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Abstract
Distributional semantic methods to ap-
proximate word meaning with context
vectors have been very successful empir-
ically, and the last years have seen a surge
of interest in their compositional exten-
sion to phrases and sentences. We present
here a new model that, like those of Co-
ecke et al. (2010) and Baroni and Zam-
parelli (2010), closely mimics the standard
Montagovian semantic treatment of com-
position in distributional terms. However,
our approach avoids a number of issues
that have prevented the application of the
earlier linguistically-motivated models to
full-fledged, real-life sentences. We test
the model on a variety of empirical tasks,
showing that it consistently outperforms a
set of competitive rivals.

1 Compositional distributional semantics

The research of the last two decades has estab-
lished empirically that distributional vectors for
words obtained from corpus statistics can be used
to represent word meaning in a variety of tasks
(Turney and Pantel, 2010). If distributional vec-
tors encode certain aspects of word meaning, it is
natural to expect that similar aspects of sentence
meaning can also receive vector representations,
obtained compositionally from word vectors. De-
veloping a practical model of compositionality is
still an open issue, which we address in this pa-
per. One approach is to use simple, parameter-
free models that perform operations such as point-
wise multiplication or summing (Mitchell and La-
pata, 2008). Such models turn out to be sur-
prisingly effective in practice (Blacoe and Lap-
ata, 2012), but they have obvious limitations. For
instance, symmetric operations like vector addi-
tion are insensitive to syntactic structure, there-
fore meaning differences encoded in word order

are lost in composition: pandas eat bamboo is
identical to bamboo eats pandas. Guevara (2010),
Mitchell and Lapata (2010), Socher et al. (2011)
and Zanzotto et al. (2010) generalize the simple
additive model by applying structure-encoding op-
erators to the vectors of two sister nodes before
addition, thus breaking the inherent symmetry of
the simple additive model. A related approach
(Socher et al., 2012) assumes richer lexical rep-
resentations where each word is represented with
a vector and a matrix that encodes its interaction
with its syntactic sister. The training proposed in
this model estimates the parameters in a super-
vised setting. Despite positive empirical evalua-
tion, this approach is hardly practical for general-
purpose semantic language processing, since it re-
quires computationally expensive approximate pa-
rameter optimization techniques, and it assumes
task-specific parameter learning whose results are
not meant to generalize across tasks.

1.1 The lexical function model

None of the proposals mentioned above, from sim-
ple to elaborate, incorporates in its architecture the
intuitive idea (standard in theoretical linguistics)
that semantic composition is more than a weighted
combination of words. Generally one of the com-
ponents of a phrase, e.g., an adjective, acts as
a function affecting the other component (e.g., a
noun). This underlying intuition, adopted from
formal semantics of natural language, motivated
the creation of the lexical function model of com-
position (lf ) (Baroni and Zamparelli, 2010; Co-
ecke et al., 2010). The lf model can be seen as a
projection of the symbolic Montagovian approach
to semantic composition in natural language onto
the domain of vector spaces and linear operations
on them (Baroni et al., 2013). In lf, arguments
are vectors and functions taking arguments (e.g.,
adjectives that combine with nouns) are tensors,
with the number of arguments (n) determining the
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order of tensor (n+1). For example, adjectives, as
unary functors, are modeled with 2-way tensors, or
matrices. Tensor by vector multiplication formal-
izes function application and serves as the general
composition method.

Baroni and Zamparelli (2010) propose a practi-
cal and empirically effective way to estimate ma-
trices representing adjectival modifiers of nouns
by linear regression from corpus-extracted exam-
ples of noun and adjective-noun vectors. Un-
like the neural network approach of Socher et
al. (2011; 2012), the Baroni and Zamparelli
method does not require manually labeled data nor
costly iterative estimation procedures, as it relies
on automatically extracted phrase vectors and on
the analytical solution of the least-squares-error
problem.

The same method was later applied to matrix
representations of intransitive verbs and determin-
ers (Bernardi et al., 2013; Dinu et al., 2013), al-
ways with good empirical results.

The full range of semantic types required for
natural language processing, including those of
adverbs and transitive verbs, has to include, how-
ever, tensors of greater rank. The estimation
method originally proposed by Baroni and Zam-
parelli has been extended to 3-way tensors rep-
resenting transitive verbs by Grefenstette et al.
(2013) with preliminary success. Grefenstette et
al.’s method works in two steps. First, one esti-
mates matrices of verb-object phrases from sub-
ject and subject-verb-object vectors; next, transi-
tive verb tensors are estimated from verb-object
matrices and object vectors.

1.2 Problems with the extension of the lexical
function model to sentences

With all the advantages of lf, scaling it up to ar-
bitrary sentences, however, leads to several issues.
In particular, it is desirable for all practical pur-
poses to limit representation size. For example,
if noun meanings are encoded in vectors of 300
dimensions, adjectives become matrices of 3002

cells, and transitive verbs are represented as ten-
sors with 3003=27, 000, 000 dimensions.

Estimating tensors of this size runs into data
sparseness issues already for less common tran-
sitive verbs. Indeed, in order to train a transitive
verb tensor (e.g., eat), the method of Grefenstette
et al. (2013) requires a sufficient number of dis-
tinct verb object phrases with that verb (e.g., eat

cake, eat fruits), each attested in combination with
a certain number of subject nouns with sufficient
frequency to extract sensible vectors. It is not fea-
sible to obtain enough data points for all verbs in
such a training design.

Things get even worse for other categories.
Adverbs like quickly that modify intransitive
verbs have to be represented with 30022 =
8, 100, 000, 000 dimensions. Modifiers of transi-
tive verbs would have even greater representation
size, which may not be possible to store and learn
efficiently.

Another issue is that the same or similar items
that occur in different syntactic contexts are as-
signed different semantic types with incompara-
ble representations. For example, verbs like eat
can be used in transitive or intransitive construc-
tions (children eat meat/children eat), or in passive
(meat is eaten). Since predicate arity is encoded
in the order of the corresponding tensor, eat and
the like have to be assigned different representa-
tions (matrix or tensor) depending on the context.
Deverbal nouns like demolition, often used with-
out mention of who demolished what, would have
to get vector representations while the correspond-
ing verbs (demolish) would become tensors, which
makes immediately related verbs and nouns in-
comparable. Nouns in general would oscillate be-
tween vector and matrix representations depend-
ing on argument vs. predicate vs. modifier posi-
tion (an animal runs vs. this is an animal vs. an-
imal shelter). Prepositions are the hardest, as the
syntactic positions in which they occur are most
diverse (park in the dark vs. play in the dark vs.
be in the dark vs. a light glowing in the dark).

In all those cases, the same word has to be
mapped to tensors of different orders. Since each
of these tensors must be learned from examples
individually, their obvious relation is missed. Be-
sides losing the comparability of the semantic con-
tribution of a word across syntactic contexts, we
also worsen the data sparseness issues.

The last, and related, point is that for the ten-
sor calculus to work, one needs to model, for each
word, each of the constructions in the corpus that
the word is attested in. In its pure form lf does
not include an emergency backoff strategy when
unknown words or constructions are encountered.
For example, if we only observe transitive usages
of to eat in the training corpus, and encounter an
intransitive or passive example of it in testing data,
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the system would not be able to compose a sen-
tence vector at all. This issue is unavoidable since
we don’t expect to find all words in all possible
constructions even in the largest corpus.

2 The practical lexical function model

As follows from section 1.2, it would be desirable
to have a compositional distributional model that
encodes function-argument relations but avoids
the troublesome high-order tensor representations
of the pure lexical function model, with all the
practical problems that come with them. We may
still want to represent word meanings in differ-
ent syntactic contexts differently, but at the same
time we need to incorporate a formal connection
between those representations, e.g., between the
transitive and the intransitive instantiations of the
verb to eat. Last but not least, all items need to
include a common aspect of their representation
(e.g., a vector) to allow comparison across cate-
gories (the case of demolish and demolition).

To this end, we propose a new model of compo-
sition that maintains the idea of function applica-
tion, while avoiding the complications and rigidity
of lf. We call our proposal practical lexical func-
tion model, or plf. In plf, a functional word is not
represented by a single tensor of arity-dependent
order, but by a vector plus an ordered set of matri-
ces, with one matrix for each argument the func-
tion takes. After applying the matrices to the cor-
responding argument vectors, a single representa-
tion is obtained by summing across all resulting
vectors.

2.1 Word meaning representation

In plf, all words are represented by a vector, and
functional words, such as predicates and modi-
fiers, are also assigned one or more matrices. The
general form of a semantic representation for a
linguistic unit is an ordered tuple of a vector and
n ∈ N matrices:1〈

~x,
21
x , . . . ,

2n
x

〉
The number of matrices in the representation

encodes the arity of a linguistic unit, i.e., the num-
ber of other units to which it applies as a function.
Each matrix corresponds to a function-argument
relation, and words have as many matrices as
many arguments they take: none for (most) nouns,

1Matrices associated with term x are symbolized
2
x.

dog ~dog

run ~run,
2

run

chase ~chase,
2s

chase,
2o

chase

give ~give,
2s

give,
2o

give,
2io

give

big ~big,
2

big

very ~very,
2n

very,
2a

very

quickly ~quickly,
2s

quickly,
2v

quickly

Table 1: Examples of word representations. Sub-
scripts encode, just for mnemonic purposes, the
constituent whose vector the matrix combines
with: subject, object, indirect object, noun,
adjective, verb phrase.

one for adjectives and intransitive verbs, two for
transitives, etc. The matrices formalize argument
slot saturation, operating on an argument vector
representation through matrix by vector multipli-
cation, as described in the next section.

Modifiers of n-ary functors are represented by
n+1-ary structures. For instance, we treat adjec-
tives that modify nouns (0-ary) as unary functions,
encoded in a vector-matrix pair. Adverbs have dif-
ferent semantic types depending on their syntac-
tic role. Sentential adverbs are unary, while ad-
verbs that modify adjectives (very) or verb phrases
(quickly) are encoded as binary functions, repre-
sented by a vector and two matrices. The form of
semantic representations we are using is shown in
Table 1.2

2.2 Semantic composition

Our system incorporates semantic composition via
two composition rules, one for combining struc-
tures of different arity and the other for symmet-
ric composition of structures with the same ar-
ity. These rules incorporate insights of two em-
pirically successful models, lexical function and
the simple additive approach, used as the default
structure merging strategy.

The first rule is function application, illustrated
in Figure 1. Table 2 illustrates simple cases of
function application. For transitive verbs seman-
tic composition applies iteratively as shown in the
derivation of Figure 2. For ternary predicates such

2To determine the number and ordering of matrices rep-
resenting the word in the current syntactic context, our plf
implementation relies on the syntactic type assigned to the
word in the categorial grammar parse of the sentence.
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〈
~x +

2n+k
x × ~y,

21
x +

21
y , . . . ,

2n
x +

2n
y , . . .

〉

〈
~x,

21
x , . . . ,

2n
x , . . . ,

2n+k
x
〉 〈

~y,
21
y , . . . ,

2n
y
〉

Figure 1: Function application: If two syntactic
sisters have different arity, treat the higher-arity
sister as the functor. Compose by multiplying the
last matrix in the functor tuple by the argument
vector and summing the result to the functor vec-
tor. Unsaturated matrices are carried up to the
composed node, summing across sisters if needed.

dogs ~dogs

run ~run,
2

run

dogs run ~run +
2

run× ~dog

house ~house

big ~big,
2

big

big house ~big +
2

big × ~house

Table 2: Examples of function application.

as give in a ditransitive construction, the first step
in the derivation absorbs the innermost argument
by multiplying its vector by the third give matrix,
and then composition proceeds like for transitives.

The second composition rule, symmetric com-
position applies when two syntactic sisters are of
the same arity (e.g., two vectors, or two vector-
matrix pairs). Symmetric composition simply
sums the objects in the two tuples: vector with
vector, n-th matrix with n-th matrix.

Symmetric composition is reserved for struc-
tures in which the function-argument distinction
is problematic. Some candidates for such treat-
ment are coordination and nominal compounds,
although we recognize that the headless analysis is

2s

chase× ~dogs + ~chase +
2o

chase× ~cats

~dogs

〈
~chase +

2o

chase× ~cats,
2s

chase

〉

〈
~chase,

2s

chase,
2o

chase

〉
~cats

Figure 2: Applying function application twice to
derive the representation of a transitive sentence.

sing: ~sing,
2

sing dance: ~dance,
2

dance

sing and dance: ~sing + ~dance,
2

sing +
2

dance

rice: ~rice cake: ~cake

rice cake ~rice + ~cake

Table 3: Examples of symmetric composition.

not the only possible one here. See two examples
of Symmetric Composition application in Table 3.

Note that the sing and dance composition in Ta-
ble 3 skips the conjunction. Our current plf im-
plementation treats most grammatical words, in-
cluding conjunctions, as “empty” elements, that
do not project into semantics. This choice leads
to some interesting “serendipitous” treatments of
various constructions. For example, since the cop-
ula is empty, a sentence with a predicative adjec-
tive (cars are red) is treated in the same way as a
phrase with the same adjective in attributive posi-
tion (red cars) – although the latter, being a phrase
and not a full sentence, will later be embedded as
argument in a larger construction. Similarly, leav-
ing the relative pronoun empty makes cars that
run identical to cars run, although, again, the for-
mer will be embedded in a larger construction later
in the derivation.

We conclude our brief exposition of plf with an
alternative intuition for it: the plf model is also
a more sophisticated version of the additive ap-
proach, where argument words are adapted by ma-
trices that encode the relation to their functors be-
fore the sentence vector is derived by summing.

2.3 Satisfying the desiderata

Let us now outline how plf addresses the short-
comings of lf listed in Section 1.2. First, all is-
sues caused by representation size disappear. An
n-ary predicate is no longer encoded as an n+1-
way tensor; instead we have a sequence of n ma-
trices. The representation size grows linearly, not
exponentially, for higher semantic types, allowing
for simpler and more efficient parameter estima-
tion, storage, and computation.

As a consequence of our architecture, we no
longer need to perform the complicated step-by-
step estimation for elements of higher arity. In-
deed, one can estimate each matrix of a com-
plex representation individually using the simple
method of Baroni and Zamparelli (2010). For in-
stance, for transitive verbs we estimate the verb-
subject combination matrix from subject and verb-
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boys ~boys

eat (intrans.) ~eat,
2s

eat

boys eat
2s

eat× ~boys + ~eat

meat ~meat

eat (trans.) ~eat,
2s

eat,
2o

eat

boys eat meat
2s

eat× ~boys + ~eat +
2o

eat× ~meat

(is) eaten (pass.) ~eat,
2o

eat

meat is eaten ~eat +
2o

eat× ~meat

Table 4: The verb to eat associated to different sets
of matrices in different syntactic contexts.

subject vectors, the verb-object combination ma-
trix from object and verb-object vectors. We ex-
pect a reasonably large corpus to feature many oc-
currences of a verb with a variety of subjects and
a variety of objects (but not necessarily a variety
of subjects with each of the objects as required by
Grefenstette et al.’s training), allowing us to avoid
the data sparseness issue.

The semantic representations we propose in-
clude a semantic vector for constituents of any se-
mantic type, thus enabling semantic comparison
for words of different parts of speech (the case of
demolition vs. demolish).

Finally, the fact that we represent the predicate
interaction with each of its arguments in a sepa-
rate matrix allows for a natural and intuitive treat-
ment of argument alternations. For instance, as
shown in Table 4, one can distinguish the transi-
tive and intransitive usages of the verb to eat by
the presence of the object-oriented matrix of the
verb while keeping the rest of the representation
intact. To model passive usages, we insert the ob-
ject matrix of the verb only, which will be multi-
plied by the syntactic subject vector, capturing the
similarity between eat meat and meat is eaten.

So keeping the verb’s interaction with subject
and object encoded in distinct matrices not only
solves the issues of representation size for arbi-
trary semantic types, but also provides a sensible
built-in strategy for handling a word’s occurrence
in multiple constructions. Indeed, if we encounter
a verb used intransitively which was only attested
as transitive in the training corpus, we can simply
omit the object matrix to obtain a type-appropriate
representation. On the other hand, if the verb oc-
curs with more arguments than usual in testing
materials, we can add a default diagonal identity
matrix to its representation, signaling agnosticism
about how the verb relates to the unexpected argu-

ment. This flexibility makes our model suitable to
compute vector representations of sentences with-
out stumbling at unseen syntactic usages of words.

To summarize, plf is an extension of the lexi-
cal function model that inherits its strengths and
overcomes its weaknesses. We still employ a
linguistically-motivated notion of semantic com-
position as function application and use distinct
kinds of representations for different semantic
types. At the same time, we avoid high order ten-
sor representations, produce semantic vectors for
all syntactic constituents, and allow for an elegant
and transparent correspondence between different
syntactic usages of a lexeme, such as the transi-
tive, the intransitive, and the passive usages of the
verb to eat. Last but not least, our implementation
is suitable for realistic language processing since
it allows to produce vectors for sentences of arbi-
trary size, including those containing novel syn-
tactic configurations.

3 Evaluation

3.1 Evaluation materials

We consider 5 different benchmarks that focus on
different aspects of sentence-level semantic com-
position. The first data set, created by Edward
Grefenstette and Mehrnoosh Sadrzadeh and in-
troduced in Kartsaklis et al. (2013), features 200
sentence pairs that were rated for similarity by
43 annotators. In this data set, sentences have
fixed adjective-noun-verb-adjective-noun (anvan)
structure, and they were built in order to cru-
cially require context-based verb disambiguation
(e.g., young woman filed long nails is paired with
both young woman smoothed long nails and young
woman registered long nails). We also consider a
similar data set introduced by Grefenstette (2013),
comprising 200 sentence pairs rated by 50 anno-
tators. We will call these benchmarks anvan1 and
anvan2, respectively. Evaluation is carried out by
computing the Spearman correlation between the
annotator similarity ratings for the sentence pairs
and the cosines of the vectors produced by the var-
ious systems for the same sentence pairs.

The benchmark introduced by The Pham et al.
(2013) at the TFDS workshop (tfds below) was
specifically designed to test compositional meth-
ods for their sensitivity to word order and the se-
mantic effect of determiners. The tfds benchmark
contains 157 target sentences that are matched
with a set of (approximate) paraphrases (8 on av-
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erage), and a set of “foils” (17 on average). The
foils have high lexical overlap with the targets but
very different meanings, due to different determin-
ers and/or word order. For example, the target
A man plays an acoustic guitar is matched with
paraphrases such as A man plays guitar and The
man plays the guitar, and foils such as The man
plays no guitar and A guitar plays a man. A
good system should return higher similarities for
the comparison with the paraphrases with respect
to that with the foils. Performance is assessed
through the t-standardized cross-target average of
the difference between mean cosine with para-
phrases and mean cosine with foils (Pham and col-
leagues, equivalently, reported non-standardized
average and standard deviations).

The two remaining data sets are larger and more
‘natural’, as they were not constructed by linguists
under controlled conditions to focus on specific
phenomena. They are aimed at evaluating sys-
tems on the sort of free-form sentences one en-
counters in real-life applications. The msrvid data
set from the SemEval-2012 Semantic Textual Sim-
ilarity (STS) task (Agirre et al., 2012) consists of
750 sentence pairs that describe brief videos. Sen-
tence pairs were scored for similarity by 5 subjects
each. Following standard practice in paraphrase
detection studies (e.g., Blacoe and Lapata (2012)),
we use cosine similarity between sentence pairs as
computed by one of our systems together with two
shallow similarity cues: word overlap between the
two sentences and difference in sentence length.
We obtain a final similarity score by weighted ad-
dition of the 3 cues, with the optimal weights de-
termined by linear regression on separate msrvid
train data that were also provided by the SemEval
task organizers (before combining, we checked
that the collinearity between cues was low). Sys-
tem scores are evaluated by their Pearson correla-
tion with the human ratings.

The final set we use is onwn, from the *SEM-
2013 STS shared task (Agirre et al., 2013). This
set contains 561 pairs of glosses (from the Word-
Net and OntoNotes databases), rated by 5 judges
for similarity. Our main interest in this set stems
from the fact that glosses are rarely well-formed
full sentences (consider, e.g., cause something to
pass or lead somewhere; coerce by violence, fill
with terror). For this reason, they are very chal-
lenging for standard parsers. Indeed, we estimated
from a sample of 40 onwn glosses that the C&C

parser (see below) has only 45% accuracy on this
set. Since plf needs syntactic information to con-
struct sentence vectors compositionally, we test it
on onwn to make sure that it is not overly sensi-
tive to parser noise. Evaluation proceeds as with
msrvid (cue weights are determined by 10-fold
cross-validation).3

3.2 Semantic space construction and
composition model implementation

Our source corpus was given by the concatena-
tion of ukWaC (wacky.sslmit.unibo.it),
a mid-2009 dump of the English Wikipedia (en.
wikipedia.org) and the British National Cor-
pus (www.natcorp.ox.ac.uk), for a total of
about 2.8 billion words.

We collected a 30K-by-30K matrix by counting
co-occurrence of the 30K most frequent content
lemmas (nouns, adjectives and verbs) within a 3-
word window. The raw count vectors were trans-
formed into positive Pointwise Mutual Informa-
tion scores and reduced to 300 dimensions by the
Singular Value Decomposition. All vectors were
normalized to length 1. This setup was picked
without tuning, as we found it effective in previ-
ous, unrelated experiments.4

We consider four composition models. The add
(additive) model produces the vector of a sentence
by summing the vectors of all content words in it.
Similarly, mult uses component-wise multiplica-
tion of vectors for composition. While these mod-
els are very simple, a long experimental tradition
has proven their effectiveness (Landauer and Du-
mais, 1997; Mitchell and Lapata, 2008; Mitchell
and Lapata, 2010; Blacoe and Lapata, 2012).

For the lf (lexical function) model, we construct
functional matrix representations of adjectives, de-
terminers and intransitive verbs. These are trained
using Ridge regression with generalized cross-
validation from corpus-extracted vectors of nouns,

3We did not evaluate on other STS benchmarks since they
have characteristics, such as high density of named entities,
that would require embedding our compositional models into
more complex systems, obfuscating their impact on the over-
all performance.

4With the multiplicative composition model we also tried
Nonnegative Matrix Factorization instead of Singular Value
Decomposition, because the negative values produced by
SVD are potentially problematic for mult. In addition, we re-
peated the evaluation for the multiplicative and additive mod-
els without any form of dimensionality reduction. The over-
all pattern of results did not change significantly, and thus for
consistency we report all models’ performance only for the
SVD-reduced space.
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as input, and phrases including those nouns as out-
put (e.g., the matrix for red is trained from corpus-
extracted 〈noun, red-noun〉 vector pairs). Transi-
tive verb tensors are estimated using the two-step
regression procedure outlined by Grefenstette et
al. (2013). We did not attempt to train a lf model
for the larger and more varied msrvid and onwn
data sets, as this would have been extremely time
consuming and impractical for all the reasons we
discussed in Section 1.2 above.

Training plf (practical lexical function) pro-
ceeds similarly, but we also build preposition
matrices (from 〈noun, preposition-noun〉 vector
pairs), and for verbs we prepare separate subject
and object matrices.

Since syntax guides lf and plf composition, we
supplied all test sentences with categorial gram-
mar parses. Every sentence in the anvan1 and
anvan2 datasets has the form (subject) Adjective
+ Noun + Transitive Verb + (object) Adjective +
Noun, so parsing them is trivial. All sentences in
tfds have a predictable structure that allows per-
fect parsing with simple finite state rules. In all
these cases, applying a general-purpose parser to
the data would have, at best, had no impact and,
at worst, introduced parsing errors. For msrvid
and onwn, we used the output of the C&C parser
(Clark and Curran, 2007).

3.3 Results

Table 5 summarizes the performance of our mod-
els on the chosen tasks, and compares it to the state
of the art reported in previous work, as well as to
various strong baselines.

The plf model performs very well on both an-
van benchmarks, outperforming not only add and
mult, but also the full-fledged lf model. Given
that these data sets contain, systematically, transi-
tive verbs, the major difference between plf and lf
lies in their representation of the latter. Evidently,
the separately-trained subject and object matrices
of plf, being less affected by data sparseness than
the 3-way tensors of lf, are better able to capture
how verbs interact with their arguments. For an-
van1, plf is just below the state of the art, which
is based on disambiguating the verb vector in con-
text (Kartsaklis and Sadrzadeh, 2013), and lf out-
performs the baseline, which consists in using the
verb vector only as a proxy to sentence similar-
ity.5 On anvan2, plf outperforms the best model

5We report state of the art from Kartsaklis and Sadrzadeh

models anvan anvan tfds msr onwn
1 2 vid

add 8 22 -0.2 78 66
mult 8 -4 -2.3 77 55
lf 15 30 5.90 NA NA
plf 20 36 2.7 79 67
soa 22 27 11.4 87 75
baseline 8 22 7.9 77 55

Table 5: Performance of composition models on
all evaluation sets. Figures of merit follow previ-
ous art on each set and are: percentage Spearman
coefficients for anvan1 and anvan2, t-standardized
average difference between mean cosines with
paraphrases and with foils for tfds, percentage
Pearson coefficients for msrvid and onwn. State-
of-the-art (soa) references: anvan1: Kartsaklis and
Sadrzadeh (2013); anvan2: Grefenstette (2013);
tfds: The Pham et al. (2013); msrvid: Bär et
al. (2012); onwn: Han et al. (2013). Baselines:
anvan1/anvan2: verb vectors only; tfds: word
overlap; msrvid/onwn: word overlap + sentence
length.

reported by Grefenstette (2013) (an implementa-
tion of the lexical function ideas along the lines of
Grefenstette and Sadrzadeh (2011a; 2011b)). And
lf is, again, the only model, besides plf, that per-
forms better than the baseline.

In the tfds task, not surprisingly the add and
mult models, lacking determiner representations
and being order-insensitive, fail to distinguish be-
tween true paraphrases and foils (indeed, for the
mult model foils are significantly closer to the tar-
gets than the paraphrases, probably because the
latter have lower content word overlap than the
foils, that often differ in word order and determin-
ers only). Our plf approach is able to handle deter-
miners and word order correctly, as demonstrated
by a highly significant (p < 0.01) difference be-
tween paraphrase and foil similarity (average dif-
ference in cosine .017, standard deviation .077). In
this case, however, the traditional lf model (aver-
age difference .044, standard deviation .092) out-
performs plf. Since determiners are handled iden-
tically under the two approaches, the culprit must
be word order. We conjecture that the lf 3-way
tensor representation of transitive verbs leads to
a stronger asymmetry between sentences with in-

(2013) rather than Kartsaklis et al. (2013), since only the for-
mer used a source corpus that is comparable to ours.
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verted arguments, and thus makes this model par-
ticularly sensitive to word order differences. In-
deed, if we limit evaluation to those foils charac-
terized by word order changes only, lf discrim-
inates between paraphrases and foils even more
clearly, whereas the plf difference, while still sig-
nificant, decreases slightly.

The state-of-the-art row for tfds reports the lf
implementation by The Pham et al. (2013), which
outperforms ours. The main difference is that
Pham and colleagues do not normalize vectors like
we do. If we don’t normalize, we do get larger dif-
ferences for our models as well, but consistently
lower performance in all other tasks. More wor-
ryingly, the simple word overlap baseline reported
in the table sports a larger difference than our best
model. Clearly, this baseline is exploiting the sys-
tematic determiner differences in the foils and, in-
deed, when it is evaluated on foils where only
word order changes its performance is no longer
significant.

On msrvid, the plf approach outperforms add
and mult, although the difference between the
three is not big. Our result stands in contrast with
Blacoe and Lapata (2012), the only study we are
aware of that compared a sophisticated composi-
tion model (Socher et al.’s 2011 model) to add
and mult on realistic sentences, which attained the
top performance with the simple models for both
figures of merit they used.6 The best 2012 STS
system (Bär et al., 2012), obtained 0.87 correla-
tion, but with many more and considerably more
complex features than the ones we used here. In-
deed, our simple system would have obtained a re-
spectable 25/89 ranking in the STS 2012 msrvid
task. Still, we must also stress the impressive per-
formance of our baseline, given by the combina-
tion of the word overlap and sentence length cues.
This suggests that the msrvid benchmark lacks the
lexical and syntactic variety we would like to test
our systems on.

Our plf model is again the best on the onwn
set (albeit by a small margin over add). This
is a very positive result, in the light of the fact
that the parser has very low performance on the
onwn glosses, thus suggesting that plf can pro-
duce sensible semantic vectors from noisy syntac-

6We refer here to the results reported in the er-
ratum available at http://homepages.inf.ed.ac.
uk/s1066731/pdf/emnlp2012erratum.pdf. The
add/mult advantage was even more marked in the original pa-
per.

tic representations. Here the overlap+length base-
line does not perform so well, and again the best
STS 2013 system (Han et al., 2013) uses consider-
ably richer knowledge sources and algorithms than
ours. Our plf-based method would have reached a
respectable 20/90 rank in the STS 2013 onwn task.

As a final remark, in all experiments the running
time of plf was only slightly larger than for the
simpler models, but orders of magnitude smaller
than lf, confirming another practical side of our
approach.

4 Conclusion

We introduced an approach to compositional dis-
tributional semantics based on a linguistically-
motivated syntax-to-semantics type mapping, but
simple and flexible enough that it can produce rep-
resentations of English sentences of arbitrary size
and structure.

We showed that our approach is competitive
against the more complex lexical function model
when evaluated on the simple constructions the
latter can be applied to, and it outperforms the ad-
ditive and multiplicative compositionality models
when tested on more realistic benchmarks (where
the full-fledged lexical function approach is dif-
ficult or impossible to use), even in presence of
strong noise in its syntactic input. While our re-
sults are encouraging, no current benchmark com-
bines large-scale, real-life data with the syntactic
variety on which a syntax-driven approach to se-
mantics such as ours could truly prove its worth.
The recently announced SemEval 2014 Task 17 is
filling exactly this gap, and we look forward to ap-
ply our method to this new benchmark, as soon as
it becomes available.

One of the strengths of our framework is that
it allows for incremental improvement focused on
specific constructions. For example, one could add
representations for different conjunctions (and vs.
or), train matrices for verb arguments other than
subject and direct object, or include new types of
modifiers into the model, etc.

While there is potential for local improvements,
our framework, which extends and improves on
existing compositional semantic vector models,
has demonstrated its ability to account for full sen-
tences in a principled and elegant way. Our imple-
mentation of the model relies on simple and effi-

7http://alt.qcri.org/semeval2014/
task1/
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cient training, works fast, and shows good empiri-
cal results.
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