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Abstract
Unsupervised word sense disambiguation
(WSD) methods are an attractive approach
to all-words WSD due to their non-reliance
on expensive annotated data. Unsuper-
vised estimates of sense frequency have
been shown to be very useful for WSD due
to the skewed nature of word sense distri-
butions. This paper presents a fully unsu-
pervised topic modelling-based approach
to sense frequency estimation, which is
highly portable to different corpora and
sense inventories, in being applicable to
any part of speech, and not requiring a hi-
erarchical sense inventory, parsing or par-
allel text. We demonstrate the effective-
ness of the method over the tasks of pre-
dominant sense learning and sense distri-
bution acquisition, and also the novel tasks
of detecting senses which aren’t attested
in the corpus, and identifying novel senses
in the corpus which aren’t captured in the
sense inventory.

1 Introduction

The automatic determination of word sense infor-
mation has been a long-term pursuit of the NLP
community (Agirre and Edmonds, 2006; Navigli,
2009). Word sense distributions tend to be Zip-
fian, and as such, a simple but surprisingly high-
accuracy back-off heuristic for word sense dis-
ambiguation (WSD) is to tag each instance of a
given word with its predominant sense (McCarthy
et al., 2007). Such an approach requires knowl-
edge of predominant senses; however, word sense
distributions — and predominant senses too —
vary from corpus to corpus. Therefore, meth-
ods for automatically learning predominant senses

and sense distributions for specific corpora are re-
quired (Koeling et al., 2005; Lapata and Brew,
2004).

In this paper, we propose a method which uses
topic models to estimate word sense distributions.
This method is in principle applicable to all parts
of speech, and moreover does not require a parser,
a hierarchical sense representation or parallel text.
Topic models have been used for WSD in a num-
ber of studies (Boyd-Graber et al., 2007; Li et
al., 2010; Lau et al., 2012; Preiss and Stevenson,
2013; Cai et al., 2007; Knopp et al., 2013), but
our work extends significantly on this earlier work
in focusing on the acquisition of prior word sense
distributions (and predominant senses).

Because of domain differences and the skewed
nature of word sense distributions, it is often the
case that some senses in a sense inventory will
not be attested in a given corpus. A system ca-
pable of automatically finding such senses could
reduce ambiguity, particularly in domain adapta-
tion settings, while retaining rare but nevertheless
viable senses. We further propose a method for ap-
plying our sense distribution acquisition system to
the task of finding unattested senses — i.e., senses
that are in the sense inventory but not attested in
a given corpus. In contrast to the previous work
of McCarthy et al. (2004a) on this topic which
uses the sense ranking score from McCarthy et
al. (2004b) to remove low-frequency senses from
WordNet, we focus on finding senses that are unat-
tested in the corpus on the premise that, given ac-
curate disambiguation, rare senses in a corpus con-
tribute to correct interpretation.

Corpus instances of a word can also correspond
to senses that are not present in a given sense in-
ventory. This can be due to, for example, words
taking on new meanings over time (e.g. the rela-
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tively recent senses of tablet and swipe related to
touchscreen computers) or domain-specific terms
not being included in a more general-purpose
sense inventory. A system for automatically iden-
tifying such novel senses — i.e. senses that are
attested in the corpus but not in the sense inven-
tory — would be a very valuable lexicographi-
cal tool for keeping sense inventories up-to-date
(Cook et al., 2013). We further propose an appli-
cation of our proposed method to the identification
of such novel senses. In contrast to McCarthy et al.
(2004b), the use of topic models makes this possi-
ble, using topics as a proxy for sense (Brody and
Lapata, 2009; Yao and Durme, 2011; Lau et al.,
2012). Earlier work on identifying novel senses
focused on individual tokens (Erk, 2006), whereas
our approach goes further in identifying groups of
tokens exhibiting the same novel sense.

2 Background and Related Work

There has been a considerable amount of research
on representing word senses and disambiguating
usages of words in context (WSD) as, in order
to produce computational systems that understand
and produce natural language, it is essential to
have a means of representing and disambiguat-
ing word sense. WSD algorithms require word
sense information to disambiguate token instances
of a given ambiguous word, e.g. in the form of
sense definitions (Lesk, 1986), semantic relation-
ships (Navigli and Velardi, 2005) or annotated
data (Zhong and Ng, 2010). One extremely use-
ful piece of information is the word sense prior
or expected word sense frequency distribution.
This is important because word sense distributions
are typically skewed (Kilgarriff, 2004), and sys-
tems do far better when they take bias into ac-
count (Agirre and Martinez, 2004).

Typically, word frequency distributions are esti-
mated with respect to a sense-tagged corpus such
as SemCor (Miller et al., 1993), a 220,000 word
corpus tagged with WordNet (Fellbaum, 1998)
senses. Due to the expense of hand tagging, and
sense distributions being sensitive to domain and
genre, there has been some work on trying to
estimate sense frequency information automati-
cally (McCarthy et al., 2004b; Chan and Ng, 2005;
Mohammad and Hirst, 2006; Chan and Ng, 2006).
Much of this work has been focused on ranking
word senses to find the predominant sense in a
given corpus (McCarthy et al., 2004b; Mohammad

and Hirst, 2006), which is a very powerful heuris-
tic approach to WSD. Most WSD systems rely upon
this heuristic for back-off in the absence of strong
contextual evidence (McCarthy et al., 2007). Mc-
Carthy et al. (2004b) proposed a method which
relies on distributionally similar words (nearest
neighbours) associated with the target word in
an automatically acquired thesaurus (Lin, 1998).
The distributional similarity scores of the nearest
neighbours are associated with the respective tar-
get word senses using a WordNet similarity mea-
sure, such as those proposed by Jiang and Conrath
(1997) and Banerjee and Pedersen (2002). The
word senses are ranked based on these similar-
ity scores, and the most frequent sense is selected
for the corpus that the distributional similarity the-
saurus was trained over.

As well as sense ranking for predominant sense
acquisition, automatic estimates of sense fre-
quency distribution can be very useful for WSD

for training data sampling purposes (Agirre and
Martinez, 2004), entropy estimation (Jin et al.,
2009), and prior probability estimates, all of which
can be integrated within a WSD system (Chan and
Ng, 2005; Chan and Ng, 2006; Lapata and Brew,
2004). Various approaches have been adopted,
such as normalizing sense ranking scores to ob-
tain a probability distribution (Jin et al., 2009), us-
ing subcategorisation information as an indication
of verb sense (Lapata and Brew, 2004) or alter-
natively using parallel text (Chan and Ng, 2005;
Chan and Ng, 2006; Agirre and Martinez, 2004).

The work of Boyd-Graber and Blei (2007) is
highly related in that it extends the method of Mc-
Carthy et al. (2004b) to provide a generative model
which assumes the words in a given document are
generated according to the topic distribution ap-
propriate for that document. They then predict the
most likely sense for each word in the document
based on the topic distribution and the words in
context (“corroborators”), each of which, in turn,
depends on the document’s topic distribution. Us-
ing this approach, they get comparable results to
McCarthy et al. when context is ignored (i.e. us-
ing a model with one topic), and at most a 1% im-
provement on SemCor when they use more topics
in order to take context into account. Since the
results do not improve on McCarthy et al. as re-
gards sense distribution acquisition irrespective of
context, we will compare our model with that pro-
posed by McCarthy et al.
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Recent work on finding novel senses has tended
to focus on comparing diachronic corpora (Sagi
et al., 2009; Cook and Stevenson, 2010; Gulor-
dava and Baroni, 2011) and has also considered
topic models (Lau et al., 2012). In a similar vein,
Peirsman et al. (2010) considered the identifica-
tion of words having a sense particular to one
language variety with respect to another (specif-
ically Belgian and Netherlandic Dutch). In con-
trast to these studies, we propose a model for com-
paring a corpus with a sense inventory. Carpuat
et al. (2013) exploit parallel corpora to identify
words in domain-specific monolingual corpora
with previously-unseen translations; the method
we propose does not require parallel data.

3 Methodology

Our methodology is based on the WSI system
described in Lau et al. (2012),1 which has been
shown (Lau et al., 2012; Lau et al., 2013a; Lau et
al., 2013b) to achieve state-of-the-art results over
the WSI tasks from SemEval-2007 (Agirre and
Soroa, 2007), SemEval-2010 (Manandhar et al.,
2010) and SemEval-2013 (Navigli and Vannella,
2013; Jurgens and Klapaftis, 2013). The system
is built around a Hierarchical Dirichlet Process
(HDP: Teh et al. (2006)), a non-parametric variant
of a Latent Dirichlet Allocation topic model (Blei
et al., 2003) where the model automatically opti-
mises the number of topics in a fully-unsupervised
fashion over the training data.

To learn the senses of a target lemma, we train
a single topic model per target lemma. The sys-
tem reads in a collection of usages of that lemma,
and automatically induces topics (= senses) in the
form of a multinomial distribution over words, and
per-usage topic assignments (= probabilistic sense
assignments) in the form of a multinomial distri-
bution over topics. Following Lau et al. (2012),
we assign one topic to each usage by selecting the
topic that has the highest cumulative probability
density, based on the topic allocations of all words
in the context window for that usage.2 Note that in
their original work, Lau et al. (2012) experimented
with the use of features extracted from a depen-
dency parser. Due to the computational overhead
associated with these features, and the fact that the
empirical impact of the features was found to be

1Based on the implementation available at: https://
github.com/jhlau/hdp-wsi

2This includes all words in the usage sentence except
stopwords, which were filtered in the preprocessing step.

marginal, we make no use of parser-based features
in this paper.3

The induced topics take the form of word multi-
nomials, and are often represented by the top-N
words in descending order of conditional probabil-
ity. We interpret each topic as a sense of the target
lemma.4 To illustrate this, we give the example of
topics induced by the HDP model for network in
Table 1.

We refer to this method as HDP-WSI hence-
forth.5

In predominant sense acquisition, the task is to
learn, for each target lemma, the most frequently
occurring word sense in a particular domain or
corpus, relative to a predefined sense inventory.
The WSI system provides us with a topic alloca-
tion per usage of a given word, from which we can
derive a distribution of topics over usages and a
predominant topic. In order to map this onto the
predominant sense, we need to have some way of
aligning a topic with a sense. We design our topic–
sense alignment methodology with portability in
mind — it should be applicable to any sense in-
ventory. As such, our alignment methodology as-
sumes only that we have access to a conventional
sense gloss or definition for each sense, and does
not rely on ontological/structural knowledge (e.g.
the WordNet hierarchy).

To compute the similarity between a sense
and a topic, we first convert the words in the
gloss/definition into a multinomial distribution
over words, based on simple maximum likeli-
hood estimation.6 We then calculate the Jensen–
Shannon divergence between the multinomial dis-
tribution (over words) of the gloss and that of the
topic, and convert the divergence value into a sim-
ilarity score by subtracting it from 1. Formally, the
similarity sense si and topic tj is:

sim(si, tj) = 1− JS(S‖T ) (1)

where S and T are the multinomial distributions
3For hyper-parameters α and γ, we used 0.1 for both. We

did not tune the parameters, and opted to use the default pa-
rameters introduced in Teh et al. (2006).

4To avoid confusion, we will refer to the HDP-induced
topics as topics, and reserve the term sense to denote senses
in a sense inventory.

5The code used to learn predominant sense and run all
experiments described in this paper is available at: https:
//github.com/jhlau/predom_sense.

6Words are tokenised using OpenNLP and lemmatised
with Morpha (Minnen et al., 2001). We additionally remove
the target lemma, stopwords and words that are less than 3
characters in length.
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Topic Num Top-10 Terms
1 network support @card@ information research service group development community member
2 service @card@ road company transport rail area government network public
3 network social model system family structure analysis form relationship neural
4 network @card@ computer system service user access internet datum server
5 system network management software support corp company service application product
6 @card@ radio news television show bbc programme call think film
7 police drug criminal terrorist intelligence network vodafone iraq attack cell
8 network atm manager performance craigavon group conference working modelling assistant
9 root panos comenius etd unipalm lse brazil telephone xxx discuss

Table 1: An example to illustrate the topics induced for network by the HDP model. The top-10 highest
probability terms are displayed to represent each topic (@card@ denotes a tokenised cardinal number).

over words for sense si and topic tj , respectively,
and JS(X‖Y ) is the Jensen–Shannon divergence
for distribution X and Y .

To learn the predominant sense, we compute the
prevalence score of each sense and take the sense
with the highest prevalence score as the predom-
inant sense. The prevalence score for a sense is
computed by summing the product of its similar-
ity scores with each topic (i.e. sim(si, tj)) and the
prior probability of the topic in question (based
on maximum likelihood estimation). Formally, the
prevalence score of sense si is given as follows:

prevalence(si) =
T∑
j

(sim(si, tj)× P (tj)) (2)

=
T∑
j

(
sim(si, tj)× f(tj)∑T

k f(tk)

)

where f(tj) is the frequency of topic tj (i.e. the
number of usages assigned to topic tj), and T is
the number of topics.

The intuition behind the approach is that the
predominant sense should be the sense that has rel-
atively high similarity (in terms of lexical overlap)
with high-probability topic(s).

4 WordNet Experiments

We first test the proposed method over the tasks
of predominant sense learning and sense distribu-
tion induction, using the WordNet-tagged dataset
of Koeling et al. (2005), which is made up of
3 collections of documents: a domain-neutral
corpus (BNC), and two domain-specific corpora
(SPORTS and FINANCE). For each domain,
annotators were asked to sense-annotate a ran-
dom selection of sentences for each of 40 target
nouns, based on WordNet v1.7. The predominant
sense and distribution across senses for each target
lemma was obtained by aggregating over the sense

annotations. The authors evaluated their method in
terms of WSD accuracy over a given corpus, based
on assigning all instances of a target word with the
predominant sense learned from that corpus. For
the remainder of the paper, we denote their system
as MKWC.

To compare our system (HDP-WSI) with
MKWC, we apply it to the three datasets of Koel-
ing et al. (2005). For each dataset, we use HDP
to induce topics for each target lemma, compute
the similarity between the topics and the WordNet
senses (Equation (1)), and rank the senses based
on the prevalence scores (Equation (2)). In addi-
tion to the WSD accuracy based on the predomi-
nant sense inferred from a particular corpus, we
additionally compute: (1) AccUB, the upper bound
for the first sense-based WSD accuracy (using the
gold standard predominant sense for disambigua-
tion);7 and (2) ERR, the error rate reduction be-
tween the accuracy for a given system (Acc) and
the upper bound (AccUB), calculated as follows:

ERR = 1− AccUB − Acc
AccUB

Looking at the results in Table 2, we see lit-
tle difference in the results for the two methods,
with MKWC performing better over two of the
datasets (BNC and SPORTS) and HDP-WSI per-
forming better over the third (FINANCE), but all
differences are small. Based on the McNemar’s
Test with Yates correction for continuity, MKWC
is significantly better over BNC and HDP-WSI is
significantly better over FINANCE (p < 0.0001
in both cases), but the difference over SPORTS
is not statistically significance (p > 0.1). Note
that there is still much room for improvement with

7The upper bound for a WSD approach which tags all to-
ken occurrences of a given word with the same sense, as a
first step towards context-sensitive unsupervised WSD.
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Dataset FSCORPUS MKWC HDP-WSI
AccUB Acc ERR Acc ERR

BNC 0.524 0.407 (0.777) 0.376 (0.718)

FINANCE 0.801 0.499 (0.623) 0.555 (0.693)

SPORTS 0.774 0.437 (0.565) 0.422 (0.545)

Table 2: WSD accuracy for MKWC and HDP-WSI
on the WordNet-annotated datasets, as compared
to the upper-bound based on actual first sense in
the corpus (higher values indicate better perfor-
mance; the best system in each row [other than the
FSCORPUS upper bound] is indicated in boldface).

Dataset MKWC HDP-WSI
BNC 0.226 0.214

FINANCE 0.426 0.375
SPORTS 0.420 0.363

Table 3: Sense distribution evaluation of MKWC
and HDP-WSI on the WordNet-annotated datasets,
evaluated using JS divergence (lower values indi-
cate better performance; the best system in each
row is indicated in boldface).

both systems, as we see in the gap between the up-
per bound (based on perfect determination of the
first sense) and the respective system accuracies.

Given that both systems compute a continuous-
valued prevalence score for each sense of a tar-
get lemma, a distribution of senses can be ob-
tained by normalising the prevalence scores across
all senses. The predominant sense learning task
of McCarthy et al. (2007) evaluates the ability of
a method to identify only the head of this dis-
tribution, but it is also important to evaluate the
full sense distribution (Jin et al., 2009). To this
end, we introduce a second evaluation metric:
the Jensen–Shannon (JS) divergence between the
inferred sense distribution and the gold-standard
sense distribution, noting that smaller values are
better in this case, and that it is now theoretically
possible to obtain a JS divergence of 0 in the case
of a perfect estimate of the sense distribution. Re-
sults are presented in Table 3.

HDP-WSI consistently achieves lower JS diver-
gence, indicating that the distribution of senses
that it finds is closer to the gold standard distri-
bution. Testing for statistical significance over the
paired JS divergence values for each lemma using
the Wilcoxon signed-rank test, the result for FI-
NANCE is significant (p < 0.05) but the results
for the other two datasets are not (p > 0.1 in each
case).

Dataset FSCORPUS FSDICT HDP-WSI
AccUB Acc ERR Acc ERR

UKWAC 0.574 0.387 (0.674) 0.514 (0.895)

TWITTER 0.468 0.297 (0.635) 0.335 (0.716)

Table 4: WSD accuracy for HDP-WSI on the
Macmillan-annotated datasets, as compared to the
upper-bound based on actual first sense in the cor-
pus (higher values indicate better performance; the
best system in each row [other than the FSCORPUS

upper bound] is indicated in boldface).

Dataset FSCORPUS FSDICT HDP-WSI
UKWAC 0.210 0.393 0.156

TWITTER 0.259 0.472 0.171

Table 5: Sense distribution evaluation of HDP-
WSI on the Macmillan-annotated datasets as com-
pared to corpus- and dictionary-based first sense
methods, evaluated using JS divergence (lower
values indicate better performance; the best sys-
tem in each row is indicated in boldface).

To summarise, the results for MKWC and HDP-
WSI are fairly even for predominant sense learn-
ing (each outperforms the other at a level of statis-
tical significance over one dataset), but HDP-WSI
is better at inducing the overall sense distribution.

It is important to bear in mind that MKWC in
these experiments makes use of full-text parsing in
calculating the distributional similarity thesaurus,
and the WordNet graph structure in calculating the
similarity between associated words and different
senses. Our method, on the other hand, uses no
parsing, and only the synset definitions (and not
the graph structure) of WordNet.8 The non-reliance
on parsing is significant in terms of portability to
text sources which are less amenable to parsing
(such as Twitter: (Baldwin et al., 2013)), and the
non-reliance on the graph structure of WordNet is
significant in terms of portability to conventional
“flat” sense inventories. While comparable results
on a different dataset have been achieved with a
proximity thesaurus (McCarthy et al., 2007) com-
pared to a dependency one,9 it is not stated how

8McCarthy et al. (2004b) obtained good results with def-
inition overlap, but their implementation uses the relation
structure alongside the definitions (Banerjee and Pedersen,
2002). Iida et al. (2008) demonstrate that further exten-
sions using distributional data are required when applying the
method to resources without hierarchical relations.

9The thesauri used in the reimplementation of MKWC
in this paper were obtained from http://webdocs.cs.
ualberta.ca/˜lindek/downloads.htm.
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wide a window is needed for the proximity the-
saurus. This could be a significant issue with Twit-
ter data, where context tends to be limited. In the
next section, we demonstrate the robustness of the
method in experimenting with two new datasets,
based on Twitter and a web corpus, and the Macmil-
lan English Dictionary.

5 Macmillan Experiments

In our second set of experiments, we move to a
new dataset (Gella et al., to appear) based on text
from ukWaC (Ferraresi et al., 2008) and Twit-
ter, and annotated using the Macmillan English Dic-
tionary10 (henceforth “Macmillan”). For the pur-
poses of this research, the choice of Macmillan is
significant in that it is a conventional dictionary
with sense definitions and examples, but no link-
ing between senses.11 In terms of the original re-
search which gave rise to the sense-tagged dataset,
Macmillan was chosen over WordNet for reasons in-
cluding: (1) the well-documented difficulties of
sense tagging with fine-grained WordNet senses
(Palmer et al., 2004; Navigli et al., 2007); (2) the
regular update cycle of Macmillan (meaning it con-
tains many recently-emerged senses); and (3) the
finding in a preliminary sense-tagging task that it
better captured Twitter usages than WordNet (and
also OntoNotes: Hovy et al. (2006)).

The dataset is made up of 20 target nouns which
were selected to span the high- to mid-frequency
range in both Twitter and the ukWaC corpus, and
have at least 3 Macmillan senses. The average sense
ambiguity of the 20 target nouns in Macmillan is 5.6
(but 12.3 in WordNet). 100 usages of each target
noun were sampled from each of Twitter (from a
crawl over the time period Jan 3–Feb 28, 2013 us-
ing the Twitter Streaming API) and ukWaC, after
language identification using langid.py (Lui
and Baldwin, 2012) and POS tagging (based on
the CMU ARK Twitter POS tagger v2.0 (Owoputi
et al., 2012) for Twitter, and the POS tags provided
with the corpus for ukWaC). Amazon Mechani-
cal Turk (AMT) was then used to 5-way sense-tag
each usage relative to Macmillan, including allow-
ing the annotators the option to label a usage as
“Other” in instances where the usage was not cap-
tured by any of the Macmillan senses. After qual-
ity control over the annotators/annotations (see

10http://www.macmillandictionary.com/
11Strictly speaking, there is limited linking in the form of

sets of synonyms in Macmillan, but we choose to not use this
information in our research.

Gella et al. (to appear) for details), and aggregation
of the annotations into a single sense per usage
(possibly “Other”), there were 2000 sense-tagged
ukWaC sentences and Twitter messages over the
20 target nouns. We refer to these two datasets as
UKWAC and TWITTER henceforth.

To apply our method to the two datasets, we use
HDP-WSI to train a model for each target noun,
based on the combined set of usages of that lemma
in each of the two background corpora, namely the
original Twitter crawl that gave rise to the TWIT-
TER dataset, and all of ukWaC.

5.1 Learning Sense Distributions

As in Section 4, we evaluate in terms of WSD

accuracy (Table 4) and JS divergence over the
gold-standard sense distribution (Table 5). We
also present the results for: (a) a supervised base-
line (“FSCORPUS”), based on the most frequent
sense in the corpus; and (b) an unsupervised base-
line (“FSDICT”), based on the first-listed sense in
Macmillan. In each case, the sense distribution is
based on allocating all probability mass for a given
word to the single sense identified by the respec-
tive method.

We first notice that, despite the coarser-grained
senses of Macmillan as compared to WordNet, the
upper bound WSD accuracy using Macmillan is
comparable to that of the WordNet-based datasets
over the balanced BNC, and quite a bit lower than
that of the two domain corpora of Koeling et al.
(2005). This suggests that both datasets are di-
verse in domain and content.

In terms of WSD accuracy, the results over
UKWAC (ERR = 0.895) are substantially higher
than those for BNC, while those over TWITTER

(ERR = 0.716) are comparable. The accuracy is
significantly higher than the dictionary-based first
sense baseline (FSDICT) over both datasets (McNe-
mar’s test; p < 0.0001), and the ERR is also con-
siderably higher than for the two domain datasets
in Section 4 (FINANCE and SPORTS). One
cause of difficulty in sense-modelling TWITTER

is large numbers of missing senses, with 12.3%
of usages in TWITTER and 6.6% in UKWAC hav-
ing no corresponding Macmillan sense.12 This chal-
lenges the assumption built into the sense preva-
lence calculation that all topics will align to a pre-
existing sense, a point we return to in Section 5.2.

12The relative occurrence of unlisted/unclear senses in the
datasets of Koeling et al. (2005) is comparable to UKWAC.
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Dataset P R F

UKWAC 0.73 0.85 0.74
TWITTER 0.56 0.88 0.65

Table 6: Evaluation of our method for identify-
ing unattested senses, averaged over 10 runs of 10-
fold cross validation

The JS divergence results for both datasets are
well below (= better than) the results for all three
WordNet-based datasets, and also superior to both
the supervised and unsupervised first-sense base-
lines. Part of the reason for this improvement is
simply that the average polysemy in Macmillan (5.6
senses per target lemma) is slightly less than in
WordNet (6.7 senses per target lemma),13 making
the task slightly easier in the Macmillan case.

5.2 Identification of Unattested Senses

We observed in Section 5.1 that there are rela-
tively frequent occurrences of usages (e.g. 12.3%
for TWITTER) which aren’t captured by Macmil-
lan. Conversely, there are also senses in Macmillan
which aren’t attested in the annotated sample of
usages. Specifically, of the 112 senses defined for
the 20 target lemmas, 25 (= 22.3%) of the senses
are not attested in the 2000 usages in either cor-
pora. Given that our methodology computes a
prevalence score for each sense, it can equally be
applied to the detection of these unattested senses,
and it is this task that we address in this section:
the identification of senses that are defined in the
sense inventory but not attested in a given corpus.

Intuitively, an unused sense should have low
similarity with the HDP induced topics. As such,
we introduce sense-to-topic affinity, a measure
that estimates how likely a sense is not attested in
the corpus:

st-affinity(si) =

∑T
j sim(si, tj)∑S

k

∑T
l sim(sk, tl)

(3)

where sim(si, tj) is carried over from Equa-
tion (1), and T and S represent the number of top-
ics and senses, respectively.

We treat the task of identification of unused
senses as a binary classification problem, where
the goal is to find a sense-to-topic affinity thresh-
old below which a sense will be considered to

13Note that the set of lemmas differs between the respec-
tive datasets, so this isn’t an accurate reflection of the relative
granularity of the two dictionaries.

be unused. We pool together all the senses and
run 10-fold cross validation to learn the threshold
for identifying unused senses,14 evaluated using
sense-level precision (P ), recall (R) and F-score
(F ) at detecting unattested senses. We repeat the
experiment 10 times (partitioning the items ran-
domly into folds) and collect the mean precision,
recall and F-scores across the 10 runs. We found
encouraging results for the task, as detailed in Ta-
ble 6. For the threshold, the average value with
standard deviation is 0.092± 0.044 over UKWAC
and 0.125±0.052 over TWITTER, indicating rela-
tive stability in the value of the threshold both in-
ternally within a dataset, and also across datasets.

5.3 Identification of Novel Senses

In both TWITTER and UKWAC, we observed fre-
quent occurrences of usages of our target nouns
which didn’t map onto a pre-existing Macmillan
sense. A natural question to ask is whether our
method can be used to predict word senses that are
missing from our sense inventory, and identify us-
ages associated with each such missing sense. We
will term these “novel senses”, and define “novel
sense identification” to be the task of identifying
new senses that are not recorded in the inventory
but are seen in the corpus.

An immediate complication in evaluating novel
sense identification is that we are attempting to
identify senses which explicitly aren’t in our sense
inventory. This contrasts with the identification of
unattested senses, e.g., where we were attempting
to identify which of the known senses wasn’t ob-
served in the corpus. Also, while we have annota-
tions of “Other” usages in TWITTER and UKWAC,
there is no real expectation that all such usages
will correspond to the same sense: in practice,
they are attributable to a myriad of effects such as
incorporation in a non-compositional multiword
expression, and errors in POS tagging (i.e. the us-
age not being nominal). As such, we can’t use the
“Other” annotations to evaluate novel sense iden-
tification. The evaluation of systems for this task
is a known challenge, which we address similarly
to Erk (2006) by artificially synthesising novel
senses through removal of senses from the sense
inventory. In this way, even if we remove multi-
ple senses for a given word, we still have access
to information about which usages correspond to

14We used a fixed step and increment at steps of 0.001, up
to the max value of st-affinity when optimising the threshold.
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No. Lemmas with Relative Freq Threshold P R Fa Removed Sense of Removed Sense Mean±stdev
20 0.0–0.2 0.052±0.009 0.35 0.42 0.36
9 0.2–0.4 0.089±0.024 0.24 0.59 0.29
6 0.4–0.6 0.061±0.004 0.63 0.64 0.63

Table 7: Classification of usages with novel sense for all target lemmas.

No. Lemmas with Relative Freq Threshold P R Fa Removed Sense of Removed Sense Mean±stdev
9 0.2–0.4 0.093±0.023 0.50 0.66 0.52
6 0.4–0.6 0.099±0.018 0.73 0.90 0.80

Table 8: Classification of usages with novel sense for target lemmas with a removed sense.

which novel sense. An additional advantage of
this procedure is that it allows us to control an im-
portant property of novel senses: their frequency
of occurrence.

In the experiments that follow, we randomly
select senses for removal from three frequency
bands: low, medium and high frequency senses.
Frequency is defined by relative occurrence in the
annotated usages: low = 0.0–0.2; medium = 0.2–
0.4; and high = 0.4–0.6. Note that we do not con-
sider high-frequency senses with frequency higher
than 0.6, as it is rare for a medium- to high-
frequency word to take on a novel sense which
is then the predominant sense in a given corpus.
Note also that not all target lemmas will have a
novel sense through synthesis, as they may have
no senses that fall within the indicated bounds of
relative occurrence (e.g. if > 60% of usages are a
single sense). For example, only 6 of our 20 target
nouns have senses which are candidates for high-
frequency novel senses.

As before, we treat the novel sense identifica-
tion task as a classification problem, although with
a significantly different formulation: we are no
longer attempting to identify pre-existing senses,
as novel senses are by definition not included in
the sense inventory. Instead, we are seeking to
identify clusters of usages which are instances of
a novel sense, e.g. for presentation to a lexicogra-
pher as part of a dictionary update process (Run-
dell and Kilgarriff, 2011; Cook et al., 2013). That
is, for each usage, we want to classify whether it
is an instance of a given novel sense.

A usage that corresponds to a novel sense
should have a topic that does not align well with
any of the pre-existing senses in the sense inven-
tory. Based on this intuition, we introduce topic-
to-sense affinity to estimate the similarity of a

topic to the set of senses, as follows:

ts-affinity(tj) =
∑S

i sim(si, tj)∑T
l

∑S
k sim(sk, tl)

(4)

where, once again, sim(si, tj) is defined as in
Equation (1), and T and S represent the number
of topics and senses, respectively.

Using topic-to-sense affinity as the sole fea-
ture, we pool together all instances and optimise
the affinity feature to classify instances that have
novel senses. Evaluation is done by computing the
mean precision, recall and F-score across 10 sepa-
rate runs; results are summarised in Table 7. Note
that we evaluate only over UKWAC in this section,
for ease of presentation.

The results show that instances with high-
frequency novel senses are more easily identifi-
able than instances with medium/low-frequency
novel senses. This is unsurprising given that high-
frequency senses have a higher probability of gen-
erating related topics (sense-related words are ob-
served more frequently in the corpus), and as such
are more easily identifiable.

We are interested in understanding whether
pooling all instances — instances from target lem-
mas that have a sense artificially removed and
those that do not — impacted the results (re-
call that not all target lemmas have a removed
sense). To that end, we chose to include only
instances from lemmas with a removed sense,
and repeated the experiment for the medium- and
high-frequency novel sense condition (for the low-
frequency condition, all target lemmas have a
novel sense). In other words, we are assuming
knowledge of which words have novel sense, and
the task is to identify specifically what the novel
sense is, as represented by novel usages. Results
are presented in Table 8.
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No. of Lemmas with No. of Lemmas without Relative Freq Wilcoxon Rank Sum
a Removed Sense a Removed Sense of Removed Sense p-value

10 0 0.0–0.2 0.4543
9 11 0.2–0.4 0.0391
6 14 0.4–0.6 0.0247

Table 9: Wilcoxon Rank Sum p-value results for testing target lemmas with removed sense vs. target
lemmas without removed sense using novelty.

From the results, we see that the F-scores im-
proved notably. This reveals that an additional step
is necessary to determine whether a target lemma
has a potential novel sense before feeding its in-
stances to learn which of them contains the usage
of the novel sense.

In the last experiment, we propose a new mea-
sure to tackle this: the identification of target lem-
mas that have a novel sense. We introduce novelty,
a measure of the likelihood of a target lemma w
having a novel sense:

novelty(w) = min
tj

(
max

si

sim(si, tj)
f(tj)

)
(5)

where f(tj) is the frequency of topic tj in the
corpus. The intuition behind novelty is that a
target lemma with a novel sense should have a
(somewhat-)frequent topic that has low associa-
tion with any sense. That we use the frequency
rather than the probability of the topic here is de-
liberate, as topics with a higher raw number of oc-
currences (whether as a low-probability topic for
a high-frequency word, or a high-probability topic
for a low-frequency word) are indicative of a novel
word sense.

For each of our three datasets (with low-,
medium- and high-frequency novel senses, respec-
tively), we compute the novelty of the target lem-
mas and the p-value of a one-tailed Wilcoxon rank
sum test to test if the two groups of lemmas (i.e.
lemmas with a novel sense vs. lemmas without a
novel sense) are statistically different.15 Results
are presented in Table 9. We see that the nov-
elty measure can readily identify target lemmas
with high- and medium-frequency novel senses
(p < 0.05), but the results are less promising for
the low-frequency novel senses.

6 Discussion

Our methodologies for the two proposed tasks of
identifying unused and novel senses are simple

15Note that the number of words with low-frequency novel
senses here is restricted to 10 (cf. 20 in Table 7) to ensure we
have both positive and negative lemmas in the dataset.

extensions to demonstrate the flexibility and ro-
bustness of our methodology. Future work could
pursue a more sophisticated methodology, using
non-linear combinations of sim(si, tj) for com-
puting the affinity measures or multiple features
in a supervised context. We contend, however,
that these extensions are ultimately a preliminary
demonstration to the flexibility and robustness of
our methodology.

A natural next step for this research would be to
couple sense distribution estimation and the detec-
tion of unattested senses with evidence from the
context, using topics or other information about
the local context (e.g. Agirre and Soroa (2009))
to carry out unsupervised WSD of individual token
occurrences of a given word.

In summary, we have proposed a topic
modelling-based method for estimating word
sense distributions, based on Hierarchical Dirich-
let Processes and the earlier work of Lau et al.
(2012) on word sense induction, in probabilisti-
cally mapping the automatically-learned topics to
senses in a sense inventory. We evaluated the abil-
ity of the method to learn predominant senses and
induce word sense distributions, based on a broad
range of datasets and two separate sense invento-
ries. In doing so, we established that our method
is comparable to the approach of McCarthy et al.
(2007) at predominant sense learning, and supe-
rior at inducing word sense distributions. We fur-
ther demonstrated the applicability of the method
to the novel tasks of detecting word senses which
are unattested in a corpus, and identifying novel
senses which are found in a corpus but not cap-
tured in a word sense inventory.
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