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Abstract

Tabular information in text documents
contains a wealth of information, and
so tables are a natural candidate for in-
formation extraction. There are many
cues buried in both a table and its sur-
rounding text that allow us to under-
stand the meaning of the data in a ta-
ble. We study how natural-language
tools, such as part-of-speech tagging,
dependency paths, and named-entity
recognition, can be used to improve the
quality of relation extraction from ta-
bles. In three domains we show that (1)
a model that performs joint probabilis-
tic inference across tabular and natural
language features achieves an F1 score
that is twice as high as either a pure-
table or pure-text system, and (2) us-
ing only shallower features or non-joint
inference results in lower quality.

1 Introduction

Tabular data is ubiquitous and often contains
high-quality, structured relational data. Re-
cent studies found billions of high-quality re-
lations on the web in HTML (Cafarella et
al., 2008). In financial applications, a huge
amount of data is buried in the tables of cor-
porate filings and earnings reports; in science,
millions of journal articles contain billions of
scientific facts in tables. Although tables de-
scribe precise, structured relations, tables are
rarely written in a way that is self-describing,
e.g., tables may contain abbreviations or only
informal schema information; in turn, the con-
tents of tables are often ambiguously specified,
which makes extracting the relations implicit
in tabular data difficult.

Tables are, however, not written in isola-
tion. The text surrounding a table in a jour-

nal article explains its contents to its intended
audience, a human reader. For example, in
a simple study, we demonstrate that humans
can achieve more than 60% higher recall by
jointly reading the text and tables in a journal
article than by only looking at the tables. The
conclusion of this experiment is not surprising,
but it raises a question: How should a system
combine tabular and natural-language features
to understand tables in text?

The literature provides a broad spectrum of
answers to this question. Most previous ap-
proaches use textual or tabular features sepa-
rately, e.g., tabular approaches that do not use
text features (Dalvi et al., 2012; Wu and Lee,
2006; Pinto et al., 2003) or textual approaches
that do not use tabular features (Mintz et al.,
2009; Wu and Weld, 2010; Poon and Domin-
gos, 2007). In a prescient study, Liu et al.
(2007) proposed to learn the target relation in-
dependently from both table and surface tex-
tual features, and then combine the result us-
ing a linear combination of the predictions.

In a similar spirit, we propose to use both
types of features in our approach of relation
extraction. Our proposed approach differs
from prior approaches in two ways: (1) We
use deeper–but standard–NLP features than
prior approaches for table extraction. In con-
trast to the shallow, lexical features that prior
approaches have used, we use standard NLP
features, such as dependency paths, parts of
speech, etc. Our hypothesis is that a deeper
understanding of the text in which a table is
embedded will lead to higher quality table ex-
traction. (2) Our probabilistic model jointly
uses both tabular and textual features. One
advantage of a joint approach is that one can
predict portions of the complicated predicate
that is buried in a table. For example, in a ge-
ology journal article, we may read a measure-
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Table	
  

although some fractional crystallization must have occurred during
the formation of these rocks, crystal fractionation alone cannot
account for the adakitic signature of the Gangdese rocks. Considering
the presence of a ~1500 km long belt of adakitic rocks, a fractionation
model would require the existence of an extremely large parent
magma body, the evidence for which is lacking. In fact, there is a
complete absence of coeval andesitic and basaltic magmatisms in this
adakite belt. Recent investigation on the crystallization history of a
hydrous primitive andesite composition shows that garnet is stable in
andesitic and basaltic bulk compositions only after large degrees of
crystallization lead to a decrease of the Mg-number to less than 0.5,
and that high Mg-number primitive melts are not garnet saturated at
high pressures (Müentener et al., 2001). However, all of the adakitic
porphyries from southern Tibet including those with lower Mg-
number show high Dy/Yb ratios and La/Yb ratios (Gao et al., 2007a).
The high Sr/Y, Dy/Yb and La/Yb ratios, low heavy REE and Y
concentrations of the Gangdese adakites require an adakitic signature
in the primary melt source.

Overall, the adakitic rocks of different ages in the Gangdese belt
display same differentiation trends (Figs. 2 and 3). In both the pre-
collision and post-collision groups, the abundances of MgO (Fig. 3a),
TiO2 (Fig. 3c) and CaO (Fig. 3d) decrease with increasing SiO2,

whereas with few exceptions, most samples have nearly constant
Al2O3 contents (Fig. 3b). Whereas the MgO and SiO2 contents of the
pre-collision adakite show a wide range, most of the post-collision
adakites have high SiO2 and low MgO contents, and plot in the high
SiO2 adakite field (Fig. 2a). In the two types of adakites, the total
alkaline contents (K2O+Na2O wt.%), K2O abundances and K2O/Na2O
ratios show a positive correlation with SiO2, displaying the typical
differentiation trend of calc-alkaline arc magmas (Fig. 2). However,
some of the post-collision adakitic rocks have unusually high K2O
contents, yielding abnormally high total alkaline contents and K2O/
Na2O ratios. Consequently, these samples significantly depart from
the overall trends (Fig. 2). This suggests that the unusual K2O
enrichment was not simply a result of magmatic differentiation.

The two generations of adakitic rock in the Gangdese belt show
many similarities in terms of distribution of trace elements with
typical incompatible trace element fractionation patterns of subduc-
tion-related magmas (Fig. 4). Overall, the adakites of different ages
display significant positive Pb and Sr anomalies, and negative Nb, Ta
and Ti anomalies (Fig. 4), correlating with typical features of adakitic
magmas (Martin et al., 2005). Despite their similar trace element
patterns, the geochemical signatures of the rocks in different regions
show some distinction. Some of the post-collision adakitic rocks from

Table 1
Major and trace elements of the post-collision adakitic rocks from the Gangdese belt, southern Tibet.

Location Zhunuo Puridazong

Sample ZM-1 ZM-2 ZM-3 ZM-4 ZM-5 ZM-6 ZM-7 ZM-8 ZM-9 ZM-10 ZM-12 ZM-13 PRDZ1 PRDZ2 PRDZ3 PRDZ4 PRDZ5

SiO2 66.69 65.96 65.37 67.00 69.09 65.10 63.86 71.56 69.73 69.37 67.27 65.99 65.61 65.97 65.73 65.02 65.29
TiO2 0.64 0.5 0.60 0.57 0.46 0.60 0.59 0.31 0.40 0.45 0.47 0.5 0.6 0.64 0.65 0.63 0.64
Al2O3 15.28 15.28 15.35 14.56 14.67 15.44 16.01 14.2 14.35 14.14 17.12 15.27 15.45 15.4 15.39 15.04 15.18
Fe2O3 4.17 3.07 4.27 4.06 3.18 4.31 3.83 2.39 3.04 3.32 2.25 3.05 3.46 3.69 3.68 3.54 3.62
MnO 0.02 0.06 0.08 0.08 0.04 0.09 0.08 0.03 0.04 0.04 0.03 0.06 0.06 0.06 0.06 0.06 0.06
MgO 1.75 1.54 1.84 1.60 1.20 1.94 2.35 0.83 1.08 1.34 0.97 1.54 1.63 1.75 1.76 1.72 1.7
CaO 2.20 2.61 3.70 2.88 2.06 3.69 3 1.81 2.38 2.52 2.43 2.59 3.27 3.22 3.33 3.16 3.24
Na2O 4.16 4.19 4.02 3.92 3.81 4.00 4.27 4.32 4.34 3.98 5.03 4.13 3.93 3.83 3.78 3.82 3.77
K2O 3.57 3.71 3.25 3.49 4.20 3.19 3.41 4.00 3.85 3.65 3.75 3.71 3.82 3.84 3.79 3.85 3.8
P2O5 0.21 0.18 0.21 0.19 0.17 0.22 0.27 0.11 0.15 0.16 0.24 0.19 0.26 0.27 0.27 0.26 0.26
LOI 0.90 2.66 0.94 1.36 0.86 1.08 1.98 0.22 0.36 0.80 0.12 2.76 1.46 1.62 1.5 1.56 1.4
Sum 99.6 99.8 99.6 99.7 99.7 99.7 99.7 99.8 99.7 99.8 99.7 99.8 99.6 100.3 99.9 98.7 99.0
Mg# 49.4 53.9 50.1 47.9 46.8 51.2 58.8 44.7 45.3 48.5 50.1 54.0 52.3 52.5 52.7 53.1 52.2
Sc 8.31 5.2 8.55 7.36 5.72 8.65 5.79 3.6 4.52 5.62 2.54 8.96 7.27 7.57 7.28 7.43 8.03
V 78.1 66 79.9 71.5 56.3 81.5 74.3 36.2 44.9 52.1 48.8 107 84.8 87.1 83.0 75.6 91.6
Cr 23.1 118 22.6 22.6 21.8 24.5 82.6 13.3 18.2 22.2 112 33.4 24.1 25.5 23.1 377.8 28.7
Co 11 14.4 12.2 10.9 7.27 13 11.5 5.21 6.7 5.24 5.99 13.1 10.6 10.8 10.6 13.4 11.4
Ni 15 86.8 13.9 12.7 10.5 15.9 17.3 6.41 8.65 14.2 6.85 17.1 11.4 11.6 11.5 74.2 12.9
Rb 232 202 141 158 218 142 153 227 207 191 193 40.3 149 143 134 149 155
Sr 681 633 884 752 550 878 807 567 664 623 824 825 1025 987.5 994 950 995
Y 12.2 9.21 17.5 11.0 11.0 11.2 9.57 6.02 7.64 8.98 5.06 8.69 12.0 12.1 11.2 11.6 12.9
Zr 47.2 96.6 114 78.6 26.8 64.7 67.5 26.5 46 77.7 18.3 166 127 136 127 139 149
Nb 9 9.3 9.72 9.14 9.83 9.23 8.98 8.6 8.41 9.77 7.3 6.45 8.83 8.77 8.07 8.65 9.28
Cs 19.1 8.47 6.42 6.97 11.1 8.28 6.26 10.8 8.35 14.0 8.42 2.07 3.66 3.79 3.49 3.60 3.92
Ba 880 669 985 912 848 964 741 861 857 838 652 1043 1287 1234 1129 1205 1225
La 37.4 31.5 33.36 37.8 38.4 38.7 33.6 28 37.2 34.8 25.4 20.6 42.2 50.8 41.5 46.7 49.7
Ce 65.7 63.8 63.6 68.3 65.9 69.6 66.9 47.4 62.7 61.5 49.7 41 83.4 94.0 81.0 88.7 95.5
Pr 8.35 7.81 8.32 8.52 8.2 8.65 8.15 5.41 7.45 7.55 6.65 5.09 9.83 10.42 9.21 9.93 10.70
Nd 31.3 28.3 31.68 30.8 28.4 31.9 29.2 19.2 26.5 27.8 25.1 19.8 37.5 38.4 34.7 37.2 39.8
Sm 5.57 4.68 6.32 5.22 4.79 5.48 4.96 3.02 4.27 4.69 4.19 3.45 6.19 6.25 5.53 6.05 6.55
Eu 1.36 1.17 1.1 1.23 1.08 1.36 1.30 0.76 1.00 1.07 1.04 1.29 1.60 1.57 1.44 1.48 1.60
Gd 4.46 3.34 4.02 3.98 3.58 4.02 3.54 2.17 3.09 3.36 2.69 2.92 4.64 4.50 4.17 4.38 4.63
Tb 0.54 0.43 0.520 0.47 0.47 0.5 0.45 0.25 0.35 0.38 0.32 0.41 0.390 0.397 0.359 0.374 0.414
Dy 2.7 1.99 2.72 2.46 2.3 2.5 2.03 1.22 1.64 1.98 1.22 1.89 2.84 2.79 2.63 2.74 2.91
Ho 0.49 0.34 0.487 0.43 0.41 0.44 0.38 0.23 0.29 0.35 0.19 0.33 0.504 0.511 0.471 0.491 0.530
Er 1.29 0.92 1.26 1.13 1.13 1.19 0.97 0.61 0.77 0.92 0.48 0.96 1.40 1.40 1.30 1.34 1.50
Tm 0.17 0.13 0.16 0.15 0.14 0.15 0.13 0.09 0.11 0.12 0.06 0.13 0.186 0.185 0.167 0.179 0.188
Yb 0.99 0.82 1 0.96 0.94 0.91 0.83 0.6 0.67 0.74 0.38 0.87 1.032 1.004 0.957 1.004 1.096
Lu 0.13 0.12 0.13 0.14 0.13 0.12 0.11 0.09 0.1 0.1 0.04 0.12 0.166 0.166 0.157 0.172 0.173
Hf 1.44 4.05 3.57 2.76 0.94 2.35 2.74 1.11 1.82 2.7 1.34 4.88 3.58 3.84 3.65 3.89 4.15
Ta 0.69 0.79 0.77 0.73 0.92 0.69 0.69 0.82 0.76 0.82 0.62 0.4 0.582 0.567 0.534 0.573 0.592
Pb 21 60.1 34.4 43.9 42.2 34.9 42.4 28 29.7 32.1 23 10.6 32.1 30.8 29.9 31.8 31.9
Th 18 27.2 24.6 24.5 30.1 21.7 24.6 22.3 26 28.4 15 2.95 16.5 17.5 16.0 17.6 17.9
U 2.97 6.64 5.66 5.91 4.48 5.16 5.39 5.11 4.84 8.33 2.83 0.92 2.58 2.43 2.35 2.46 2.57

Mg#=Mg/(Mg+0.85⁎TFe2+).
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Figure 1: An example of joint inference be-
tween a table and its context.
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Figure 2: Job assignments for the human
study.

ment in a table that tells us the type of rock
and its weight—but data such as the location
where this rock was unearthed and in what ge-
ological time interval this rock appeared may
not be specified in the table.

We consider tasks in three domains:
Petrology, Finance, and Geology. For
each domain, we build a system to extract re-
lations from text, tables, or both. We found
that a joint inference system that uses non-
shallow, but standard NLP features can sig-
nificantly improve the quality of the extracted
relations, and that this result holds consistently
across all three domains. For example, in our
Petrology application to extract a knowledge
base, called PetDB1, by using information
extracted from both text and tables, we can
achieve twice as high F1 compared to either a
pure-table or pure-text system.

2 Motivating Human Study

We describe a simple human study that mo-
tivated our approach to jointly combine both
tabular features and natural language features
to extract relations from tables. The hypoth-

1http://www.earthchem.org/petdb
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Figure 3: Human quality to extract Sample-
Rocktype relations in PetDB.
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Figure 4: List of features we used in Text,
Table, and Joint approaches. NER, EL,
and RE refer to named-entity recognition, en-
tity linking, and relation extraction, respec-
tively.

esis that we want to validate is that the text
surrounding a table could provide valuable in-
formation even for a human reader, and there-
fore, an ideal machine reading system should
also try to capture similar information.

We asked three geoscientists to manually
read journal articles and extract relations
for the Petrology domain. We report
our results for the target relation, Sample-
RockType, which associates a rock type with
a rock sample (see Figure 1 for an example).
We randomly sampled 21 journal articles. For
each journal article, we produced three vari-
ants: (1) the original document; (2) table-
only, which is the set of tables in the docu-
ment (without the text); (3) text-only, which
is the text of the document with the tables
removed from the document. Each geoscien-
tist was asked to read and extract the relations
from one of the three variants. We then judged
the precision and recall of their extraction, as
shown in Figure 2.
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As shown in Figure 3, human readers not
surprisingly achieve perfect precision on each
of the variants, but lower recall on both
the table-only and text-only variants. How-
ever, summing the recall of table-only (60%)
and text-only (20%) variants together would
achieve only 80% recall; this implies that in
the best case more than 20% of the extrac-
tions require that the human reader read the
table and its surrounding text jointly. Figure 1
shows one representative example.

This motivates our approach, which uses a
joint inference system to model features from
a table and its surrounding text. We also pro-
pose to use deep linguistic features instead of
shallower features to get as close as possible to
the ability of human readers in understanding
the surrounding text of a table.

3 Empirical Study & Experiments

We describe our experiments to test the hy-
pothesis that (1) deeper linguistic features can
help to extract higher quality relations from
tables, and (2) joint inference across tables and
text improves extraction quality compared to
approaches that use pure-table, pure-text, and
non-joint ways of combining these two. We
briefly describe some experiments for a dataset
that we call Geology (Zhang et al., 2013).
The detailed experimental results in all three
domains are in the technical report version of
this paper.

3.1 Experimental Setup

We consider the task of constructing a geol-
ogy knowledge base. Specifically, our goal is
to extract a Rock-TotalOrganicCarbon
relation that maps rock formations (e.g., “Bar-
nett Formation”) to their total organic carbon
(e.g., “6%”). Such data is important for es-
timating stored energy and for global climate
research.

Dataset. We selected 100 geology journal
articles.2 We asked three geoscientists to an-
notate these journal articles manually to ex-
tract the Rock-TotalOrganicCarbon re-
lation (1.5K tuples). We processed each doc-
ument using Stanford CoreNLP (de Marneffe
et al., 2006; Toutanova and Manning, 2000),

2We choose a set of documents that (1) are in En-
glish, and (2) contain at least one table.

PDFtoHTML3, and pdf2table (Yildiz, 2004).
We then extracted features following state-of-
the-art practices (see Figure 4).

Approaches. To validate our hypothesis,
we implement four systems, each of which has
access to different types of data:

(1) Table. This approach follows Pinto et
al. (2003) and Dalvi et al. (2012) and only uses
the tables in a document.

(2) Text. This approach only has access to
the text in a document and contains all the fea-
tures mentioned in Wu and Weld (2010) and
Mintz et al. (2009).

The features used in (1) and (2) are shown in
Figure 4. In both Table and Text, we use a
conditional random field (Lafferty et al., 2001)
model for the Rock-TotalOrganicCarbon
relation.

(3) Merge. Using Table and Text, we
extract all facts and their associated probabil-
ity. Following Duin (2002), we combine these
two probabilities using a linear combination.
Merge is a baseline approach that uses infor-
mation from both tables and text.

(4) Joint. We build a joint approach that
uses information from both tables and text.
This approach is a large factor graph in which
we embed the CRFs developed in Table and
Text. Additionally, we allow Joint to pre-
dict projections of each relation, as shown in
Figure 4. Recall that a key advantage of a joint
approach is that we do not need to predict all
arguments of the relation (if such a prediction
is unwarranted from the data). The inference
is done by Gibbs sampling using our inference
engine Elementary (Zhang and Ré, 2013).
We describe the Joint system in more detail
in the technical report version of this paper.

3.2 End-to-End Quality

We were able to validate that Joint achieves
higher quality than the other three approaches
we considered. Figure 5 shows the P/R curve
of different approaches on three domains. We
analyzed the domain Geology.
Joint dominates all other approaches. At

a recall of 10%, Joint achieves 3x higher pre-
cision than all other approaches. In our error
analysis, we saw that tables in geology articles
often contain ambiguous words; for example,

3http://pdftohtml.sourceforge.net/
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Figure 5: End-to-end extraction quality on Petrology, Finance, and GeoDeepDive. The
recall is limited by the quality of state-of-the-art table recognition software on PDFs.

the word “Barnett” in a table may refer to ei-
ther a location or a rock formation. By using
features extracted from text, Joint achieves
higher precision. For recall in the range of 0–
10%, Merge outperforms both Text and Ta-
ble, with 3%–90% improvement in precision.

In Geology, Merge has precision that is
similar to Text and Table for the higher re-
call range (>10%). In this domain, we found
that relations that appeared in the text often
repeated relations described in the table. In
other domains, such as Petrology, where
the relations in text and tables have lower de-
grees of overlap, Merge significantly improves
over Text and Table (Figure 5(b)).

We conducted a statistical significance test
to check whether the improvement of Joint
over the three other approaches is statistically
significant. For each of the three probability
thresholds, t ∈ {.99, .90, .50}, we created the
set of predictions that Joint assigns probabil-
ity greater than t. Figure 6 shows the results
of the statistical significance test in which the
null hypothesis is that the F1 scores of two ap-
proaches are the same. With p = 0.01, Joint
has statistically significant improvement of F1
score over all three other approaches with each
probability threshold.

3.3 Shallow vs. Linguistic Features

We validate the hypothesis that using
linguistic features, e.g., part-of-speech
tags (Toutanova and Manning, 2000),
named-entity tags (Finkel et al., 2005), and
dependency trees (de Marneffe et al., 2006),
helps improve the quality of our approach,
called Joint. There are different ways to
use shallow and linguistic features; we select

Approaches \ Prob. .99 .90 .50

Text + + +
Table + + +
Merge + + +

Figure 6: Approximate randomization test
from Chinchor (1992) of F1 score with p =
0.01 on the impact of joint inference compared
with pure-table or pure-text approaches for
different probability thresholds. A + sign in-
dicates that the F1 score of joint approach in-
creased significantly.
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Shallow	
   Regular	
  Expressions	
  (Dalvi	
  et	
  al.,	
  2012)	
  	
  

Term	
  proximity	
  (Matsuo	
  et	
  al.,	
  2003)	
  
DicConary	
  and	
  Freebase	
  (Mintz	
  et	
  al.,	
  2009)	
  

LinguisCc	
   POS	
  tags	
  (Wu	
  et	
  al.,	
  2010)	
  
Stanford	
  NER	
  tags	
  (Mintz	
  et	
  al.,	
  2009)	
  
Dependence	
  trees	
  (Mintz	
  et	
  al.,	
  2009)	
  

Figure 7: Types of Features.

state-of-the-art approaches from the literature
(see Figure 7).

We created the following variants of Joint.
Joint(-parse) removes features generated by
the dependency parser and syntax parser.
Similarly, Joint(-ner) (Joint(-pos)) removes
all features related to NER (resp. POS).
Joint(-pos) also removes NER and parser fea-
tures because the latter two are dependent on
POS features.

Figure 8 shows the P/R curve for all
these variants on Geology, and Figure 9
shows the results of statistical significance
test. For probability threshold .90, Joint
outperforms Joint(-pos) significantly. The
difference between Joint, Joint(-parse),
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Geology.

Features \ Prob. .90 .50

Joint(-parse) → Joint 0 +

Joint(-ner) → Joint 0 +

Joint(-pos) → Joint + +

Figure 9: Approximate randomization test of
F1 score with p = 0.01 on the impact of lin-
guistic features. For x → y, a + indicates that
the F1 score of y is significantly higher than x.
0 indicates that the F1 score does not change
significantly.

and Joint(-ner) is not significant because
there are “easy-to-extract” facts in the high-
probability range. For probability threshold
.50, Joint outperforms all three other vari-
ants significantly.

4 Related Work

The intuition that context features might help
table-related tasks has existed for decades. For
example, Hurst and Nasukawa (2000) men-
tioned (as future work) that context features
could be used to further improve their relation
extraction approaches from tables. Lin et al.
(2010) use bag-of-words features and hyper-
links to recommend new columns for web ta-
bles. Liu et al. (2007) extract features, includ-
ing font size and title, from PDF documents in
which a table appears to help the table rank-
ing task. They find that these features only
contribute less than 2% to precision. In con-
trast, in our approach linguistic features are
quite useful. The above approaches use con-
text features that can be extracted without
POS tagging or linguistic parsing. One aspect
of our work is to demonstrate that traditional
NLP tools can enhance the quality of table ex-
traction.

Extracting information from tables has been
discussed by different communities in the last
decade, including NLP (Wu and Lee, 2006;
Tengli et al., 2004; Chen et al., 2000), artifi-
cial intelligence (Fang et al., 2012; Pivk, 2006),
information retrieval (Wei et al., 2006; Pinto
et al., 2003), database (Cafarella et al., 2008),
and the web (Dalvi et al., 2012). This body of
work considers only features derived from ta-
bles and does not examine richer NLP features
as we do.

While joint inference is popular, it is not
clear when a joint inference system outper-
forms a more traditional NLP pipeline. Re-
cent studies have reached a variety of conclu-
sions: in some, joint inference helps extraction
quality (McCallum, 2009; Poon and Domin-
gos, 2007; Singh et al., 2009); and in some,
joint inference hurts extraction quality (Poon
and Domingos, 2007; Eisner, 2009). Our intu-
ition is that joint inference is helpful in this ap-
plication because our joint inference approach
combines non-redundant signals (textual ver-
sus tabular).

5 Conclusion

To improve the quality of extractions of tabu-
lar data, we use standard NLP techniques to
more deeply understand the text in which a
table is embedded. We validate that deeper
NLP features combined with a joint proba-
bilistic model has a statistically significant im-
pact on quality, i.e., recall and precision. Our
ongoing work is to apply these ideas to a much
larger corpus from each of the three domains.
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