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Abstract

VSEM is an open library for visual se-
mantics. Starting from a collection of
tagged images, it is possible to auto-
matically construct an image-based rep-
resentation of concepts by using off-the-
shelf VSEM functionalities. VSEM is en-
tirely written in MATLAB and its object-
oriented design allows a large flexibility
and reusability. The software is accompa-
nied by a website with supporting docu-
mentation and examples.

1 Introduction

In the last years we have witnessed great progress
in the area of automated image analysis. Important
advances, such as the introduction of local features
for a robust description of the image content (see
Mikolajczyk et al. (2005) for a systematic review)
and the bag-of-visual-words method (BoVW)! for
a standard representation across multiple images
(Sivic and Zisserman, 2003), have contributed to
make image analysis ubiquitous, with applications
ranging from robotics to biology, from medicine to
photography.

Two facts have played a key role in the rapid ad-
vance of these ideas. First, the introduction of very
well defined challenges which have been attracting
also a wide community of “outsiders" specialized
in a variety of disciplines (e.g., machine learning,
neural networks, graphical models and natural lan-
guage processing). Second, the sharing of effec-
tive, well documented implementations of cutting
edge image analysis algorithms, such as OpenCV?

'Bag-of-visual-words model is a popular technique for
image classification inspired by the traditional bag-of-words
model in Information Retrieval. It represents an image with
discrete image-describing features. Visual words are iden-
tified by clustering a large corpus of lower-level continuous
features.

http://opencv.org/

Ulisse Bordignon
University of Trento
ulisse.bordignon@unitn.it
Irina Sergienya
University of Trento

irina.sergienya@unitn.it

187

Adam Liska
University of Trento

adam.liska@unitn.it

and VLFeat.?

A comparable story can be told about automatic
text analysis. The last decades have seen a long
series of successes in the processing of large text
corpora in order to extract more or less structured
semantic knowledge. In particular, under the as-
sumption that meaning can be captured by patterns
of co-occurrences of words, distributional seman-
tic models such as Latent Semantic Analysis (Lan-
dauer and Dumais, 1997) or Topic Models (Blei
et al., 2003) have been shown to be very effective
both in general semantic tasks such as approximat-
ing human intuitions about meaning, as well as in
more application-driven tasks such as information
retrieval, word disambiguation and query expan-
sion (Turney and Pantel, 2010). And also in the
case of automated text analysis, a wide range of
method implementations are at the disposal of the
scientific community.*

Nowadays, given the parallel success of the two
disciplines, there is growing interest in making
the visual and textual channels interact for mutual
benefit. If we look at the image analysis commu-
nity, we discover a well established tradition of
studies that exploit both channels of information.
For example, there is a relatively extended amount
of literature about enhancing the performance on
visual tasks such as object recognition or image re-
trieval by replacing a purely image-based pipeline
with hybrid methods augmented with textual in-
formation (Barnard et al.,, 2003; Farhadi et al.,
2009; Berg et al., 2010; Kulkarni et al., 2011).

Unfortunately, the same cannot be said of the
exploitation of image analysis from within the text
community. Despite the huge potential that au-
tomatically induced visual features could repre-
sent as a new source of perceptually grounded

*http://www.vlfeat.org/

*See for example the annotated list of corpus-based
computational linguistics resources at http://www-nlp.
stanford.edu/links/statnlp.html.
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semantic knowledge,’ image-enhanced models of
semantics developed so far (Feng and Lapata,
2010; Bruni et al., 2011; Leong and Mihalcea,
2011; Bergsma and Goebel, 2011; Bruni et al.,
2012a; Bruni et al., 2012b) have only scratched
this great potential and are still considered as
proof-of-concept studies only.

One possible reason of this delay with respect to
the image analysis community might be ascribed
to the high entry barriers that NLP researchers
adopting image analysis methods have to face. Al-
though many of the image analysis toolkits are
open source and well documented, they mainly ad-
dress users within the same community and there-
fore their use is not as intuitive for others. The
final goal of libraries such VLFeat and OpenCV
is the representation and classification of images.
Therefore, they naturally lack of a series of com-
plementary functionalities that are necessary to
bring the visual representation to the level of se-
mantic concepts.®

To fill the gap we just described, we present
hereby VSEM, a novel toolkit which allows the
extraction of image-based representations of con-
cepts in an easy fashion. VSEM is equipped with
state-of-the-art algorithms, from low-level feature
detection and description up to the BoVW repre-
sentation of images, together with a set of new rou-
tines necessary to move from an image-wise to a
concept-wise representation of image content. In
a nutshell, VSEM extracts visual information in a
way that resembles how it is done for automatic
text analysis. Thanks to BoVW, the image con-
tent is indeed discretized and visual units some-
how comparable to words in text are produced (the
visual words). In this way, from a corpus of im-
ages annotated with a set of concepts, it is pos-
sible to derive semantic vectors of co-occurrence
counts of concepts and visual words akin to the
representations of words in terms of textual collo-
cates in standard distributional semantics. Impor-

>In recent years, a conspicuous literature of studies has
surfaced, wherein demonstration was made of how text based
models are not sufficiently good at capturing the environment
we acquire language from. This is due to the fact that they
are lacking of perceptual information (Andrews et al., 2009;
Baroni et al., 2010; Baroni and Lenci, 2008; Riordan and
Jones, 2011).

SThe authors of the aforementioned studies usually refer
to words instead of concepts. We chose to call them concepts
to account for the both theoretical and practical differences
standing between a word and the perceptual information it
brings along, which we define its concept.

"nttp://clic.cimec.unitn.it/vsem/
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tantly, the obtained visual semantic vectors can be
easily combined with more traditional text-based
vectors to arrive at a multimodal representation of
meaning (see e.g. (Bruni et al., 2011)). It has
been shown that the resulting multimodal models
perform better than text-only models in semantic
tasks such as approximating semantic similarity
and relatedness ((Feng and Lapata, 2010; Bruni et
al., 2012b)).

VSEM functionalities concerning image anal-
ysis is based on VLFeat (Vedaldi and Fulkerson,
2010). This guarantees that the image analysis un-
derpinnings of the library are well maintained and
state-of-the-art.

The rest of the paper is organized as follows.
In Section 2 we introduce the procedure to obtain
an image-based representation of a concept. Sec-
tion 3 describes the VSEM architecture. Section
4 shows how to install and run VSEM through
an example that uses the Pascal VOC data set.
Section 5 concludes summarizing the material and
discussing further directions.

2 Background

As shown by Feng and Lapata (2010), Bruni et
al. (2011) and Leong and Mihalcea (2011), it is
possible to construct an image-based representa-
tion of a set of target concepts by starting from a
collection of images depicting those concepts, en-
coding the image contents into low-level features
(e.g., SIFT) and scaling up to a higher level rep-
resentation, based on the well-established BoVW
method to represent images. In addition, as shown
by Bruni et al. (2012b), better representations can
be extracted if the object depicting the concept is
first localized in the image.

More in detail, the pipeline encapsulating the
whole process mentioned above takes as input a
collection of images together with their associated
tags and optionally object location annotations. Its
output is a set of concept representation vectors
for individual tags. The following steps are in-
volved: (i) extraction of local image features, (ii)
visual vocabulary construction, (iii) encoding the
local features in a BoVW histogram, (iv) including
spatial information with spatial binning, (v) aggre-
gation of visual words on a per-concept basis in
order to obtain the co-occurrence counts for each
concept and (vi) transforming the counts into asso-
ciation scores and/or reducing the dimensionality
of the data. A brief description of the individual



eature extraction|

Figure 1: An example of a visual vocabulary cre-
ation pipeline. From a set of images, a larger set
of features are extracted and clustered, forming the
visual vocabulary.

steps follows.

Local features Local features are designed to
find local image structures in a repeatable fash-
ion and to represent them in robust ways that are
invariant to typical image transformations, such
as translation, rotation, scaling, and affine defor-
mation. Local features constitute the basis of
approaches developed to automatically recognize
specific objects (Grauman and Leibe, 2011). The
most popular local feature extraction method is the
Scale Invariant Feature Transform (SIFT), intro-
duced by Lowe (2004). VSEM uses the VLFeat
implementation of SIFT.

Visual vocabulary To obtain a BoVW repre-
sentation of the image content, a large set of lo-
cal features extracted from a large corpus of im-
ages are clustered. In this way the local fea-
ture space is divided into informative regions (vi-
sual words) and the collection of the obtained vi-
sual words is called visual vocabulary. k-means
is the most commonly used clustering algorithm
(Grauman and Leibe, 2011). In the special case
of Fisher encoding (see below), the clustering of
the features is performed with a Gaussian mixture
model (GMM), see Perronnin et al. (2010). Fig-
ure 1 exemplifies a visual vocabulary construction
pipeline. VSEM contains both the k-means and
the GMM implementations.

Encoding The encoding step maps the local fea-
tures extracted from an image to the correspond-
ing visual words of the previously created vocab-
ulary. The most common encoding strategy is
called hard quantization, which assigns each fea-
ture to the nearest visual word’s centroid (in Eu-
clidean distance). Recently, more effective encod-
ing methods have been introduced, among which
the Fisher encoding (Perronnin et al., 2010) has
been shown to outperform all the others (Chatfield
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et al., 2011). VSEM uses both the hard quantiza-
tion and the Fisher encoding.

Spatial binning A consolidated way of intro-
ducing spatial information in BoVW is the use of
spatial histograms (Lazebnik et al., 2006). The
main idea is to divide the image into several (spa-
tial) regions, compute the encoding for each region
and stack the resulting histograms. This technique
is referred to as spatial binning and it is imple-
mented in VSEM. Figure 2 exemplifies the BoVW
pipeline for a single image, involving local fea-
tures extraction, encoding and spatial binning.
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Figure 2: An example of a BoVW representation
pipeline for an image. Figure inspired by Chatfield
et al. (2011). Each feature extracted from the tar-
get image is assigned to the corresponding visual
word(s). Then, spatial binning is performed.

Moreover, the input of spatial binning can be
further refined by introducing localization. Three
different types of localization are typically used:
global, object, and surrounding. Global extracts
visual information from the whole image and it is
also the default option when the localization in-
formation is missing. Object extracts visual infor-
mation from the object location only and the sur-
rounding extracts visual information from outside
the object location. Localization itself can either
be done by humans (or ground truth annotation)
but also by existing localization methods (Uijlings
et al., 2013).

For localization, VSEM uses annotated object
locations (in the format of bounding boxes) of the
target object.

Aggregation Since each concept is represented
by multiple images, an aggregation function for
pooling the visual word occurrences across images
has to be defined. As far as we know, the sum
function has been the only function utilized so far.
An example for the aggregation step is sketched in
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Figure 3: An example of a concept representa-
tion pipeline for cat. First, several images depict-
ing a cat are represented as vectors of visual word
counts and, second, the vectors are aggregated into
one single concept vector.

figure 3. VSEM offers an implementation of the
sum function.

Transformations Once the concept-
representing visual vectors are built, two types
of transformation can be performed over them to
refine their raw visual word counts: association
scores and dimensionality reduction. So far,
the vectors that we have obtained represent co-
occurrence counts of visual words with concepts.
The goal of association scores is to distinguish
interesting co-occurrences from those that are due
to chance. In order to do this, VSEM implements
two versions of mutual information (pointwise
and local), see Evert (2005).

On the other hand, dimensionality reduction
leads to matrices that are smaller and easier to
work with. Moreover, some techniques are able
to smooth the matrices and uncover latent dimen-
sions. Common dimensionality reduction methods
are singular value decomposition (Manning et al.,
2008), non-negative matrix factorization (Lee and
Seung, 2001) and neural networks (Hinton and
Salakhutdinov, 2006). VSEM implements the sin-
gular value decomposition method.

3 Framework design

VSEM offers a friendly implementation of the
pipeline described in Section 2. The framework is
organized into five parts, which correspond to an
equal number of MATLAB packages and it is writ-
ten in object-oriented programming to encourage
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reusability. A description of the packages follows.

* datasets This package contains the code
that manages the image data sets. We al-
ready provide a generic wrapper for sev-
eral possible dataset formats (VsemDataset
). Therefore, to use a new image data set
two solutions are possible: either write a
new class which extends Genericbataset oOr
use directly vsembataset after having rear-
ranged the new data as described in help

VsemDataset.

vision This package contains the code for
extracting the bag-of-visual-words represen-
tation of images. In the majority of cases,
it can be used as a “black box” by the user.
Nevertheless, if the user wants to add new
functionalities such as new features or encod-
ings, this is possible by simply extending the
corresponding generic classes and the class

VsemHistogramExtractor.

concepts This is the package that deals
with the construction of the image-based rep-
resentation of concepts. concepts is the
most important package of VSEM. It ap-
plies the image analysis methods to obtain the
BoVW representation of the image data and
then aggregates visual word counts concept-
wise. The main class of this package is
ConceptSpace, which takes care of storing
concepts names and vectors and provides
managing and transformation utilities as its
methods.

benchmarks VSEM offers a benchmarking
suite to assess the quality of the visual con-
cept representations. For example, it can be
used to find the optimal parametrization of
the visual pipeline.

helpers This package contains supporting
classes. There is a general helpers with
functionalities shared across packages and
several package specific helpers.

4 Getting started

Installation VSEM can be easily installed by
running the file vsemsetup.m. Moreover, pascal-
DatasetSetup.m can be run to download and place
the popular dataset, integrating it in the current
pipeline.



Documentation All the MATLAB commands
of VSEM are self documented (e.g. help vsem)
and an HTML version of the MATLAB command
documentation is available from the VSEM web-
site.

The Pascal VOC demo The Pascal VOC demo
provides a comprehensive example of the work-
ings of VSEM. From the demo file pascalvobemo
.mmultiple configurations are accessible. Addi-
tional settings are available and documented for
each function, class or package in the toolbox (see
Documentation).

Running the demo file executes the following
lines of code and returns as output ConceptSpace,
which contains the visual concept representations
for the Pascal data set.

Create a matlab structure with the

whole set of images in the Pascal

% dataset along with their annotation

dataset datasets.VsemDataset (
configuration.imagesPath,’

annotationFolder’,configuration.
annotationPath);

o
°

o\

% Initiate the class that handles
the extraction of visual features.
featureExtractor vision. features.

PhowFeatureExtractor () ;

o
°

o
°

Create the visual vocabulary
vocabulary KmeansVocabulary.
trainVocabulary (dataset,

featureExtractor);

o

3 Calculate semantic vectors
conceptSpace conceptExtractor.
extractConcepts (dataset,

histogramExtractor);

% Compute pointwise mutual
information
conceptSpace

o
°

conceptSpace.reweight () ;

oe

Conclude the demo, computing

the similarity of correlation

measures of the 190 possible

pair of concepts from the Pascal

dataset against a gold standard

correlationScore, p-value]
similarityBenchmark.computeBenchmark
(conceptSpace, similarityExtractor);

o oo

o\

— o

5 Conclusions

We have introduced VSEM, an open library for vi-
sual semantics. With VSEM it is possible to ex-
tract visual semantic information from tagged im-
ages and arrange such information into concept
representations according to the tenets of distri-
butional semantics, as applied to images instead
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of text. To analyze images, it uses state-of-the-art
techniques such as the SIFT features and the bag-
of-visual-words with spatial pyramid and Fisher
encoding. In the future, we would like to add
automatic localization strategies, new aggregation
functions and a completely new package for fusing
image- and text-based representations.
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