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Abstract

In this paper, we address the problem of
web-domain POS tagging using a two-
phase approach. The first phase learns rep-
resentations that capture regularities un-
derlying web text. The representation is
integrated as features into a neural network
that serves as a scorer for an easy-first POS
tagger. Parameters of the neural network
are trained using guided learning in the
second phase. Experiment on the SANCL
2012 shared task show that our approach
achieves 93.15% average tagging accu-
racy, which is the best accuracy reported
so far on this data set, higher than those
given by ensembled syntactic parsers.

1 Introduction

Analysing and extracting useful information from
the web has become an increasingly important re-
search direction for the NLP community, where
many tasks require part-of-speech (POS) tag-
ging as a fundamental preprocessing step. How-
ever, state-of-the-art POS taggers in the literature
(Collins, 2002; Shen et al., 2007) are mainly opti-
mized on the the Penn Treebank (PTB), and when
shifted to web data, tagging accuracies drop sig-
nificantly (Petrov and McDonald, 2012).

The problem we face here can be considered
as a special case of domain adaptation, where we
have access to labelled data on the source domain
(PTB) and unlabelled data on the target domain
(web data). Exploiting useful information from
the web data can be the key to improving web
domain tagging. Towards this end, we adopt the
idea of learning representations which has been
demonstrated useful in capturing hidden regular-
ities underlying the raw input data (web text, in
our case).

Our approach consists of two phrases. In the
pre-training phase, we learn an encoder that con-

verts the web text into an intermediate represen-
tation, which acts as useful features for prediction
tasks. We integrate the learned encoder with a set
of well-established features for POS tagging (Rat-
naparkhi, 1996; Collins, 2002) in a single neural
network, which is applied as a scorer to an easy-
first POS tagger. We choose the easy-first tagging
approach since it has been demonstrated to give
higher accuracies than the standard left-to-right
POS tagger (Shen et al., 2007; Ma et al., 2013).

In the fine-tuning phase, the parameters of the
network are optimized on a set of labelled train-
ing data using guided learning. The learned model
preserves the property of preferring to tag easy
words first. To our knowledge, we are the first to
investigate guided learning for neural networks.

The idea of learning representations from un-
labelled data and then fine-tuning a model with
such representations according to some supervised
criterion has been studied before (Turian et al.,
2010; Collobert et al., 2011; Glorot et al., 2011).
While most previous work focus on in-domain se-
quential labelling or cross-domain classification
tasks, we are the first to learn representations for
web-domain structured prediction. Previous work
treats the learned representations either as model
parameters that are further optimized in super-
vised fine-tuning (Collobert et al., 2011) or as
fixed features that are kept unchanged (Turian et
al., 2010; Glorot et al., 2011). In this work,
we investigate both strategies and give empirical
comparisons in the cross-domain setting. Our re-
sults suggest that while both strategies improve
in-domain tagging accuracies, keeping the learned
representation unchanged consistently results in
better cross-domain accuracies.

We conduct experiments on the official data set
provided by the SANCL 2012 shared task (Petrov
and McDonald, 2012). Our method achieves a
93.15% average accuracy across the web-domain,
which is the best result reported so far on this data
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set, higher than those given by ensembled syntac-
tic parsers. Our code will be publicly available at
https://github.com/majineu/TWeb.

2 Learning from Web Text

Unsupervised learning is often used for training
encoders that convert the input data to abstract rep-
resentations (i.e. encoding vectors). Such repre-
sentations capture hidden properties of the input,
and can be used as features for supervised tasks
(Bengio, 2009; Ranzato et al., 2007). Among the
many proposed encoders, we choose the restricted
Boltzmann machine (RBM), which has been suc-
cessfully used in many tasks (Lee et al., 2009b;
Hinton et al., 2006). In this section, we give some
background on RBMs and then show how they can
be used to learn representations of the web text.

2.1 Restricted Boltzmann Machine

The RBM is a type of graphical model that con-
tains two layers of binary stochastic units v ∈
{0, 1}V and h ∈ {0, 1}H , corresponding to a set
of visible and hidden variables, respectively. The
RBM defines the joint probability distribution over
v and h by an energy function

E(v,h) = −c′h− b′v − h′Wv, (1)

which is factorized by a visible bias b ∈ RV , a
hidden bias c ∈ RH and a weight matrix W ∈
RH×V . The joint distribution P (v,h) is given by

P (v,h) =
1
Z

exp(E(v,h)), (2)

where Z is the partition function.
The affine form of E with respect to v and h

implies that the visible variables are conditionally
independent with each other given the hidden layer
units, and vice versa. This yields the conditional
distribution:

P (v|h) =
V∏

j=1

P (vj |h) P (h|v) =
H∏

i=1

P (hi|v)

P (vj = 1|h) = σ(bj +W·jh) (3)

P (hi = 1|v) = σ(cj +Wi·v) (4)

Here σ denotes the sigmoid function. Parameters
of RBMs θ = {b, c,W} can be trained efficiently
using contrastive divergence learning (CD), see
(Hinton, 2002) for detailed descriptions of CD.

2.2 Encoding Web Text with RBM
Most of the indicative features for POS disam-
biguation can be found from the words and word
combinations within a local context (Ratnaparkhi,
1996; Collins, 2002). Inspired by this observa-
tion, we apply the RBM to learn feature repre-
sentations from word n-grams. More specifically,
given the ith word wi of a sentence, we apply
RBMs to model the joint distribution of the n-gram
(wi−l, · · · , wi+r), where l and r denote the left
and right window, respectively. Note that the vis-
ible units of RBMs are binary. While in our case,
each visible variable corresponds to a word, which
may take on tens-of-thousands of different values.
Therefore, the RBM need to be re-factorized to
make inference tractable.

We utilize the Word Representation RBM (WR-
RBM) factorization proposed by Dahl et al.
(2012). The basic idea is to share word representa-
tions across different positions in the input n-gram
while using position-dependent weights to distin-
guish between different word orders.

Let wk be the k-th entry of lexicon L, and wk

be its one-hot representation (i.e., only the k-th
component of wk is 1, and all the others are 0).
Let v(j) represents the j-th visible variable of the
WRRBM, which is a vector of length |L|. Then
v(j) = wk means that the j-th word in the n-gram
is wk. Let D ∈ RD×|L| be a projection matrix,
then Dwk projects wk into a D-dimensional real
value vector (embedding). For each position j,
there is a weight matrix W(j) ∈ RH×D, which
is used to model the interaction between the hid-
den layer and the word projection in position j.
The visible biases are also shared across different
positions (b(j) = b ∀j) and the energy function is:

E(v,h) = −c′h−
n∑

j=1

(b′v(j) + h′W(j)Dv(j)),

(5)

which yields the conditional distributions:

P (v|h) =
n∏

j=1

P (v(j)|h) P (h|v) =
∏
i=1

P (hi|v)

P (hi = 1|v) = σ(ci +
n∑

j=1

W(j)
i· Dv(j)) (6)

P (v(j) = wk|h) =
1
Z

exp(b′wk + h′W(j)Dwk)
(7)
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Again Z is the partition function.
The parameters {b, c,D,W(1), . . . ,W(n)}

can be trained using a Metropolis-Hastings-based
CD variant and the learned word representations
also capture certain syntactic information; see
Dahl et al. (2012) for more details.

Note that one can stack standard RBMs on top
of a WRRBM to construct a Deep Belief Network
(DBN). By adopting greedy layer-wise training
(Hinton et al., 2006; Bengio et al., 2007), DBNs
are capable of modelling higher order non-linear
relations between the input, and has been demon-
strated to improve performance for many com-
puter vision tasks (Hinton et al., 2006; Bengio et
al., 2007; Lee et al., 2009a). However, in this work
we do not observe further improvement by em-
ploying DBNs. This may partly be due to the fact
that unlike computer vision tasks, the input struc-
ture of POS tagging or other sequential labelling
tasks is relatively simple, and a single non-linear
layer is enough to model the interactions within
the input (Wang and Manning, 2013).

3 Neural Network for POS
Disambiguation

We integrate the learned WRRBM into a neural
network, which serves as a scorer for POS dis-
ambiguation. The main challenge to designing
the neural network structure is: on the one hand,
we hope that the model can take the advantage
of information provided by the learned WRRBM,
which reflects general properties of web texts, so
that the model generalizes well in the web domain;
on the other hand, we also hope to improve the
model’s discriminative power by utilizing well-
established POS tagging features, such as those of
Ratnaparkhi (1996).

Our approach is to leverage the two sources of
information in one neural network by combining
them though a shared output layer, as shown in
Figure 1. Under the output layer, the network
consists of two modules: the web-feature mod-
ule, which incorporates knowledge from the pre-
trained WRRBM, and the sparse-feature module,
which makes use of other POS tagging features.

3.1 The Web-Feature Module

The web-feature module, shown in the lower left
part of Figure 1, consists of a input layer and two
hidden layers. The input for the this module is the
word n-gram (wi−l, . . . , wi+r), the form of which

Figure 1: The proposed neural network. The web-
feature module (lower left) and sparse-feature
module (lower right) are combined by a shared
output layer (upper).

is identical to the training data of the pre-trained
WRRBM.

The first layer is a linear projection layer, where
each word in the input is projected into a D-
dimensional real value vector using the projection
operation described in Section 2.2. The output of
this layer o1

w is the concatenation of the projec-
tions of wi−l, . . . , wi+r:

o1
w =

M1
wwi−l

...
M1

wwi+r

 (8)

Here M1
w denotes the parameters of the first layer

of the web-feature module, which is a D × |L|
projection matrix.

The second layer is a sigmoid layer to model
non-linear relations between the word projections:

o2
w = σ(M2

wo1
w + b2

w) (9)

Parameters of this layer include: a bias vector
b2

w ∈ RH and a weight matrix M2
w ∈ RH×nD.

The web-feature module enables us to explore
the learned WRRBM in various ways. First, it al-
lows us to investigate knowledge from the WR-
RBM incrementally. We can choose to use only
the word representations of the learned WRRBM.
This can be achieved by initializing only the first
layer of the web module with the projection matrix
D of the learned WRRBM:

M1
w ← D. (10)

Alternatively, we can choose to use the hidden
states of the WRRBM, which can be treated as the
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representations of the input n-gram. This can be
achieved by also initializing the parameters of the
second layer of the web-feature module using the
position-dependent weight matrix and hidden bias
of the learned WRRBM:

b2
w ← c (11)

M2
w ← (W(1), . . . ,W(n)) (12)

Second, the web-feature module also allows us
to make a comparison between whether or not to
further adjust the pre-trained representation in the
supervised fine-tuning phase, which corresponds
to the supervised learning strategies of Turian et al.
(2010) and Collobert et al. (2011), respectively. To
our knowledge, no investigations have been pre-
sented in the literature on this issue.

3.2 The Sparse-Feature Module
The sparse-feature module, as shown in the lower
right part of Figure 1, is designed to incorporate
commonly-used tagging features. The input for
this module is a vector of boolean values Φ(x) =
(f1(x), . . . , fk(x)), where x denotes the partially
tagged input sentence and fi(x) denotes a fea-
ture function, which returns 1 if the correspond-
ing feature fires and 0 otherwise. The first layer of
this module is a linear transformation layer, which
converts the high dimensional sparse vector into a
fixed-dimensional real value vector:

os = MsΦ(x) + bs (13)

Depending on the specific task being considered,
the output of this layer can be further fed to other
non-linear layers, such as a sigmoid or hyperbolic
tangent layer, to model more complex relations.
For POS tagging, we found that a simple linear
layer yields satisfactory accuracies.

The web-feature and sparse-feature modules are
combined by a linear output layer, as shown in the
upper part of Figure 1. The value of each unit in
this layer denotes the score of the corresponding
POS tag.

oo = Mo

(
ow

os

)
+ bo (14)

In some circumstances, probability distribution
over POS tags might be a more preferable form
of output. Such distribution can be easily obtained
by adding a soft-max layer on top of the output
layer to perform a local normalization, as done by
Collobert et al. (2011).

Algorithm 1 Easy-first POS tagging
Input: x a sentence of m words w1, . . . , wm

Output: tag sequence of x
1: U← [w1, . . . , wm] // untagged words
2: while U 6= [] do
3: (ŵ, t̂)← arg max(w,t)∈U×T S(w, t)
4: ŵ.t← t̂
5: U← U/[ŵ] // remove ŵ from U
6: end while
7: return [w1.t, . . . , wm.t]

4 Easy-first POS tagging with Neural
Network

The neural network proposed in Section 3 is used
for POS disambiguation by the easy-first POS tag-
ger. Parameters of the network are trained using
guided learning, where learning and search inter-
act with each other.

4.1 Easy-first POS tagging

Pseudo-code of easy-first tagging is shown in Al-
gorithm 1. Rather than tagging a sentence from
left to right, easy-first tagging is based on a deter-
ministic process, repeatedly selecting the easiest
word to tag. Here “easiness” is evaluated based
on a statistical model. At each step, the algorithm
adopts a scorer, the neural network in our case,
to assign a score to each possible word-tag pair
(w, t), and then selects the highest score one (ŵ, t̂)
to tag (i.e., tag ŵ with t̂). The algorithm repeats
until all words are tagged.

4.2 Training

The training algorithm repeats for several itera-
tions over the training data, which is a set of sen-
tences labelled with gold standard POS tags. In
each iteration, the procedure shown in Algorithm
2 is applied to each sentence in the training set.

At each step during the processing of a training
example, the algorithm calculates a margin loss
based on two word-tag pairs (w, t) and (ŵ, t̂) (line
4 ∼ line 6). (w, t) denotes the word-tag pair that
has the highest model score among those that are
inconsistent with the gold standard, while (ŵ, t̂)
denotes the one that has the highest model score
among those that are consistent with the gold stan-
dard. If the loss is zero, the algorithm continues to
process the next untagged word. Otherwise, pa-
rameters are updated using back-propagation.

The standard back-propagation algorithm
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(Rumelhart et al., 1988) cannot be applied
directly. This is because the standard loss is
calculated based on a unique input vector. This
condition does not hold in our case, because ŵ
and w may refer to different words, which means
that the margin loss in line 6 of Algorithm 2 is
calculated based on two different input vectors,
denoted by 〈ŵ〉 and 〈w〉, respectively.

We solve this problem by decomposing the mar-
gin loss in line 6 into two parts:

• 1 + nn(w, t), which is associated with 〈w〉;
• −nn(ŵ, t̂), which is associated with 〈ŵ〉.

In this way, two separate back-propagation up-
dates can be used to update the model’s parameters
(line 8 ∼ line 11). For the special case where ŵ
and w do refer to the same word w, it can be easily
verified that the two separate back-propagation up-
dates equal to the standard back-propagation with
a loss 1 + nn(w, t)− nn(w, t̂) on the input 〈w〉.

The algorithm proposed here belongs to a gen-
eral framework named guided learning, where
search and learning interact with each other. The
algorithm learns not only a local classifier, but also
the inference order. While previous work (Shen et
al., 2007; Zhang and Clark, 2011; Goldberg and
Elhadad, 2010) apply guided learning to train a
linear classifier by using variants of the percep-
tron algorithm, we are the first to combine guided
learning with a neural network, by using a margin
loss and a modified back-propagation algorithm.

5 Experiments

5.1 Setup

Our experiments are conducted on the data set
provided by the SANCL 2012 shared task, which
aims at building a single robust syntactic anal-
ysis system across the web-domain. The data
set consists of labelled data for both the source
(Wall Street Journal portion of the Penn Treebank)
and target (web) domains. The web domain data
can be further classified into five sub-domains, in-
cluding emails, weblogs, business reviews, news
groups and Yahoo!Answers. While emails and
weblogs are used as the development sets, reviews,
news groups and Yahoo!Answers are used as the
final test sets. Participants are not allowed to use
web-domain labelled data for training. In addi-
tion to labelled data, a large amount of unlabelled
data on the web domain is also provided. Statistics

Algorithm 2 Training over one sentence
Input: (x, t) a tagged sentence, neural net nn
Output: updated neural net nn′

1: U← [w1, . . . , wm] // untagged words
2: R← [(w1, t1), . . . , (wm, tm)] // reference
3: while U 6= [] do
4: (w, t)← arg max(w,t)∈(U×T/R) nn(w, t)
5: (ŵ, t̂)← arg max(w,t)∈R nn(w, t)
6: loss← max(0, 1 + nn(w, t)− nn(ŵ, t̂))
7: if loss > 0 then
8: ê← nn.BackPropErr(〈ŵ〉,−nn(ŵ, t̂))
9: e← nn.BackPropErr(〈w〉, 1+nn(w, t))

10: nn.Update(〈ŵ〉, ê)
11: nn.Update(〈w〉, e)
12: else
13: U← U/{ŵ}, R← R/(ŵ, t̂)
14: end if
15: end while
16: return nn

about labelled and unlabelled data are summarized
in Table 1 and Table 2, respectively.

The raw web domain data contains much noise,
including spelling error, emotions and inconsis-
tent capitalization. Following some participants
(Le Roux et al., 2012), we conduct simple prepro-
cessing steps to the input of the development and
the test sets1

• Neutral quotes are transformed to opening or
closing quotes.

• Tokens starting with “www.”, “http.” or end-
ing with “.org”, “.com” are converted to a
“#URL” symbol

• Repeated punctuations such as “!!!!” are col-
lapsed into one.

• Left brackets such as “<”,“{” and “[” are
converted to “-LRB-”. Similarly, right brack-
ets are converted to “-RRB-”

• Upper cased words that contain more than 4
letters are lowercased.

• Consecutive occurrences of one or more dig-
its within a word are replaced with “#DIG”

We apply the same preprocessing steps to all the
unlabelled data. In addition, following Dahl et

1The preprocessing steps make use of no POS knowledge,
and does not bring any unfair advantages to the participants.
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Training set Dev set Test set
WSJ-Train Emails Weblogs WSJ-dev Answers Newsgroups Reviews WSJ-test

#Sen 30060 2,450 1,016 1,336 1,744 1,195 1,906 1,640
#Words 731,678 29,131 24,025 32,092 28,823 20,651 28,086 35,590
#Types 35,933 5,478 4,747 5,889 4,370 4,924 4,797 6,685

Table 1: Statistics of the labelled data. #Sen denotes number of sentences. #Words and #Types denote
number of words and unique word types, respectively.

Emails Weblogs Answers Newsgroups Reviews
#Sen 1,194,173 524,834 27,274 1,000,000 1,965,350

#Words 17,047,731 10,365,284 424,299 18,424,657 29,289,169
#Types 221,576 166,515 33,325 357,090 287,575

Table 2: Statistics of the raw unlabelled data.

features templates
unigram H(wi), C(wi), L(wi), L(wi−1), L(wi+1), ti−2, ti−1, ti+1, ti+2

bigram L(wi)� L(wi−1), L(wi)� L(wi+1), ti−2 � ti−1, ti−1 � ti+1, ti+1 � ti+2,
L(wi)� ti−2, L(wi)� ti−1, L(wi)� ti+1, L(wi)� ti+2

trigram L(wi)� ti−2 � ti−1, L(wi)� ti−1 � ti+1, L(wi)� ti+1 � ti+2

Table 3: Feature templates, where wi denotes the current word. H(w) and C(w) indicates whether w
contains hyphen and upper case letters, respectively. L(w) denotes a lowercased w.

al. (2012) and Turian et al. (2010), we also low-
ercased all the unlabelled data and removed those
sentences that contain less than 90% a-z letters.

The tagging performance is evaluated accord-
ing to the official evaluation metrics of SANCL
2012. The tagging accuracy is defined as the per-
centage of words (punctuations included) that are
correctly tagged. The averaged accuracies are cal-
culated across the web domain data.

We trained the WRRBM on web-domain data
of different sizes (number of sentences). The data
sets are generated by first concatenating all the
cleaned unlabelled data, then selecting sentences
evenly across the concatenated file.

For each data set, we investigate an extensive set
of combinations of hyper-parameters: the n-gram
window (l, r) in {(1, 1), (2, 1), (1, 2), (2, 2)}; the
hidden layer size in {200, 300, 400}; the learning
rate in {0.1, 0.01, 0.001}. All these parameters are
selected according to the averaged accuracy on the
development set.

5.2 Baseline

We reimplemented the greedy easy-first POS tag-
ger of Ma et al. (2013), which is used for all the
experiments. While the tagger of Ma et al. (2013)
utilizes a linear scorer, our tagger adopts the neural
network as its scorer. The neural network of our
baseline tagger only contains the sparse-feature
module. We use this baseline to examine the per-
formance of a tagger trained purely on the source
domain. Feature templates are shown in Table 3,

which are based on those of Ratnaparkhi (1996)
and Shen et al. (2007).

Accuracies of the baseline tagger are shown in
the upper part of Table 6. Compared with the
performance of the official baseline (row 4 of Ta-
ble 6), which is evaluated based on the output of
BerkeleyParser (Petrov et al., 2006; Petrov and
Klein, 2007), our baseline tagger achieves com-
parable accuracies on both the source and target
domain data. With data preprocessing, the aver-
age accuracy boosts to about 92.02 on the test set
of the target domain. This is consistent with pre-
vious work (Le Roux et al., 2011), which found
that for noisy data such as web domain text, data
cleaning is a effective and necessary step.

5.3 Exploring the Learned Knowledge

As mentioned in Section 3.1, the knowledge
learned from the WRRBM can be investigated
incrementally, using word representation, which
corresponds to initializing only the projection
layer of web-feature module with the projection
matrix of the learned WRRBM, or ngram-level
representation, which corresponds to initializing
both the projection and sigmoid layers of the web-
feature module by the learned WRRBM. In each
case, there can be two different training strate-
gies depending on whether the learned representa-
tions are further adjusted or kept unchanged dur-
ing the fine-turning phrase. Experimental results
under the 4 combined settings on the development
sets are illustrated in Figure 2, 3 and 4, where the
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Figure 2: Tagging accuracies on the source-
domain data. “word” and “ngram” denote using
word representations and n-gram representations,
respectively. “fixed” and “adjust” denote that the
learned representation are kept unchanged or fur-
ther adjusted in supervised learning, respectively.

89.8

90

90.2

90.4

90.6

90.8

91

200 400 600 800 1000

A
c
c
u
r
a
c
y

Number of unlabelled sentences (k)

Email

word-fixed
word-adjust
ngram-fixed

ngram-adjust

Figure 3: Accuracies on the email domain.
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Figure 4: Accuracies on the weblog domain.

x-axis denotes the size of the training data and y-
axis denotes tagging accuracy.

5.3.1 Effect of the Training Strategy
From Figure 2 we can see that when knowl-
edge from the pre-trained WRRBM is incorpo-

method all non-oov oov
baseline 89.81 92.42 65.64

word-adjust +0.09 −0.05 +1.38
word-fix +0.11 +0.13 +1.73

ngram-adjust +0.53 +0.52 +0.53
ngram-fix +0.69 +0.60 +2.30

Table 4: Performance on the email domain.

rated, both the training strategies (“word-fixed”
vs “word-adjusted”, “ngram-fixed” vs “ngram-
adjusted”) improve accuracies on the source do-
main, which is consistent with previous findings
(Turian et al., 2010; Collobert et al., 2011). In
addition, adjusting the learned representation or
keeping them fixed does not result in too much dif-
ference in tagging accuracies.

On the web-domain data, shown in Figure 3 and
4, we found that leaving the learned representation
unchanged (“word-fixed”, “ngram-fixed”) yields
consistently higher performance gains. This re-
sult is to some degree expected. Intuitively, unsu-
pervised pre-training moves the parameters of the
WRRBM towards the region where properties of
the web domain data are properly modelled. How-
ever, since fine-tuning is conducted with respect
to the source domain, adjusting the parameters
of the pre-trained representation towards optimiz-
ing source domain tagging accuracies would dis-
rupt its ability in modelling the web domain data.
Therefore, a better idea is to keep the representa-
tion unchanged so that we can learn a function that
maps the general web-text properties to its syntac-
tic categories.

5.3.2 Word and N-gram Representation

From Figures 2, 3 and 4, we can see that
adopting the ngram-level representation consis-
tently achieves better performance compared with
using word representations only (“word-fixed”
vs “ngram-fixed”, “word-adjusted” vs “ngram-
adjusted”). This result illustrates that the ngram-
level knowledge captures more complex interac-
tions of the web text, which cannot be recovered
by using only word embeddings. Similar result
was reported by Dahl et al. (2012), who found
that using both the word embeddings and the hid-
den units of a tri-gram WRRBM as additional fea-
tures for a CRF chunker yields larger improve-
ments than using word embeddings only.

Finally, more detailed accuracies under the 4
settings on the email domain are shown in Table
4. We can see that the improvement of using word
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RBM-E RBM-W RBM-M

+acc% Emails +0.73 +0.37 +0.69
Weblog +0.31 +0.52 +0.54

cov%
Emails 95.24 92.79 93.88
Weblog 90.21 97.74 94.77

Table 5: Effect of unlabelled data. “+acc” denotes
improvement in tagging accuracy and “cov” de-
notes the lexicon coverages.

representations mainly comes from better accu-
racy of out-of-vocabulary (oov) words. By con-
trast, using n-gram representations improves the
performance on both oov and non-oov.

5.4 Effect of Unlabelled Domain Data
In some circumstances, we may know beforehand
that the target domain data belongs to a certain
sub-domain, such as the email domain. In such
cases, it might be desirable to train WRRBM using
data only on that domain. We conduct experiments
to test whether using the target domain data to
train the WRRBM yields better performance com-
pared with using mixed data from all sub-domains.

We trained 3 WRRBMs using the email do-
main data (RBM-E), weblog domain data (RBM-
W) and mixed domain data (RBM-M), respec-
tively, with each data set consisting of 300k sen-
tences. Tagging performance and lexicon cover-
ages of each data set on the development sets are
shown in Table 5. We can see that using the target
domain data achieves similar improvements com-
pared with using the mixed data. However, for the
email domain, RBM-W yields much smaller im-
provement compared with RBM-E, and vice versa.
From the lexicon coverages, we can see that the
sub-domains varies significantly. The results sug-
gest that using mixed data can achieve almost as
good performance as using the target sub-domain
data, while using mixed data yields a much more
robust tagger across all sub-domains.

5.5 Final Results
The best result achieved by using a 4-gram WR-
RBM, (wi−2, . . . , wi+1), with 300 hidden units
learned on 1,000k web domain sentences are
shown in row 3 of Table 6. Performance of the
top 2 systems of the SANCL 2012 task are also
shown in Table 6. Our greedy tagger achieves 93%
tagging accuracy, which is significantly better than
the baseline’s 92.02% accuracy (p < 0.05 by Mc-
Nemar’s test). Moreover, we achieve the high-
est tagging accuracy reported so far on this data

set, surpassing those achieved using parser combi-
nations based on self-training (Tang et al., 2012;
Le Roux et al., 2012). In addition, different from
Le Roux et al. (2012), we do not use any external
resources in data cleaning.

6 Related Work

Learning representations has been intensively
studied in computer vision tasks (Bengio et al.,
2007; Lee et al., 2009a). In NLP, there is also
much work along this line. In particular, Col-
lobert et al. (2011) and Turian et al. (2010) learn
word embeddings to improve the performance of
in-domain POS tagging, named entity recogni-
tion, chunking and semantic role labelling. Yang
et al. (2013) induce bi-lingual word embeddings
for word alignment. Zheng et al. (2013) investi-
gate Chinese character embeddings for joint word
segmentation and POS tagging. While those ap-
proaches mainly explore token-level representa-
tions (word or character embeddings), using WR-
RBM is able to utilize both word and n-gram rep-
resentations.

Titov (2011) and Glorot et al. (2011) propose
to learn representations from the mixture of both
source and target domain unlabelled data to im-
prove cross-domain sentiment classification. Titov
(2011) also propose a regularizer to constrain the
inter-domain variability. In particular, their reg-
ularizer aims to minimize the Kullback-Leibler
(KL) distance between the marginal distributions
of the learned representations on the source and
target domains.

Their work differs from ours in that their ap-
proaches learn representations from the feature
vectors for sentiment classification, which might
be of thousands of dimensions. Such high di-
mensional input gives rise to high computational
cost and it is not clear whether those approaches
can be applied to large scale unlabelled data, with
hundreds of millions of training examples. Our
method learns representations from only word n-
grams with n ranging from 3 to 5, which can
be easily applied to large scale-data. In addition,
while Titov (2011) and Glorot et al. (2011) use the
learned representation to improve cross-domain
classification tasks, we are the first to apply it to
cross-domain structured prediction.

Blitzer et al. (2006) propose to induce shared
representations for domain adaptation, which is
based on the alternating structure optimization
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System Answer Newsgroup Review WSJ-t Avg
baseline-raw 89.79 91.36 89.96 97.09 90.31

baseline-clean 91.35 92.06 92.92 97.09 92.02
best-clean 92.37 93.59 93.62 97.44 93.15

baseline-offical 90.20 91.24 89.33 97.08 90.26
Le Roux et al.(2011) 91.79 93.81 93.11 97.29 92.90

Tang et al. (2012) 91.76 92.91 91.94 97.49 92.20

Table 6: Main results. “baseline-raw” and “baseline-clean” denote performance of our baseline tagger
on the raw and cleaned data, respectively. “best-clean” is best performance achieved using a 4-gram
WRRBM. The lower part shows accuracies of the official baseline and that of the top 2 participants.

(ASO) method of Ando and Zhang (2005). The
idea is to project the original feature representa-
tions into low dimensional representations, which
yields a high-accuracy classifier on the target do-
main. The new representations are induced based
on the auxiliary tasks defined on unlabelled data
together with a dimensionality reduction tech-
nique. Such auxiliary tasks can be specific to the
supervised task. As pointed out by Plank (2009),
for many NLP tasks, defining the auxiliary tasks is
a non-trivial engineering problem. Compared with
Blitzer et al. (2006), the advantage of using RBMs
is that it learns representations in a pure unsuper-
vised manner, which is much simpler.

Besides learning representations, another line
of research addresses domain-adaptation by in-
stance re-weighting (Bickel et al., 2007; Jiang
and Zhai, 2007) or feature re-weighting (Satpal
and Sarawagi, 2007). Those methods assume that
each example x that has a non-zero probability on
the source domain must have a non-zero proba-
bility on the target domain, and vice-versa. As
pointed out by Titov (2011), such an assumption
is likely to be too restrictive since most NLP tasks
adopt word-based or lexicon-based features that
vary significantly across different domains.

Regarding using neural networks for sequential
labelling, our approach shares similarity with that
of Collobert et al. (2011). In particular, we both
use a non-linear layer to model complex relations
underling word embeddings. However, our net-
work differs from theirs in the following aspects.
Collobert et al. (2011) model the dependency be-
tween neighbouring tags in a generative manner,
by employing a transition score Aij . Training the
score involves a forward process of complexity
O(nT 2), where T denotes the number of tags. Our
model captures such a dependency in a discrimina-
tive manner, by just adding tag-related features to
the sparse-feature module. In addition, Collobert
et al. (2011) train their network by maximizing the

training set likelihood, while our approach is to
minimize the margin loss using guided learning.

7 Conclusion

We built a web-domain POS tagger using a
two-phase approach. We used a WRRBM to
learn the representation of the web text and
incorporate the representation in a neural net-
work, which is trained using guided learning
for easy-first POS tagging. Experiment showed
that our approach achieved significant improve-
ment in tagging the web domain text. In ad-
dition, we found that keeping the learned repre-
sentations unchanged yields better performance
compared with further optimizing them on the
source domain data. We release our tools at
https://github.com/majineu/TWeb.

For future work, we would like to investigate
the two-phase approach to more challenging tasks,
such as web domain syntactic parsing. We be-
lieve that high-accuracy web domain taggers and
parsers would benefit a wide range of downstream
tasks such as machine translation2.
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