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Abstract

We implement a city-level geolocation
prediction system for Twitter users. The
system infers a user’s location based on
both tweet text and user-declared metadata
using a stacking approach. We demon-
strate that the stacking method substan-
tially outperforms benchmark methods,
achieving 49% accuracy on a benchmark
dataset. We further evaluate our method
on a recent crawl of Twitter data to in-
vestigate the impact of temporal factors
on model generalisation. Our results sug-
gest that user-declared location metadata
is more sensitive to temporal change than
the text of Twitter messages. We also de-
scribe two ways of accessing/demoing our
system.

1 Introduction

In this paper, we present and evaluate a geoloca-
tion prediction method for Twitter users.! Given
a user’s tweet data as input, the task of user level
geolocation prediction is to infer a primary loca-
tion (i.e., “home location”: Mahmud et al. (2012))
for the user from a discrete set of pre-defined loca-
tions (Cheng et al., 2010). For instance, President
Obama’s location might be predicted to be Wash-
ington D.C., USA, based on his public tweets and
profile metadata.

Geolocation information is essential to location-
based applications, like targeted advertising and
local event detection (Sakaki et al., 2010;
MacEachren et al.,, 2011). However, the means
to obtain such information are limited. Although
Twitter allows users to specify a plain text de-
scription of their location in their profile, these de-
scriptions tend to be ad hoc and unreliable (Cheng

'We only use public Twitter data for experiments and ex-
emplification in this study.

7

et al., 2010). Recently, user geolocation predic-
tion based on a user’s tweets has become popular
(Wing and Baldridge, 2011; Roller et al., 2012),
based on the assumption that tweets implicitly
contain locating information, and with appropri-
ate statistical modeling, the true location can be
inferred. For instance, if a user frequently men-
tions NYC, JFK and yankees, it is likely that they
are from New York City, USA.

In this paper, we discuss an implementation of
a global city-level geolocation prediction system
for English Twitter users. The system utilises both
tweet text and public profile metadata for model-
ing and inference. Specifically, we train multino-
mial Bayes classifiers based on location indica-
tive words (LIWSs) in tweets (Han et al., 2012),
and user-declared location and time zone meta-
data. These base classifiers are further stacked
(Wolpert, 1992) using logistic regression as the
meta-classifier. The proposed stacking model is
compared with benchmarks on a public geolo-
cation dataset. Experimental results demonstrate
that our stacking model outperforms benchmark
methods by a large margin, achieving 49% accu-
racy on the test data. We further evaluate the stack-
ing model on a more recent crawl of public tweets.
This experiment tests the effectiveness of a geolo-
cation model trained on “old” data when applied to
“new” data. The results reveal that user-declared
locations are more variable over time than tweet
text and time zone data.

2 Background and Related Work

Identifying the geolocation of objects has been
widely studied in the research literature over target
objects including webpages (Zong et al., 2005),
search queries (Backstrom et al., 2008), Flickr im-
ages (Crandall et al., 2009) and Wikipedia ed-
itors (Lieberman and Lin, 2009). Recently, a
considerable amount of work has been devoted
to extending geolocation prediction for Twitter
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users (Cheng et al., 2010; Eisenstein et al., 2010).
The geolocations are usually represented by un-
ambiguous city names or a partitioning of the
earth’s surface (e.g., grid cells specified by lati-
tude/longitude). User geolocation is generally re-
lated to a “home” location where a user regularly
resides, and user mobility is ignored. Twitter al-
lows users to declare their home locations in plain
text in their profile, however, this data has been
found to be unstructured and ad hoc in preliminary
research (Cheng et al., 2010; Hecht et al., 2011).

While popular for desktop machine geoloca-
tion, methods that map IP addresses to physical
locations (Buyukokkten et al., 1999) cannot be
applied to Twitter-based user geolocation, as IPs
are only known to the service provider and are
non-trivial to retrieve in a mobile Internet environ-
ment. Although social network information has
been proven effective in inferring user locations
(Backstrom et al., 2010; Sadilek et al., 2012; Rout
et al.,, 2013), we focus exclusively on message
and metadata information in this paper, as they are
more readily accessible.

Text data tends to contain salient geospatial ex-
pressions that are particular to specific regions.
Attempts to leverage this data directly have been
based on analysis of gazetted expressions (Leid-
ner and Lieberman, 2011) or the identification of
geographical entities (Quercini et al., 2010; Qin et
al., 2003). However these methods are limited in
their ability to capture informal geospatial expres-
sions (e.g. Brissie for Brisbane) and more non-
geospatial terms which are associated with partic-
ular locations (e.g. ferry for Seattle or Sydney).

Beyond identifying geographical references us-
ing off-the-shelf tools, more sophisticated meth-
ods have been introduced in the social media
realm. Cheng et al. (2010) built a simple gen-
erative model based on tweet words, and fur-
ther added words which are local to particular re-
gions and applied smoothing to under-represented
locations. Kinsella et al. (2011) applied differ-
ent similarity measures to the task, and investi-
gated the relative difficulty of geolocation predic-
tion at city, state, and country levels. Wing and
Baldridge (2011) introduced a grid-based repre-
sentation for geolocation modeling and inference
based on fixed latitude and longitude values, and
aggregated all tweets in a single cell. Their ap-
proach was then based on lexical similarity us-
ing KL-divergence. One drawback to the uniform-

sized cell representation is that it introduces class
imbalance: urban areas tend to contain far more
tweets than rural areas. Based on this observa-
tion, Roller et al. (2012) introduced an adaptive
grid representation in which cells contain approx-
imately the same number of users, based on a KD-
tree partition. Given that most tweets are from
urban areas, Han et al. (2012) consider a city-
based class division, and explore different feature
selection methods to extract “location indicative
words”, which they show to improve prediction
accuracy. Additionally, time zone information has
been incorporated in a coarse-to-fine hierarchical
model by first determining the time zone, and then
disambiguating locations within it (Mahmud et al.,
2012). Topic models have also been applied to the
task, in capturing regional linguistic differences
(Eisenstein et al., 2010; Yin et al., 2011; Hong et
al., 2012).

When designing a practical geolocation sys-
tem, simple models such as naive Bayes and near-
est prototype methods (e.g., based on KL diver-
gence) have clear advantages in terms of train-
ing and classification throughput, given the size of
the class set (often numbering in the thousands of
classes) and sheer volume of training data (poten-
tially in the terabytes of data). This is particularly
important for online systems and downstream ap-
plications that require timely predictions. As such,
we build off the text-based naive Bayes-based ge-
olocation system of Han et al. (2012), which our
experiments have shown to have a good balance of
tractability and accuracy. By selecting a reduced
set of “location indicative words”, prediction can
be further accelerated.

3 Methodology

In this study, we adopt the same city-based rep-
resentation and multinomial naive Bayes learner
as Han et al. (2012). The city-based representa-
tion consists of 3,709 cities throughout the world,
and is obtained by aggregating smaller cities with
the largest nearby city. Han et al. (2012) found
that using feature selection to identify “location
indicative words” led to improvements in geoloca-
tion performance. We use the same feature selec-
tion technique that they did. Specifically, feature
selection is based on information gain ratio (IGR)
(Quinlan, 1993) over the city-based label set for
each word.

In the original research of Han et al. (2012),



only the text of Twitter messages was used,
and training was based exclusively on geotagged
tweets, despite these accounting for only around
1% of the total public data on Twitter. In this
research, we include additional non-geotagged
tweets (e.g., posted from a non-GPS enabled de-
vice) for those users who have geotagged tweets
(allowing us to determine a home location for the
user).

In addition to including non-geotagged data in
modeling and inference, we further take advan-
tage of the text-based metadata embedded in a
user’s public profile (and included in the JSON ob-
ject for each tweet). This metadata is potentially
complementary to the tweet message and of bene-
fit for geolocation prediction, especially the user-
declared location and time zone, which we con-
sider here. Note that these are in free text rather
than a structured data format, and that while there
are certainly instances of formal place name de-
scriptions (e.g., Edinburgh, UK), they are often
informal (e.g., mel for Melbourne). As such, we
adopt a statistical approach to model each selected
metadata field, by capturing the text in the form
of character 4-grams, and training a multinomial
naive Bayes classifier for each field.

To combine together the tweet text and meta-
data fields, we use stacking (Wolpert, 1992). The
training of stacking consists of two steps. First,
a multinomial naive Bayes base classifier (L0) is
learned for each data type using 10-fold cross
validation. This is carried out for the tweet
text (TEXT), user-declared location (MB-LOC) and
user-declared time zone (MB-TZ). Next, a meta-
classifier (LI classifier) is trained over the base
classifiers, using a logistic regression learner (Fan
et al., 2008).

4 Evaluation and Discussion

In this section, we compare our proposed stack-
ing approach with existing benchmarks on a public
dataset, and investigate the impact of time using a
recently collected dataset.

4.1 Evaluation Measures

In line with other work on user geolocation pre-
diction, we use three evaluation measures:

e Acc : The percentage of correct city-level
predictions.

e Acc@161 : The percentage of predicted lo-
cations which are within a 161km (100 mile)

Methods Acc  Acc@161 Median
KL 117 277 793
MB 126 262 913
KL-NG .260 487 181
MB-NG .280 492 170
MB-LOC 405 525 92
MB-TZ .064 171 1330
STACKING  .490 .665 9

Table 1: Results over WORLD

radius of the home location (Cheng et al.,
2010), to capture near-misses (e.g., Edin-
burgh UK being predicted as Glasgow, UK).

e Median : The median distance from the pre-
dicted city to the home location (Eisenstein et
al., 2010).

4.2 Comparison with Benchmarks

We base our evaluation on the publicly-available
WORLD dataset of Han et al. (2012). The dataset
contains 1.4M users whose tweets are primarily
identified as English based on the output of the
langid. py language identification tool (Lui and
Baldwin, 2012), and who have posted at least 10
geotagged tweets. The city-level home location
for a geotagged user is determined as follows.
First, each of a user’s geotagged tweets is mapped
to its nearest city (based on the same set of 3,709
cities used for the city-based location representa-
tion). Then, the most frequent city for a user is
selected as the home location.

To benchmark our method, we reimplement
two recently-published state-of-the-art methods:
(1) the KL-divergence nearest prototype method
of Roller et al. (2012) based on KD-tree parti-
tioned grid cells, which we denote as KL; and
(2) the multinomial naive Bayes city-level geolo-
cation model of Han et al. (2012), which we de-
note as MB. Because of the different class repre-
sentations, Acc numbers are not comparable be-
tween the benchmarks. To remedy this, we find
the closest city to the centroid of each grid cell in
the KD-tree representation, and map the classifi-
cation onto this city. We present results including
non-geotagged data for users with geotagged mes-
sages for the two methods, as KL-NG and MB-
NG, respectively. We also present results based
on the user-declared location (MB-LOC) and time
zone (MB-TZ), and finally the stacking method
(STACKING) which combines MB-NG, MB-LOC
and MB-TZ. The results are shown in Table 1.



The approximate doubling of Acc for KL-
NG and MB-NG over KL and MB, respectively,
demonstrates the high utility of non-geotagged
data in tweet text-based geolocation prediction.
Of the two original models, we can see that MB
is comparable to KL, in line with the findings of
Han et al. (2012). The MB-LOC results are by far
the highest of all the base classifiers. Contrary to
the suggestion of Cheng et al. (2010) that user-
declared locations are too unreliable to use for user
geolocation, we find evidence indicating that they
are indeed a valuable source of information for this
task. The best overall results are achieved for the
stacking approach (STACKING), assigning almost
half of the test users to the correct city-level lo-
cation, and improving more than four-fold on the
previous-best accuracy (i.e., MB). These results
also suggest that there is strong complementarity
between user metadata and tweet text.

4.3 Evaluation on Time-Heterogeneous Data

In addition to the original held-out test data
(WORLDyest) from WORLD, we also developed a
new geotagged evaluation dataset using the Twit-
ter Streaming APL? This new LIVEs dataset is
intended to evaluate the impact of time on predic-
tive accuracy. The training and test data in WORLD
are time-homogeneous as they are randomly sam-
pled from data collected in a relatively narrow time
window. In contrast, LIVE;.s 1S much newer, col-
lected more than 1 year later than WORLD. Given
that Twitter users and topics change over time, an
essential question is whether the statistical model
learned from the “old” training data is still effec-
tive over the “new” test data?

The LIVE;.s: data was collected over 48 hours
from 2013/03/03 to 2013/03/05. By selecting
users with at least 10 geotagged tweets and a de-
clared language of English, 55k users were ob-
tained. For each user, their recent status updates
were aggregated, and non-English users were fil-
tered out based on the language predictions of
langid.py. For some users with geotagged
tweets from many cities, the most frequent city
might not be an appropriate representation of their
home location for evaluation. To improve the eval-
vation data quality, we therefore exclude users
who have less than 50% of their geotagged tweets
originating from a single city. After filtering, 32k

https://dev.twitter.com/docs/api/1.1/
get/statuses/sample
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LIVE¢est Acc Acc@161 Median

MB-NG 268 (—.012) .510(—.018) 151 ( —19)
MB-LOC 326 (—.079) .465 (—.060) 306 (+214)
MB-TZ .065 (+.001) .160 (—.011) 1529 (4+199)
STACKING .406 (—.084) .614 (—.051) 40 ( +31)

Table 2: Results over LIVE.s:, and the absolute
fluctuation over the results for WORLDy,¢

users were obtained, forming the final LIVE 4
dataset. In the final LIVEes, the smallest class
has only one test user, and the largest class has
569 users. The mean users per city is 27.76.

The results over LIVE;.s, and the difference
in absolute score over WORLDyest, are shown in
Table 2. The stacked model accuracy numbers
drop 5-8% on LIVE¢es, and the median error
distance increases moderately by 31km. Over-
all, the numbers suggest inference on WORLDyest,
which is time-homogenous with the training data
(taken from WORLD), is an easier classification
than LIVE;.s, which is time-heterogeneous with
the training data. Training on “old” data and test-
ing on “new” data is certainly possible, however.
Looking over the results of the base classifiers, we
can see that the biggest hit is for MB-LOC clas-
sifier. In contrast, the accuracy for MB-NG and
MB-TZ is relatively stable (other than the sharp in-
crease in the median error distance for MB-TZ).

5 Architecture and Access

In this section, we describe the architecture of the
proposed geolocation system, as well as two ways
of accessing the live system.?> The core structure
of the system consists of two parts: (1) the inter-
face; (2) the back-end geolocation service.

We offer two interfaces to access the system: a
Twitter bot and a web interface. The Twitter bot
account is: @MELBLTFESD. A daemon process de-
tects any user mentions of the bot in tweets via
keyword matching through the Twitter search API.
The screen name of the tweet author is extracted
and sent to the back-end geolocation service, and
the predicted user geolocation is sent to the Twitter
user in a direct message, as shown in Figure 1.

Web access is via http://hum.csse.unimelb.
edu.au:9000/geo.html. Users can input a Twit-
ter user screen name through the web interface,
whereby a call is made to the back-end geoloca-
tion service to geolocate that user. The geoloca-

3The source code is available from https://github.
com/tg010or/acl2013



Please enter a user screen name, e.g. BarackObama, BBCNews. (Note: Only Google Chrome browser is

supported.)

brooklynhan Geolocate

+ Prediction for BrooklynHAN: Melbourne, Australia. (Latitude: -37.814, Longitude: 144.96332)

-

Summary: BrooklynHAN has 127 recent status updates. 2 of them are geotagged tweets and the

most frequent location (Melbourne, Australia) is assumed to be the home location. Our prediction

error distance is 0 kilometers.
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Figure 2:

Web interface for user geolocation. The numbered green markers represent geotagged tweets.

These coordinates are utilised to validate our predictions, and are not used in the geolocation process.
The red marker is the predicted city-based user geolocation.

douniwan

Geolocate me [@melblifsd

34

Dear @UoMGeolLocRobot, | think your home location
is near Melbourne, Australia(-37.814,144 96332).

Figure 1: Twitter bot interface. When the Twit-
ter bot is mentioned in a tweet, that user is sent a
direct message with the predicted geolocation.

tion results are rendered on a map (along with any
geotagged tweets for the user) as in Figure 2.*

The back-end geolocation service crawls recent
tweets for a given user in real time,> and word
and n-gram features are extracted from both the
text and the user metadata. These features are sent
to the LO classifiers (TEXT, MB-LOC and MB-TZ),
and the L0 results are further fed into the L/ clas-
sifier for the final prediction.

6 Summary and Future Work

In this paper, we presented a city-level geoloca-
tion prediction system for Twitter users. Over a
public dataset, our stacking method — exploiting
both tweet text and user metadata — substantially

“Currently, only Google Chrome is supported. https:
//www.google.com/intl/en/chrome/

SUp to 200 tweets are crawled, the upper bound of mes-
sages returned per single request based on Twitter API v1.1.
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outperformed benchmark methods. We further
evaluated model generalisation on a newer, time-
heterogeneous dataset. The overall results de-
creased by 5-8% in accuracy, compared with num-
bers on time-homogeneous data, primarily due to
the poor generalisation of the MB-LOC classifier.

In future work, we plan to further investigate
the cause of the MB-LOC classifier accuracy de-
crease on the new dataset. In addition, we’d like
to study differences in prediction accuracy across
cities. For cities with reliable predictions, the sys-
tem can be adapted as a preprocessing module for
downstream applications, e.g., local event detec-
tion based on users with reliable predictions.
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