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Abstract

Appositions are adjacent NPs used to add
information to a discourse. We propose
systems exploiting syntactic and seman-
tic constraints to extract appositions from
OntoNotes. Our joint log-linear model
outperforms the state-of-the-art Favre and
Hakkani-Tür (2009) model by ∼10% on
Broadcast News, and achieves 54.3% F-
score on multiple genres.

1 Introduction

Appositions are typically adjacent coreferent noun
phrases (NP) that often add information about
named entities (NEs). The apposition in Figure 1
consists of three comma-separated NPs – the first
NP (HEAD) names an entity and the others (ATTRs)
supply age and profession attributes. Attributes
can be difficult to identify despite characteristic
punctuation cues, as punctuation plays many roles
and attributes may have rich substructure.

While linguists have studied apposition in de-
tail (Quirk et al., 1985; Meyer, 1992), most appo-
sition extraction has been within other tasks, such
as coreference resolution (Luo and Zitouni, 2005;
Culotta et al., 2007) and textual entailment (Roth
and Sammons, 2007). Extraction has rarely been
intrinsically evaluated, with Favre and Hakkani-
Tür’s work a notable exception.

We analyze apposition distribution in
OntoNotes 4 (Pradhan et al., 2007) and com-
pare rule-based, classification and parsing
extraction systems. Our best system uses a joint
model to classify pairs of NPs with features
that faithfully encode syntactic and semantic
restrictions on appositions, using parse trees and
WordNet synsets.

{John Ake}h , {48}a , {a former vice-president
in charge of legal compliance at American Capital
Management & Research Inc., in Houston,}a , . . .

Figure 1: Example apposition from OntoNotes 4

Our approach substantially outperforms Favre
and Hakkani-Tür on Broadcast News (BN) at
54.9% F-score and has state-of-the-art perfor-
mance 54.3% F-score across multiple genres. Our
results will immediately help the many systems
that already use apposition extraction components,
such as coreference resolution and IE.

2 Background

Apposition is widely studied, but “grammarians
vary in the freedom with which they apply the
term ‘apposition”’ (Quirk et al., 1985). They are
usually composed of two or more adjacent NPs,
hierarchically structured, so one is the head NP

(HEAD) and the rest attributes (ATTRs). They are
often flagged using punctuation in text and pauses
in speech. Pragmatically, they allow an author to
introduce new information and build a shared con-
text (Meyer, 1992).

Quirk et al. propose three tests for apposition: i)
each phrase can be omitted without affecting sen-
tence acceptability, ii) each fulfils the same syntac-
tic function in the resultant sentences, iii) extralin-
guistic reference is unchanged. Strict interpreta-
tions may exclude other information-bearing cases
like pseudo-titles (e.g. ({President}a {Bush}h)NP),
but include some adverbial phrases (e.g. {(John
Smith)NP}h, {(formerly (the president)NP)AP}a). We
adopt the OntoNotes guidelines’ relatively strict
interpretation: “a noun phrase that modifies an
immediately-adjacent noun phrase (these may be
separated by only a comma, colon, or parenthe-
sis).” (BBN, 2004–2007).
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Unit TRAINF DEVF TESTF TRAIN DEV TEST
Sents. 9,595 976 1,098 48,762 6,894 6,896
Appos. 590 64 68 3,877 502 490

Table 1: Sentence and apposition distribution

Apposition extraction is a common component
in many NLP tasks: coreference resolution (Luo
and Zitouni, 2005; Culotta et al., 2007; Bengt-
son and Roth, 2008; Poon and Domingos, 2008),
textual entailment (Roth and Sammons, 2007;
Cabrio and Magnini, 2010), sentence simplifica-
tion (Miwa et al., 2010; Candido et al., 2009;
Siddharthan, 2002) and summarization (Nenkova
et al., 2005). Comma ambiguity has been studied
in the RTE (Srikumar et al., 2008) and generation
domains (White and Rajkumar, 2008).

Despite this, few papers to our knowledge ex-
plicitly evaluate apposition extraction. Moreover,
apposition extraction is rarely the main research
goal and descriptions of the methods used are of-
ten accordingly terse or do not match our guide-
lines. Lee et al. (2011) use rules to extract appo-
sitions for coreference resolution, selecting only
those that are explicitly flagged using commas or
parentheses. They do not separately mark HEAD

and ATTR and permit relative clauses as an ATTR.
While such differences capture useful information
for coreference resolution, these methods would
be unfairly disadvantaged in a direct evaluation.

Favre and Hakkani-Tür (2009, FHT) directly
evaluate three extraction systems on OntoNotes
2.9 news broadcasts. The first retrains the Berke-
ley parser (Petrov and Klein, 2007) on trees la-
belled with appositions by appending the HEAD

and ATTR suffix to NPs – we refer to this as a La-
belled Berkeley Parser (LBP). The second is a CRF

labelling words using an IOB apposition scheme.
Token, POS, NE and BP-label features are used,
as are presence of speech pauses. The final sys-
tem classifies parse tree phrases using an Adaboost
classifier (Schapire and Singer, 2000) with similar
features.

The LBP, IOB and phrase systems score 41.38%,
32.76% and 40.41%, while their best uses LBP tree
labels as IOB features, scoring 42.31%. Their fo-
cus on BN automated speech recognition (ASR)
output, which precludes punctuation cues, does
not indicate how well the methods perform on tex-
tual genres. Moreover all systems use parsers or
parse-label features and do not completely evalu-
ate non-parser methods for extraction despite in-
cluding baselines.

Form # % Reverse form # %
∑

%
H t A 2109 55.9 A t H 724 19.2 75.1
A H 482 12.8 H A 205 5.4 93.3
H , A 1843 48.9 A , H 532 14.1 63.0
A H 482 12.9 H A 205 5.4 81.3
H ( A 146 3.9 A ( H 16 0.4 85.6
A : H 94 2.5 H : A 23 0.6 88.7
H -- A 66 1.8 A -- H 35 0.9 91.4
A - H 31 0.8 H - A 21 0.6 92.8

Table 2: Apposition forms in TRAIN with abstract
(top) and actual (bottom) tokens, e.g., H t A in-
dicates an HEAD, one token then an ATTR.

3 Data

We use apposition-annotated documents from the
English section of OntoNotes 4 (Weischedel et al.,
2011). We manually adjust appositions that do not
have exactly one HEAD and one or more ATTR1.
Some appositions are nested, and we keep only
“leaf” appositions, removing the higher-level ap-
positions.

We follow the CoNLL-2011 scheme to select
TRAIN, DEV and TEST datasets (Pradhan et al.,
2011). OntoNotes 4 is made up of a wide vari-
ety of sources: broadcast conversation and news,
magazine, newswire and web text. Appositions
are most frequent in newswire (one per 192 words)
and least common in broadcast conversation (one
per 645 words) with the others in between (around
one per 315 words).

We also replicate the OntoNotes 2.9 BN data
used by FHT, selecting the same sentences from
OntoNotes 4 (TRAINF/DEVF/TESTF). We do not
“speechify” our data and take a different approach
to nested apposition. Table 1 shows the distri-
bution of sentences and appositions (HEAD-ATTR

pairs).

3.1 Analysis

Most appositions in TRAIN have one ATTR

(97.4%) with few having two (2.5%) or three
(0.1%). HEADs are typically shorter (median 5
tokens, 95% < 7) than ATTRs (median 7 tokens,
95% < 15). Table 2 shows frequent apposition
forms. Comma-separated apposition is the most
common (63%) and 93% are separated by zero or
one token. HEADs are often composed of NEs:
52% PER and 13% ORG, indicating an entity about
which the ATTR adds information.

1Available at http://schwa.org/resources
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Pattern and Example P R F
{ne:PER}h # {pos:NP (pos:IN ne:LOC|ORG|GPE)?}a #
“{Jian Zhang}h, {the head of Chinese delegation}a,” 73.1 21.9 33.7
{pos:DT gaz:role|relation}a #? {ne:PER}h
“{his new wife}a {Camilla}h” 45.9 9.5 15.8
{ne:ORG|GPE}h # {pos:DT pos:NP}a #
“{Capetronic Inc.}h, {a Taiwan electronics maker}a,” 60.4 6.0 10.9
{pos:NP}a # {ne:PER}h #
“{The vicar}a, {W.D. Jones}h,” 33.7 4.5 7.9
{ne:PER}h # {pos:NP pos:POS pos:NP}a #
“{Laurence Tribe}h, {Gore ’s attorney}a,” 82.0 4.0 7.7

Table 3: The top-five patterns by recall in the TRAIN dataset. ‘#’ is a pause (e.g., punctuation), ‘|’ a
disjunction and ‘?’ an optional part. Patterns are used to combine tokens into NPs for pos:NP.

4 Extracting Appositions

We investigate different extraction systems using
a range of syntactic information. Our systems that
use syntactic parses generate candidates (pairs of
NPs: p1 and p2) that are then classified as apposi-
tion or not.

This paper contributes three complementary
techniques for more faithfully modelling apposi-
tion. Any adjacent NPs, disregarding intervening
punctuation, could be considered candidates, how-
ever stronger syntactic constraints that only allow
sibling NP children provide higher precision can-
didate sets. Semantic compatibility features en-
coding that an ATTR provides consistent informa-
tion for its HEAD. A joint classifier models the
complete apposition rather than combining sepa-
rate phrase-wise decisions. Taggers and parsers
are trained on TRAIN and evaluated on DEV or
TEST. We use the C&C tools (Curran and Clark,
2003) for POS and NE tagging and the and the
Berkeley Parser (Petrov and Klein, 2007), trained
with default parameters.

Pattern POS, NE and lexical patterns are used
to extract appositions avoiding parsing’s compu-
tational overhead. Rules are applied indepen-
dently to tokenized and tagged sentences, yield-
ing HEAD-ATTR tuples that are later deduplicated.
The rules were manually derived from TRAIN2 and
Table 3 shows the top five of sixteen rules by re-
call over TRAIN. The “role” gazetteer is the transi-
tive closure of hyponyms of the WordNet (Miller,
1995) synset person.n.01 and “relation” man-
ually constructed (e.g., “father”, “colleague”). Tu-
ples are post-processed to remove spurious appo-

2There is some overlap between TRAIN and DEVF/TESTF
with appositions from the latter used in rule generation.

sitions such as comma-separated NE lists3.

Adjacent NPs This low precision, high recall
baseline assumes all candidates, depending on
generation strategy, are appositions.

Rule We only consider HEADs whose syntactic
head is a PER, ORG, LOC or GPE NE. We formalise
semantic compatibility by requiring the ATTR head
to match a gazetteer dependent on the HEAD’s NE

type. To create PER, ORG and LOC gazetteers,
we identified common ATTR heads in TRAIN and
looked for matching WordNet synsets, selecting
the most general hypernym that was still seman-
tically compatible with the HEAD’s NE type.

Gazetteer words are pluralized using pattern.en
(De Smedt and Daelemans, 2012) and normalised.
We use partitive and NML-aware rules (Collins,
1999; Vadas and Curran, 2007) to extract syntactic
heads from ATTRs. These must match the type-
appropriate gazetteer, with ORG and LOC/GPE

falling back to PER (e.g., “the champion, Apple”).
Extracted tuples are post-processed as for Pat-

tern and reranked by the OntoNotes specificity
scale (i.e., NNP > PRO > Def. NP > Indef. NP

> NP), and the more specific unit is assigned
HEAD. Possible ATTRs further to the left or right
are checked, allowing for cases such as Figure 1.

Labelled Berkeley Parser We train a LBP on
TRAIN and recover appositions from parsed sen-
tences. Without syntactic constraints this is equiv-
alent to FHT’s LBP system (LBPF) and indicated by
† in Tables.

Phrase Each NP is independently classified as
HEAD, ATTR or None. We use a log-linear model
with a SGD optimizer from scikit-learn (Pedregosa

3Full description: http://schwa.org/resources
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Model Full system -syn -sem -both +gold
Pattern 44.8 34.9 39.2 - - - - - - - - - 52.2 39.6 45.1
Adj NPs 11.6 58.0 19.3 3.6 65.1 6.8 - - - - - - 16.0 85.3 27.0
Rule 65.3 46.8 54.5 43.7 50.0 46.7 - - - - - - 79.1 62.0 69.5
LBP 66.3 52.2 58.4 47.8 53.0 †50.3 - - - - - - - - -
Phrase 73.2 45.6 56.2 77.7 41.0 53.7 73.2 44.6 55.4 77.7 40.8 ‡53.5 89.0 58.2 70.4
Joint 66.3 49.0 56.4 68.5 48.6 56.9 70.4 47.0 56.4 68.9 48.0 56.6 87.9 69.5 77.6
Joint LBP 69.6 51.0 58.9 69.6 49.6 57.9 71.5 49.0 58.2 68.3 48.6 56.8 - -

Table 4: Results over DEV: each column shows precision, recall and F-score. -syn/-sem/-both show the
impact of removing constraints/features, +gold shows the impact of parse and tagging errors.

et al., 2011). The binary features are calculated
from a generated candidate phrase (p) and are the
same as FHT’s phrase system (PhraseF), denoted
‡ in Tables. In addition, we propose the fea-
tures below and to decode classifications, adjacent
apposition-classified NPs are re-ordered by speci-
ficity.

• p precedes/follows punctuation/interjection
• p starts with a DT or PRP$ (e.g., “{the

director}a” or “{her husband}a”)
• p’s syntactic head matches a NE-specific se-

mantic gazetteer (e.g., “{the famous actor}a”
→ PER, “{investment bank}a”→ ORG)
• p’s syntactic head has the POS CD (e.g.,

“{John Smith}h, {34}a, . . . ”)
• p’s NE type (e.g., “{John Smith}h”→ PER)
• Specificity rank

Joint The final system classifies pairs of phrases
(p1, p2) as: HEAD-ATTR, ATTR-HEAD or None.
The system uses the phrase model features as
above as well as pairwise features:

• the cross-product of selected features for p1
and p2: gazetteer matches, NE type, speci-
ficity rank. This models the compatibility be-
tween p1 and p2. For example, if the HEAD

has the NE type PER and the ATTR has the
syntactic head in the PER gazetteer, for ex-
ample “{Tom Cruise}h, {famous actor}a,”→
(p1: PER, p2: PER-gaz)
• If semantic features are found in p1 and p2
• p1/p2 specificity (e.g., equal, p1 > p2)
• whether p1 is an acronym of p2 or vice-versa

5 Results

We evaluate by comparing the extracted HEAD-
ATTR pairs against the gold-standard. Correct
pairs match gold-standard bounds and label. We
report precision (P), recall (R) and F1-score (F).

Table 4 shows our systems’ performance on the
multi-genre DEV dataset, the impact of remov-
ing syntactic constraints, semantic features and

parse/tag error. Pattern performance is reasonable
at 39.2% F-score given its lack of full syntactic
information. All other results use parses and, al-
though it has a low F-score, the Adjacent NPs’
65.1% recall, without syntactic constraints, is the
upper bound for the parse-based systems. Statis-
tical models improve performance, with the joint
models better than the higher-precision phrase
model as the latter must make two independently
correct classification decisions. Our best system
has an F-score of 58.9% using a joint model over
the de-labelled trees produced by the LBP. This
indicates that although our model does not use
the apposition labels from the tree, the tree is a
more suitable structure for extraction. This sys-
tem substantially improves on our implementation
of FHT’s LBPF (†) and PhraseF (‡) systems by 8.6%
and 5.4%4.

Removing syntactic constraints mostly reduces
performance in parse-based systems as the system
must consider lower-quality candidates. The F-
score increase is driven by higher precision at min-
imal cost to recall. Removing semantic features
has less impact and removing both is most detri-
mental to performance. These features have less
impact on joint models; indeed, joint performance
using BP trees increases without the features, per-
haps as joint models already model the syntactic
context.

We evaluate the impact of parser and tagger
error by using gold-standard resources. Gold-
standard tags and trees improve recall in all cases
leading to F-score improvements (+gold). The
pattern system is reasonably robust to automatic
tagging errors, but parse-based models suffer con-
siderably from automatic parses. To compare the
impact of tagging and parsing error, we configure
the joint system to use gold parses and automatic
NE tags and vice versa. Using automatic tags does
not greatly impact performance (-1.3%), whereas

4We do not implement the IOB or use LBP features for
TRAIN as these would require n-fold parser training.
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Model P R F
LBPF † 53.1 46.9 49.8
PhraseF ‡ 71.5 30.2 42.5
Pattern 44.8 34.3 38.8
LBP 63.9 45.1 52.9
Joint LBP 66.9 45.7 54.3

Table 5: Results over TEST: FHT’s (top) and our
(bottom) systems.

Error BP LBP δ

PP Attachment 5,585 5,396 -189
NP Internal Structure 1,483 1,338 -145
Other 3,164 3,064 -100
Clause Attachment 3,960 3,867 -93
Modifier Attachment 1,523 1,700 177
Co-ordination 3,095 3,245 150
NP Attachment 2,615 2,680 65
Total 30,189 29,859 -330

Table 6: Selected BP/LBP parse error distribution.

using automatic parses causes a drop of around
20% to 57.7%, demonstrating that syntactic infor-
mation is crucial for apposition extraction.

We compare our work with Favre and Hakkani-
Tür (2009), training with TRAINF and evaluating
over TESTF– exclusively BN data. Our implemen-
tations of their systems, PhraseF and LBPF, per-
form at 43.6% and 44.1%. Our joint LBP system
is substantially better, scoring 54.9%.

Table 5 shows the performance of our best sys-
tems on the TEST dataset and these follow the
same trend as DEV. Joint LBP performs the best
at 54.3%, 4.5% above LBPF.

Finally, we test whether labelling appositions
can help parsing. We parse DEV trees with LBP

and BP, remove apposition labels and analyse
the impact of labelling using the Berkeley Parser
Analyser (Kummerfeld et al., 2012). Table 6
shows the LBP makes fewer errors, particularly
NP internal structuring, PP and clause attachment
classes at the cost of modifier attachment and co-
ordination errors. Rather than increasing parsing
difficulty, apposition labels seem complementary,
improving performance.

6 Conclusion

We present three apposition extraction techniques.
Linguistic tests for apposition motivate strict syn-
tactic constraints on candidates and semantic fea-
tures encode the addition of compatible informa-

tion. Joint models more faithfully capture apposi-
tion structure and our best system achieves state-
of-the-art performance of 54.3%. Our results will
immediately benefit the large number of systems
with apposition extraction components for coref-
erence resolution and IE.
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