervised GParser using the three sets of
proaches, since they are orthogonal in methodunlabeled data. Table 6 illustrates the results and
ology and utilize unlabeled data from different statistics. We can see that unlabeled data with
perspectives. identical outputs from Berkeley Parser and ZPar
Table 5 make comparisons with previous resultdends to be short sentences (18.25 words per sen-

4.3 Comparison with Previous Work
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tence on average). Results show all the three setses one parser's outputs as guide features for
of unlabeled data can help the parser. Especiallyanother parser, leading to improved performance
the unlabeled data with highly divergent struc-(Nivre and McDonald, 2008; Torres Martins et
tures leads to slightly higher improvement. Thisal., 2008). Re-parsing merges the outputs of
demonstrates thaitur approach can better exploit several parsers into a dependency graph, and then
unlabeled data on which parsers of different viewsapply Viterbi decoding to find a better tree (Sagae
produce divergent structures and Lavie, 2006; Surdeanu and Manning, 2010).
Impact of unlabeled data size: To under- One possible drawback of parser ensemble is that
stand how our approach performs with regards t@everal parsers are required to parse the same
the unlabeled data size, we train semi-supervisedentence during the test phase. Moreover, our
GParser with different sizes of unlabeled data. Figapproach can benefit from these methods in that
3 shows the accuracy curve on the test set. Weve can get parse forests of higher quality on
can see that the parser consistently achieves highanlabeled data (Zhou, 2009).
accuracy with more unlabeled data, demonstrating _
the effectiveness of our approach. We expecP Conclusions
that our approach has potential to achieve highe»q-hiS paper

i " proposes a generalized training
accuracy with more additional data.

framework of semi-supervised dependency
parsing based on ambiguous labelings. For
each unlabeled sentence, we combine the 1-best
parse trees of several diverse parsers to compose
ambiguous labelings, represented by a parse
forest. The training objective is to maximize the
mixed likelihood of both the labeled data and
the auto-parsed unlabeled data with ambiguous
labelings. Experiments show that our framework
02 o sk v 17w can make better use of the unlabeled data,
Unlabeled Data Size especially those with divergent outputs from
different parsers, than traditional tri-training.
Detailed analysis demonstrates the effectiveness
of our approach. Specifically, we find that our
approach is very effective when using divergent
5 Related Work parsers such as the generative parser, and it is also
helpful to properly balance the size and oracle

- y . accuracy of the parse forest of the unlabeled data.
Tackstrom et al. (2013). They first apply the For future work, among other possible

idea of ambiguous labelings to multilingual parser . .
9 9 guaip extensions, we would like to see how our

transfer in the unsupervised parsing field, which . .
. . approach performs when employing more diverse
aims to build a dependency parser for a resource- .
) parsers to compose the parse forest of higher

poor target language by making use of source:

: : quality for the unlabeled data, such as the easy-
language treebanks. Different from their work, we_; L
. . . first non-directional dependency parser (Goldberg
explore the idea for semi-supervised dependen

: Czlmd Elhadad, 2010) and other constituent parsers

93.2

93.1

93
929
92.8 -

UAS

92.7
92,6 -
925

92.4
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Figure 3: Performance of GParser with different
sizes of “Unlabeled— B+Z" on English test set.

Our work is originally inspired by the work of

data is available. Moreover, we for the first .

time build a state-of-the-art CRF-based depen-zoos’ Finkel etal., 2008).

dency parser and conduct in-depth Comparisonﬁ\cknowledgments

with previous methods. Similar ideas of learning

with ambiguous labelings are previously exploredThe authors would like to thank the critical

for classification (Jin and Ghahramani, 2002) and@nd insightful comments from our anonymous

sequence labeling problems (Dredze et al., 2009)eviewers. This work was supported by National
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ble approaches such as stacked learning and r61373095, 61333018).

parsing in the supervised track. Stacked learning
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