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Abstract

Context-predicting models (more com-
monly known as embeddings or neural
language models) are the new kids on the
distributional semantics block. Despite the
buzz surrounding these models, the litera-
ture is still lacking a systematic compari-
son of the predictive models with classic,
count-vector-based distributional semantic
approaches. In this paper, we perform
such an extensive evaluation, on a wide
range of lexical semantics tasks and across
many parameter settings. The results, to
our own surprise, show that the buzz is
fully justified, as the context-predicting
models obtain a thorough and resounding
victory against their count-based counter-
parts.

1 Introduction

A long tradition in computational linguistics has
shown that contextual information provides a good
approximation to word meaning, since semanti-
cally similar words tend to have similar contex-
tual distributions (Miller and Charles, 1991). In
concrete, distributional semantic models (DSMs)
use vectors that keep track of the contexts (e.g.,
co-occurring words) in which target terms appear
in a large corpus as proxies for meaning represen-
tations, and apply geometric techniques to these
vectors to measure the similarity in meaning of
the corresponding words (Clark, 2013; Erk, 2012;
Turney and Pantel, 2010).

It has been clear for decades now that raw co-
occurrence counts don’t work that well, and DSMs
achieve much higher performance when various
transformations are applied to the raw vectors,
for example by reweighting the counts for con-
text informativeness and smoothing them with di-
mensionality reduction techniques. This vector

optimization process is generally unsupervised,
and based on independent considerations (for ex-
ample, context reweighting is often justified by
information-theoretic considerations, dimension-
ality reduction optimizes the amount of preserved
variance, etc.). Occasionally, some kind of indi-
rect supervision is used: Several parameter set-
tings are tried, and the best setting is chosen based
on performance on a semantic task that has been
selected for tuning.

The last few years have seen the development
of a new generation of DSMs that frame the vec-
tor estimation problem directly as a supervised
task, where the weights in a word vector are set to
maximize the probability of the contexts in which
the word is observed in the corpus (Bengio et al.,
2003; Collobert and Weston, 2008; Collobert et
al., 2011; Huang et al., 2012; Mikolov et al.,
2013a; Turian et al., 2010). The traditional con-
struction of context vectors is turned on its head:
Instead of first collecting context vectors and then
reweighting these vectors based on various crite-
ria, the vector weights are directly set to optimally
predict the contexts in which the corresponding
words tend to appear. Since similar words occur
in similar contexts, the system naturally learns to
assign similar vectors to similar words.

This new way to train DSMs is attractive be-
cause it replaces the essentially heuristic stacking
of vector transforms in earlier models with a sin-
gle, well-defined supervised learning step. At the
same time, supervision comes at no manual anno-
tation cost, given that the context windows used
for training can be automatically extracted from
an unannotated corpus (indeed, they are the very
same data used to build traditional DSMs). More-
over, at least some of the relevant methods can ef-
ficiently scale up to process very large amounts of
input data.1

1The idea to directly learn a parameter vector based on
an objective optimum function is shared by Latent Dirichlet
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We will refer to DSMs built in the traditional
way as count models (since they initialize vectors
with co-occurrence counts), and to their training-
based alternative as predict(ive) models.2 Now,
the most natural question to ask, of course, is
which of the two approaches is best in empirical
terms. Surprisingly, despite the long tradition of
extensive evaluations of alternative count DSMs
on standard benchmarks (Agirre et al., 2009; Ba-
roni and Lenci, 2010; Bullinaria and Levy, 2007;
Bullinaria and Levy, 2012; Sahlgren, 2006; Padó
and Lapata, 2007), the existing literature contains
very little in terms of direct comparison of count
vs. predictive DSMs. This is in part due to the fact
that context-predicting vectors were first devel-
oped as an approach to language modeling and/or
as a way to initialize feature vectors in neural-
network-based “deep learning” NLP architectures,
so their effectiveness as semantic representations
was initially seen as little more than an interest-
ing side effect. Sociological reasons might also be
partly responsible for the lack of systematic com-
parisons: Context-predictive models were devel-
oped within the neural-network community, with
little or no awareness of recent DSM work in com-
putational linguistics.

Whatever the reasons, we know of just three
works reporting direct comparisons, all limited in
their scope. Huang et al. (2012) compare, in pass-
ing, one count model and several predict DSMs
on the standard WordSim353 benchmark (Table
3 of their paper). In this experiment, the count
model actually outperforms the best predictive ap-
proach. Instead, in a word-similarity-in-context
task (Table 5), the best predict model outperforms
the count model, albeit not by a large margin.

Blacoe and Lapata (2012) compare count and
predict representations as input to composition
functions. Count vectors make for better inputs
in a phrase similarity task, whereas the two repre-
sentations are comparable in a paraphrase classifi-
cation experiment.3

Allocation (LDA) models (Blei et al., 2003; Griffiths et al.,
2007), where parameters are set to optimize the joint prob-
ability distribution of words and documents. However, the
fully probabilistic LDA models have problems scaling up to
large data sets.

2We owe the first term to Hinrich Schütze (p.c.). Predic-
tive DSMs are also called neural language models, because
their supervised context prediction training is performed with
neural networks, or, more cryptically, “embeddings”.

3We refer here to the updated results reported in
the erratum at http://homepages.inf.ed.ac.uk/
s1066731/pdf/emnlp2012erratum.pdf

Finally, Mikolov et al. (2013d) compare their
predict models to “Latent Semantic Analysis”
(LSA) count vectors on syntactic and semantic
analogy tasks, finding that the predict models are
highly superior. However, they provide very little
details about the LSA count vectors they use.4

In this paper, we overcome the comparison
scarcity problem by providing a direct evaluation
of count and predict DSMs across many parameter
settings and on a large variety of mostly standard
lexical semantics benchmarks. Our title already
gave away what we discovered.

2 Distributional semantic models

Both count and predict models are extracted from
a corpus of about 2.8 billion tokens constructed
by concatenating ukWaC,5 the English Wikipedia6

and the British National Corpus.7 For both model
types, we consider the top 300K most frequent
words in the corpus both as target and context ele-
ments.

2.1 Count models
We prepared the count models using the DISSECT
toolkit.8 We extracted count vectors from sym-
metric context windows of two and five words to
either side of target. We considered two weight-
ing schemes: positive Pointwise Mutual Informa-
tion and Local Mutual Information (akin to the
widely used Log-Likelihood Ratio scheme) (Ev-
ert, 2005). We used both full and compressed vec-
tors. The latter were obtained by applying the Sin-
gular Value Decomposition (Golub and Van Loan,
1996) or Non-negative Matrix Factorization (Lee
and Seung, 2000), Lin (2007) algorithm, with re-
duced sizes ranging from 200 to 500 in steps of
100. In total, 36 count models were evaluated.

Count models have such a long and rich his-
tory that we can only explore a small subset of
the counting, weighting and compressing meth-
ods proposed in the literature. However, it is
worth pointing out that the evaluated parameter
subset encompasses settings (narrow context win-
dow, positive PMI, SVD reduction) that have been

4Chen et al. (2013) present an extended empirical evalua-
tion, that is however limited to alternative context-predictive
models, and does not include the word2vec variant we use
here.

5http://wacky.sslmit.unibo.it
6http://en.wikipedia.org
7http://www.natcorp.ox.ac.uk
8http://clic.cimec.unitn.it/composes/

toolkit/
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found to be most effective in the systematic explo-
rations of the parameter space conducted by Bul-
linaria and Levy (2007; 2012).

2.2 Predict models

We trained our predict models with the word2vec
toolkit.9 The toolkit implements both the skip-
gram and CBOW approaches of Mikolov et
al. (2013a; 2013c). We experimented only with
the latter, which is also the more computationally-
efficient model of the two, following Mikolov et
al. (2013b) which recommends CBOW as more
suitable for larger datasets.

The CBOW model learns to predict the word in
the middle of a symmetric window based on the
sum of the vector representations of the words in
the window. We considered context windows of
2 and 5 words to either side of the central ele-
ment. We vary vector dimensionality within the
200 to 500 range in steps of 100. The word2vec
toolkit implements two efficient alternatives to the
standard computation of the output word proba-
bility distributions by a softmax classifier. Hi-
erarchical softmax is a computationally efficient
way to estimate the overall probability distribu-
tion using an output layer that is proportional to
log(unigram.perplexity(W )) instead of W (for
W the vocabulary size). As an alternative, nega-
tive sampling estimates the probability of an out-
put word by learning to distinguish it from draws
from a noise distribution. The number of these
draws (number of negative samples) is given by
a parameter k. We test both hierarchical softmax
and negative sampling with k values of 5 and 10.
Very frequent words such as the or a are not very
informative as context features. The word2vec
toolkit implements a method to downsize their ef-
fect (and simultaneously improve speed perfor-
mance). More precisely, words in the training
data are discarded with a probability that is pro-
portional to their frequency (capturing the same
intuition that motivates traditional count vector
weighting measures such as PMI). This is con-
trolled by a parameter t and words that occur with
higher frequency than t are aggressively subsam-
pled. We train models without subsampling and
with subsampling at t = 1e−5 (the toolkit page
suggests 1e−3 − 1e−5 as a useful range based on
empirical observations).

In total, we evaluate 48 predict models, a num-

9https://code.google.com/p/word2vec/

ber comparable to that of the count models we
consider.

2.3 Out-of-the-box models
Baroni and Lenci (2010) make the vectors of
their best-performing Distributional Memory (dm)
model available.10 This model, based on the same
input corpus we use, exemplifies a “linguistically
rich” count-based DSM, that relies on lemmas
instead or raw word forms, and has dimensions
that encode the syntactic relations and/or lexico-
syntactic patterns linking targets and contexts. Ba-
roni and Lenci showed, in a large scale evaluation,
that dm reaches near-state-of-the-art performance
in a variety of semantic tasks.

We also experiment with the popular predict
vectors made available by Ronan Collobert.11 Fol-
lowing the earlier literature, with refer to them
as Collobert and Weston (cw) vectors. These are
100-dimensional vectors trained for two months
(!) on the Wikipedia. In particular, the vectors
were trained to optimize the task of choosing the
right word over a random alternative in the middle
of an 11-word context window (Collobert et al.,
2011).

3 Evaluation materials

We test our models on a variety of benchmarks,
most of them already widely used to test and com-
pare DSMs. The following benchmark descrip-
tions also explain the figures of merit and state-
of-the-art results reported in Table 2.

Semantic relatedness A first set of semantic
benchmarks was constructed by asking human
subjects to rate the degree of semantic similarity
or relatedness between two words on a numeri-
cal scale. The performance of a computational
model is assessed in terms of correlation between
the average scores that subjects assigned to the
pairs and the cosines between the corresponding
vectors in the model space (following the previ-
ous art, we use Pearson correlation for rg, Spear-
man in all other cases). The classic data set of
Rubenstein and Goodenough (1965) (rg) consists
of 65 noun pairs. State of the art performance
on this set has been reported by Hassan and Mi-
halcea (2011) using a technique that exploits the
Wikipedia linking structure and word sense dis-
ambiguation techniques. Finkelstein et al. (2002)

10http://clic.cimec.unitn.it/dm/
11http://ronan.collobert.com/senna/
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introduced the widely used WordSim353 set (ws)
that, as the name suggests, consists of 353 pairs.
The current state of the art is reached by Halawi
et al. (2012) with a method that is in the spirit
of the predict models, but lets synonymy infor-
mation from WordNet constrain the learning pro-
cess (by favoring solutions in which WordNet syn-
onyms are near in semantic space). Agirre et al.
(2009) split the ws set into similarity (wss) and re-
latedness (wsr) subsets. The first contains tighter
taxonomic relations, such as synonymy and co-
hyponymy (king/queen) whereas the second en-
compasses broader, possibly topical or syntag-
matic relations (family/planning). We report state-
of-the-art performance on the two subsets from the
work of Agirre and colleagues, who used different
kinds of count vectors extracted from a very large
corpus (orders of magnitude larger than ours). Fi-
nally, we use (the test section of) MEN (men), that
comprises 1,000 word pairs. Bruni et al. (2013),
the developers of this benchmark, achieve state-of-
the-art performance by extensive tuning on ad-hoc
training data, and by using both textual and image-
extracted features to represent word meaning.

Synonym detection The classic TOEFL (toefl)
set was introduced by Landauer and Dumais
(1997). It contains 80 multiple-choice questions
that pair a target term with 4 synonym candidates.
For example, for the target levied one must choose
between imposed (correct), believed, requested
and correlated. The DSMs compute cosines of
each candidate vector with the target, and pick the
candidate with largest cosine as their answer. Per-
formance is evaluated in terms of correct-answer
accuracy. Bullinaria and Levy (2012) achieved
100% accuracy by a very thorough exploration of
the count model parameter space.

Concept categorization Given a set of nominal
concepts, the task is to group them into natural cat-
egories (e.g., helicopters and motorcycles should
go to the vehicle class, dogs and elephants into the
mammal class). Following previous art, we tackle
categorization as an unsupervised clustering task.
The vectors produced by a model are clustered
into n groups (with n determined by the gold stan-
dard partition) using the CLUTO toolkit (Karypis,
2003), with the repeated bisections with global op-
timization method and CLUTO’s default settings
otherwise (these are standard choices in the liter-
ature). Performance is evaluated in terms of pu-

rity, a measure of the extent to which each cluster
contains concepts from a single gold category. If
the gold partition is reproduced perfectly, purity
reaches 100%; it approaches 0 as cluster quality
deteriorates. The Almuhareb-Poesio (ap) bench-
mark contains 402 concepts organized into 21 cat-
egories (Almuhareb, 2006). State-of-the-art purity
was reached by Rothenhäusler and Schütze (2009)
with a count model based on carefully crafted syn-
tactic links. The ESSLLI 2008 Distributional Se-
mantic Workshop shared-task set (esslli) contains
44 concepts to be clustered into 6 categories (Ba-
roni et al., 2008) (we ignore here the 3- and 2-
way higher-level partitions coming with this set).
Katrenko and Adriaans (2008) reached top per-
formance on this set using the full Web as a cor-
pus and manually crafted, linguistically motivated
patterns. Finally, the Battig (battig) test set intro-
duced by Baroni et al. (2010) includes 83 concepts
from 10 categories. Current state of the art was
reached by the window-based count model of Ba-
roni and Lenci (2010).

Selectional preferences We experiment with
two data sets that contain verb-noun pairs that
were rated by subjects for the typicality of the
noun as a subject or object of the verb (e.g., peo-
ple received a high average score as subject of
to eat, and a low score as object of the same
verb). We follow the procedure proposed by Ba-
roni and Lenci (2010) to tackle this challenge: For
each verb, we use the corpus-based tuples they
make available to select the 20 nouns that are most
strongly associated to the verb as subjects or ob-
jects, and we average the vectors of these nouns
to obtain a “prototype” vector for the relevant ar-
gument slot. We then measure the cosine of the
vector for a target noun with the relevant proto-
type vector (e.g., the cosine of people with the eat-
ing subject prototype vector). Systems are eval-
uated by Spearman correlation of these cosines
with the averaged human typicality ratings. Our
first data set was introduced by Ulrike Padó (2007)
and includes 211 pairs (up). Top-performance was
reached by the supervised count vector system of
Herdağdelen and Baroni (2009) (supervised in the
sense that they directly trained a classifier on gold
data, as opposed to the 0-cost supervision of the
context-learning methods). The mcrae set (McRae
et al., 1998) consists of 100 noun–verb pairs, with
top performance reached by the DepDM system of
Baroni and Lenci (2010), a count DSM relying on
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syntactic information.

Analogy While all the previous data sets are rel-
atively standard in the DSM field to test traditional
count models, our last benchmark was introduced
in Mikolov et al. (2013a) specifically to test pre-
dict models. The data-set contains about 9K se-
mantic and 10.5K syntactic analogy questions. A
semantic question gives an example pair (brother-
sister), a test word (grandson) and asks to find
another word that instantiates the relation illus-
trated by the example with respect to the test word
(granddaughter). A syntactic question is similar,
but in this case the relationship is of a grammatical
nature (work–works, speak. . . speaks). Mikolov
and colleagues tackle the challenge by subtract-
ing the second example term vector from the first,
adding the test term, and looking for the nearest
neighbour of the resulting vector (what is the near-
est neighbour of ~brother− ~sister + ~grandson?).
Systems are evaluated in terms of proportion of
questions where the nearest neighbour from the
whole semantic space is the correct answer (the
given example and test vector triples are excluded
from the nearest neighbour search). Mikolov et al.
(2013a) reach top accuracy on the syntactic subset
(ansyn) with a CBOW predict model akin to ours
(but trained on a corpus twice as large). Top ac-
curacy on the entire data set (an) and on the se-
mantic subset (ansem) was reached by Mikolov
et al. (2013c) using a skip-gram predict model.
Note however that, because of the way the task
is framed, performance also depends on the size
of the vocabulary to be searched: Mikolov et al.
(2013a) pick the nearest neighbour among vectors
for 1M words, Mikolov et al. (2013c) among 700K
words, and we among 300K words.

Some characteristics of the benchmarks we use
are summarized in Table 1.

4 Results

Table 2 summarizes the evaluation results. The
first block of the table reports the maximum per-
task performance (across all considered parameter
settings) for count and predict vectors. The latter
emerge as clear winners, with a large margin over
count vectors in most tasks. Indeed, the predic-
tive models achieve an impressive overall perfor-
mance, beating the current state of the art in sev-
eral cases, and approaching it in many more. It is
worth stressing that, as reviewed in Section 3, the
state-of-the-art results were obtained in almost all

cases using specialized approaches that rely on ex-
ternal knowledge, manually-crafted rules, parsing,
larger corpora and/or task-specific tuning. Our
predict results were instead achieved by simply
downloading the word2vec toolkit and running it
with a range of parameter choices recommended
by the toolkit developers.

The success of the predict models cannot be
blamed on poor performance of the count mod-
els. Besides the fact that this would not explain
the near-state-of-the-art performance of the pre-
dict vectors, the count model results are actually
quite good in absolute terms. Indeed, in several
cases they are close, or even better than those at-
tained by dm, a linguistically-sophisticated count-
based approach that was shown to reach top per-
formance across a variety of tasks by Baroni and
Lenci (2010).

Interestingly, count vectors achieve perfor-
mance comparable to that of predict vectors only
on the selectional preference tasks. The up task
in particular is also the only benchmark on which
predict models are seriously lagging behind state-
of-the-art and dm performance. Recall from Sec-
tion 3 that we tackle selectional preference by cre-
ating average vectors representing typical verb ar-
guments. We conjecture that this averaging ap-
proach, that worked well for dm vectors, might
be problematic for prediction-trained vectors, and
we plan to explore alternative methods to build the
prototypes in future research.

Are our results robust to parameter choices, or
are they due to very specific and brittle settings?
The next few blocks of Table 2 address this ques-
tion. The second block reports results obtained
with single count and predict models that are best
in terms of average performance rank across tasks
(these are the models on the top rows of tables
3 and 4, respectively). We see that, for both ap-
proaches, performance is not seriously affected by
using the single best setup rather than task-specific
settings, except for a considerable drop in perfor-
mance for the best predict model on esslli (due to
the small size of this data set?), and an even more
dramatic drop of the count model on ansem. A
more cogent and interesting evaluation is reported
in the third block of Table 2, where we see what
happens if we use the single models with worst
performance across tasks (recall from Section 2
above that, in any case, we are exploring a space
of reasonable parameter settings, of the sort that an
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name task measure source soa
rg relatedness Pearson Rubenstein and Goodenough Hassan and Mihalcea (2011)

(1965)
ws relatedness Spearman Finkelstein et al. (2002) Halawi et al. (2012)
wss relatedness Spearman Agirre et al. (2009) Agirre et al. (2009)
wsr relatedness Spearman Agirre et al. (2009) Agirre et al. (2009)
men relatedness Spearman Bruni et al. (2013) Bruni et al. (2013)
toefl synonyms accuracy Landauer and Dumais Bullinaria and Levy (2012)

(1997)
ap categorization purity Almuhareb (2006) Rothenhäusler and Schütze

(2009)
esslli categorization purity Baroni et al. (2008) Katrenko and Adriaans

(2008)
battig categorization purity Baroni et al. (2010) Baroni and Lenci (2010)
up sel pref Spearman Padó (2007) Herdağdelen and Baroni

(2009)
mcrae sel pref Spearman McRae et al. (1998) Baroni and Lenci (2010)
an analogy accuracy Mikolov et al. (2013a) Mikolov et al. (2013c)
ansyn analogy accuracy Mikolov et al. (2013a) Mikolov et al. (2013a)
ansem analogy accuracy Mikolov et al. (2013a) Mikolov et al. (2013c)

Table 1: Benchmarks used in experiments, with type of task, figure of merit (measure), original reference
(source) and reference to current state-of-the-art system (soa).

rg ws wss wsr men toefl ap esslli battig up mcrae an ansyn ansem
best setup on each task

cnt 74 62 70 59 72 76 66 84 98 41 27 49 43 60
pre 84 75 80 70 80 91 75 86 99 41 28 68 71 66

best setup across tasks
cnt 70 62 70 57 72 76 64 84 98 37 27 43 41 44
pre 83 73 78 68 80 86 71 77 98 41 26 67 69 64

worst setup across tasks
cnt 11 16 23 4 21 49 24 43 38 -6 -10 1 0 1
pre 74 60 73 48 68 71 65 82 88 33 20 27 40 10

best setup on rg
cnt (74) 59 66 52 71 64 64 84 98 37 20 35 42 26
pre (84) 71 76 64 79 85 72 84 98 39 25 66 70 61

other models
soa 86 81 77 62 76 100 79 91 96 60 32 61 64 61
dm 82 35 60 13 42 77 76 84 94 51 29 NA NA NA
cw 48 48 61 38 57 56 58 61 70 28 15 11 12 9

Table 2: Performance of count (cnt), predict (pre), dm and cw models on all tasks. See Section 3 and
Table 1 for figures of merit and state-of-the-art results (soa). Since dm has very low coverage of the an*
data sets, we do not report its performance there.
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experimenter might be tempted to choose without
tuning). The count model performance is severely
affected by this unlucky choice (2-word window,
Local Mutual Information, NMF, 400 dimensions,
mean performance rank: 83), whereas the predict
approach is much more robust: To put its worst in-
stantiation (2-word window, hierarchical softmax,
no subsampling, 200 dimensions, mean rank: 51)
into perspective, its performance is more than 10%
below the best count model only for the an and
ansem tasks, and actually higher than it in 3 cases
(note how on esslli the worst predict models per-
forms much better than the best one, confirming
our suspicion about the brittleness of this small
data set). The fourth block reports performance in
what might be the most realistic scenario, namely
by tuning the parameters on a development task.
Specifically, we pick the models that work best
on the small rg set, and report their performance
on all tasks (we obtained similar results by pick-
ing other tuning sets). The selected count model
is the third best overall model of its class as re-
ported in Table 3. The selected predict model is
the fourth best model in Table 4. The overall count
performance is not greatly affected by this choice.
Again, predict models confirm their robustness,
in that their rg-tuned performance is always close
(and in 3 cases better) than the one achieved by the
best overall setup.

Tables 3 and 4 let us take a closer look at
the most important count and predict parame-
ters, by reporting the characteristics of the best
models (in terms of average performance-based
ranking across tasks) from both classes. For the
count models, PMI is clearly the better weight-
ing scheme, and SVD outperforms NMF as a di-
mensionality reduction technique. However, no
compression at all (using all 300K original dimen-
sions) works best. Compare this to the best over-
all predict vectors, that have 400 dimensions only,
making them much more practical to use. For the
predict models, we observe in Table 4 that nega-
tive sampling, where the task is to distinguish the
target output word from samples drawn from the
noise distribution, outperforms the more costly hi-
erarchical softmax method. Subsampling frequent
words, which downsizes the importance of these
words similarly to PMI weighting in count mod-
els, is also bringing significant improvements.

Finally, we go back to Table 2 to point out the
poor performance of the out-of-the-box cw model.

window weight compress dim. mean
rank

2 PMI no 300K 35
5 PMI no 300K 38
2 PMI SVD 500 42
2 PMI SVD 400 46
5 PMI SVD 500 47
2 PMI SVD 300 50
5 PMI SVD 400 51
2 PMI NMF 300 52
2 PMI NMF 400 53
5 PMI SVD 300 53

Table 3: Top count models in terms of mean
performance-based model ranking across all tasks.
The first row states that the window-2, PMI, 300K
count model was the best count model, and, across
all tasks, its average rank, when ALL models are
decreasingly ordered by performance, was 35. See
Section 2.1 for explanation of the parameters.

We must leave the investigation of the parameters
that make our predict vectors so much better than
cw (more varied training corpus? window size?
objective function being used? subsampling? . . . )
to further work. Still, our results show that it’s
not just training by context prediction that ensures
good performance. The cw approach is very popu-
lar (for example both Huang et al. (2012) and Bla-
coe and Lapata (2012) used it in the studies we dis-
cussed in Section 1). Had we also based our sys-
tematic comparison of count and predict vectors
on the cw model, we would have reached opposite
conclusions from the ones we can draw from our
word2vec-trained vectors!

5 Conclusion

This paper has presented the first systematic com-
parative evaluation of count and predict vectors.
As seasoned distributional semanticists with thor-
ough experience in developing and using count
vectors, we set out to conduct this study because
we were annoyed by the triumphalist overtones of-
ten surrounding predict models, despite the almost
complete lack of a proper comparison to count
vectors.12 Our secret wish was to discover that it is
all hype, and count vectors are far superior to their
predictive counterparts. A more realistic expec-

12Here is an example, where word2vec is called the crown
jewel of natural language processing: http://bit.ly/
1ipv72M
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win. hier. neg. subsamp. dim mean
softm. samp. rank

5 no 10 yes 400 10
2 no 10 yes 300 13
5 no 5 yes 400 13
5 no 5 yes 300 13
5 no 10 yes 300 13
2 no 10 yes 400 13
2 no 5 yes 400 15
5 no 10 yes 200 15
2 no 10 yes 500 15
2 no 5 yes 300 16

Table 4: Top predict models in terms of mean
performance-based model ranking across all tasks.
See Section 2.2 for explanation of the parameters.

tation was that a complex picture would emerge,
with predict and count vectors beating each other
on different tasks. Instead, we found that the pre-
dict models are so good that, while the triumphal-
ist overtones still sound excessive, there are very
good reasons to switch to the new architecture.
However, due to space limitations we have only
focused here on quantitative measures: It remains
to be seen whether the two types of models are
complementary in the errors they make, in which
case combined models could be an interesting av-
enue for further work.

The space of possible parameters of count
DSMs is very large, and it’s entirely possible that
some options we did not consider would have im-
proved count vector performance somewhat. Still,
given that the predict vectors also outperformed
the syntax-based dm model, and often approxi-
mated state-of-the-art performance, a more profic-
uous way forward might be to focus on parameters
and extensions of the predict models instead: Af-
ter all, we obtained our already excellent results
by just trying a few variations of the word2vec de-
faults. Add to this that, beyond the standard lex-
ical semantics challenges we tested here, predict
models are currently been successfully applied in
cutting-edge domains such as representing phrases
(Mikolov et al., 2013c; Socher et al., 2012) or fus-
ing language and vision in a common semantic
space (Frome et al., 2013; Socher et al., 2013).

Based on the results reported here and the con-
siderations we just made, we would certainly rec-
ommend anybody interested in using DSMs for
theoretical or practical applications to go for the

predict models, with the important caveat that they
are not all created equal (cf. the big difference be-
tween word2vec and cw models). At the same
time, given the large amount of work that has been
carried out on count DSMs, we would like to ex-
plore, in the near future, how certain questions
and methods that have been considered with re-
spect to traditional DSMs will transfer to predict
models. For example, the developers of Latent
Semantic Analysis (Landauer and Dumais, 1997),
Topic Models (Griffiths et al., 2007) and related
DSMs have shown that the dimensions of these
models can be interpreted as general “latent” se-
mantic domains, which gives the corresponding
models some a priori cognitive plausibility while
paving the way for interesting applications. An-
other important line of DSM research concerns
“context engineering”: There has been for exam-
ple much work on how to encode syntactic in-
formation into context features (Padó and Lapata,
2007), and more recent studies construct and com-
bine feature spaces expressing topical vs. func-
tional information (Turney, 2012). To give just
one last example, distributional semanticists have
looked at whether certain properties of vectors re-
flect semantic relations in the expected way: e.g.,
whether the vectors of hypernyms “distribution-
ally include” the vectors of hyponyms in some
mathematical precise sense.

Do the dimensions of predict models also en-
code latent semantic domains? Do these models
afford the same flexibility of count vectors in cap-
turing linguistically rich contexts? Does the struc-
ture of predict vectors mimic meaningful seman-
tic relations? Does all of this even matter, or are
we on the cusp of discovering radically new ways
to tackle the same problems that have been ap-
proached as we just sketched in traditional distri-
butional semantics?

Either way, the results of the present investiga-
tion indicate that these are important directions for
future research in computational semantics.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Katrin Erk. 2012. Vector space models of word mean-
ing and phrase meaning: A survey. Language and
Linguistics Compass, 6(10):635–653.

Stefan Evert. 2005. The Statistics of Word Cooccur-
rences. Ph.D dissertation, Stuttgart University.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2002. Placing search in context: The
concept revisited. ACM Transactions on Informa-
tion Systems, 20(1):116–131.

Andrea Frome, Greg Corrado, Jon Shlens, Samy Ben-
gio, Jeff Dean, Marc’Aurelio Ranzato, and Tomas
Mikolov. 2013. DeViSE: A deep visual-semantic
embedding model. In Proceedings of NIPS, pages
2121–2129, Lake Tahoe, Nevada.

Gene Golub and Charles Van Loan. 1996. Matrix
Computations (3rd ed.). JHU Press, Baltimore, MD.

Tom Griffiths, Mark Steyvers, and Josh Tenenbaum.
2007. Topics in semantic representation. Psycho-
logical Review, 114:211–244.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and
Yehuda Koren. 2012. Large-scale learning of
word relatedness with constraints. In Proceedings
of KDD, pages 1406–1414.

Samer Hassan and Rada Mihalcea. 2011. Semantic
relatedness using salient semantic analysis. In Pro-
ceedings of AAAI, pages 884–889, San Francisco,
CA.
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