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Abstract

We present a fast method for re-purposing
existing semantic word vectors to improve
performance in a supervised task. Re-
cently, with an increase in computing re-
sources, it became possible to learn rich
word embeddings from massive amounts
of unlabeled data. However, some meth-
ods take days or weeks to learn good em-
beddings, and some are notoriously dif-
ficult to train. We propose a method
that takes as input an existing embedding,
some labeled data, and produces an em-
bedding in the same space, but with a bet-
ter predictive performance in the super-
vised task. We show improvement on the
task of sentiment classification with re-
spect to several baselines, and observe that
the approach is most useful when the train-
ing set is sufficiently small.

1 Introduction

Incorporating the vector representation of a word
as a feature, has recently been shown to benefit
performance in several standard NLP tasks such
as language modeling (Bengio et al., 2003; Mnih
and Hinton, 2009), POS-tagging and NER (Col-
lobert et al., 2011), parsing (Socher et al., 2010),
as well as in sentiment and subjectivity analysis
tasks (Maas et al., 2011; Yessenalina and Cardie,
2011). Real-valued word vectors mitigate sparsity
by “smoothing” relevant semantic insight gained
during the unsupervised training over the rare and
unseen terms in the training data. To be effective,
these word-representations — and the process by
which they are assigned to the words (i.e. embed-
ding) — should capture the semantics relevant to
the task. We might, for example, consider dra-
matic (term X) and pleasant (term Y) to correlate
with a review of a good movie (task A), while find-
ing them of opposite polarity in the context of a

489

Hod Lipson
Cornell University
hod.lipson@cornell.edu

dating profile (task B). Consequently, good vectors
for X and Y should yield an inner product close to
1 in the context of task A, and —1 in the context
of task B. Moreover, we may already have on our
hands embeddings for X and Y obtained from yet
another (possibly unsupervised) task (C), in which
X and Y are, for example, orthogonal. If the em-
beddings for task C happen to be learned from a
much larger dataset, it would make sense to re-
use task C embeddings, but adapt them for task
A and/or task B. We will refer to task C and its
embeddings as the source task and the source em-
beddings, and task A/B, and its embeddings as the
target task and the target embeddings.

Traditionally, we would learn the embeddings
for the target task jointly with whatever unla-
beled data we may have, in an instance of semi-
supervised learning, and/or we may leverage la-
bels from multiple other related tasks in a multi-
task approach. Both methods have been applied
successfully (Collobert and Weston, 2008) to learn
task-specific embeddings. But while joint train-
ing is highly effective, a downside is that a large
amount of data (and processing time) is required
a-priori. In the case of deep neural embeddings,
for example, training time can number in days. On
the other hand, learned embeddings are becoming
more abundant, as much research and computing
effort is being invested in learning word represen-
tations using large-scale deep architectures trained
on web-scale corpora. Many of said embeddings
are published and can be harnessed in their raw
form as additional features in a number of super-
vised tasks (Turian et al., 2010). It would, thus, be
advantageous to learn a task-specific embedding
directly from another (source) embedding.

In this paper we propose a fast method for re-
embedding words from a source embedding S to a
target embedding T by performing unconstrained
optimization of a convex objective. Our objec-
tive is a linear combination of the dataset’s log-
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likelihood under the target embedding and the
Frobenius norm of the distortion matrix — a ma-
trix of component-wise differences between the
target and the source embeddings. The latter acts
as a regularizer that penalizes the Euclidean dis-
tance between the source and target embeddings.
The method is much faster than joint training and
yields competitive results with several baselines.

2 Related Work

The most relevant to our contribution is the work
by Maas et.al (2011), where word vectors are
learned specifically for sentiment classification.
Embeddings are learned in a semi-supervised
fashion, and the components of the embedding are
given an explicit probabilistic interpretation. Their
method produces state-of-the-art results, however,
optimization is non-convex and takes approxi-
mately 10 hours on 10 machines'. Naturally, our
method is significantly faster because it operates in
the space of an existing embedding, and does not
require a large amount of training data a-priori.

Collobert and Weston (2008), in their seminal
paper on deep architectures for NLP, propose a
multilayer neural network for learning word em-
beddings. Training of the model, depending on
the task, is reported to be between an hour and
three days. While the obtained embeddings can
be “fine-tuned” using backpropogation for a su-
pervised task, like all multilayer neural network
training, optimization is non-convex, and is sensi-
tive to the dimensionality of the hidden layers.

In machine learning literature, joint semi-
supervised embedding takes form in methods such
as the LaplacianSVM (LapSVM) (Belkin et al.,
2006) and Label Propogation (Zhu and Ghahra-
mani, 2002), to which our approach is related.
These methods combine a discriminative learner
with a non-linear manifold learning technique in a
joint objective, and apply it to a combined set of
labeled and unlabeled examples to improve per-
formance in a supervised task. (Weston et al.,
2012) take it further by applying this idea to deep-
learning architectures. Our method is different in
that the (potentially) massive amount of unlabeled
data is not required a-priori, but only the resultant
embedding.

las reported by author in private correspondence. The
runtime can be improved using recently introduced tech-
niques, see (Collobert et al., 2011)
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3 Approach

Let &g, &7 € RIVIXK be the source and target
embedding matrices respectively, where K is the
dimension of the word vector space, identical in
the source and target embeddings, and V is the set
of embedded words, given by Vg N V7. Following
this notation, ¢; — the i’ row in ® — is the respec-
tive vector representation of word w; € V. In what
follows, we first introduce our supervised objec-
tive, then combine it with the proposed regularizer
and learn the target embedding ®7 by optimizing
the resulting joint convex objective.

3.1 Supervised model

We model each document d; € D (a movie re-
view, for example) as a collection of words w;;
(i.i.d samples). We assign a sentiment label s; €
{0, 1} to each document (converting the star rating
to a binary label), and seek to optimize the con-
ditional likelihood of the labels (s;);cq1,.. D]}
given the embeddings and the documents:

p(s1,..,8)p||D; @) = H H p(sj|wi; 1)

djED wiEdj

where p(s; = 1|w;, ®7) is the probability of as-
signing a positive label to document j, given that
w; € dj. As in (Maas et al., 2011), we use logistic
regression to model the conditional likelihood:

1
p(SJ = 1|'UJ'L, <I>T) = 1+ eXp(—¢T¢i)

where 1) € RE+1 is a regression parameter vector
with an included bias component. Maximizing the
log-likelihood directly (for 1) and ®7), especially
on small datasets, will result in severe overfitting,
as learning will tend to commit neutral words to
either polarity. Classical regularization will mit-
igate this effect, but can be improved further by
introducing an external embedding in the regular-
izer. In what follows, we describe re-embedding
regularization— employing existing (source) em-
beddings to bias word vector learning.

3.2 Re-embedding regularization

To leverage rich semantic word representations,
we employ an external source embedding and in-
corporate it in the regularizer on the supervised
objective. We use Euclidean distance between the
source and the target embeddings as the regular-



ization loss. Combined with the supervised objec-
tive, the resulting log-likelihood becomes:

argmax Z Z IOgP(Sj‘wﬁCI’T) —)\HA@H% (1)

VT 4 ieDw;ed,

where A® = &7 —Pg, ||-||r is a Frobenius norm,
and A is a trade-off parameter. There are almost
no restrictions on ®g, except that it must match
the desired target vector space dimension K. The
objective is convex in v and ®7, thus, yielding a
unique target re-embedding. We employ L-BFGS
algorithm (Liu and Nocedal, 1989) to find the op-
timal target embedding.

3.3 Classification with word vectors

To classify documents, re-embedded word vectors
can now be used to construct a document-level
feature vector for a supervised learning algorithm
of choice. Perhaps the most direct approach is to
compute a weighted linear combination of the em-
beddings for words that appear in the document
to be classified, as done in (Maas et al., 2011)
and (Blacoe and Lapata, 2012). We use the docu-
ment’s binary bag-of-words vector v;, and com-
pute the document’s vector space representation
through the matrix-vector product ®7v;. The re-
sulting K + 1-dimensional vector is then cosine-
normalized and used as a feature vector to repre-
sent the document d;.

4 Experiments

Data: For our experiments, we employ a large,
recently introduced IMDB movie review dataset
(Maas et al., 2011), in place of the smaller dataset
introduced in (Pang and Lee, 2004) more com-
monly used for sentiment analysis. The dataset
(50,000 reviews) is split evenly between training
and testing sets, each containing a balanced set of
highly polar (> 7 and < 4 stars out of 10) reviews.
Source embeddings: We employ three external
embeddings (obtained from (Turian et al., 2010))
induced using the following models: 1) hierarchi-
cal log-bilinear model (HLBL) (Mnih and Hinton,
2009) and two neural network-based models — 2)
Collobert and Weston’s (C& W) deep-learning ar-
chitecture, and 3) Huang et.al’s polysemous neural
language model (HUANG) (Huang et al., 2012).
C&W and HLBL were induced using a 37M-word
newswire text (Reuters Corpus 1). We also induce
a Latent Semantic Analysis (LSA) based embed-
ding from the subset of the English project Guten-
berg collection of approximately 100M words. No

491

pre-processing (stemming or stopword removal),
beyond case-normalization is performed in either
the external or LSA-based embedding. For HLBL,
C&W and LSA embeddings, we use two variants
of different dimensionality: 50 and 200. In total,
we obtain seven source embeddings: HLBL-50,
HLBL-200, C&W-50, C&W-200, HUANG-
50, LSA-50, LSA-200.

Baselines: We generate two baseline embeddings
— NULL and RANDOM. NULL is a set of zero
vectors, and RANDOM is a set of uniformly
distributed random vectors with a unit L2-norm.
NULL and RANDOM are treated as source vec-
tors and re-embedded in the same way. The
NULL baseline is equivalent to regularizing on
the target embedding without the source embed-
ding. As additional baselines, we use each of the
7 source embeddings directly as a target without
re-embedding.

Training: For each source embedding matrix ®g,
we compute the optimal target embedding matrix
&7 by maximizing Equation 1 using the L-BFGS
algorithm. 20 % of the training set (5,000 docu-
ments) is withheld for parameter (\) tuning. We
use LIBLINEAR (Fan et al., 2008) logistic re-
gression module to classify document-level em-
beddings (computed from the ®7v; matrix-vector
product). Training (re-embedding and document
classification) on 20,000 documents and a 16,000
word vocabulary takes approximately 5 seconds
on a 3.0 GHz quad-core machine.

5 Results and Discussion

The main observation from the results is that our
method improves performance for smaller training
sets (< 5000 examples). The reason for the perfor-
mance boost is expected — classical regularization
of the supervised objective reduces overfitting.
However, comparing to the NULL and RAN-
DOM baseline embeddings, the performance is
improved noticeably (note that a percent differ-
ence of 0.1 corresponds to 20 correctly classi-
fied reviews) for word vectors that incorporate the
source embedding in the regularizer, than those
that do not (NULL), and those that are based on
the random source embedding (RANDOM). We
hypothesize that the external embeddings, gen-
erated from a significantly larger dataset help
“smooth” the word-vectors learned from a small
labeled dataset alone. Further observations in-
clude:



Features Number of training examples

+ Bag-of-words features BORING

SK 5K 20K | 5K 5K 20K - -
A Reombeddings (our method) source: !et.ha!, lifestyles, ma.sterp.lece e
HLBL-50 7401 7989 80.94 | 7890 8483 8542 target: idiotic, soft-core, gimmicky
HLBL-200 7433 80.14 8105 | 7922 8505 8595 BAD
C&W-50 7452 7981 8048 | 7802 8480 8587 -
C&W-200 7480 8025 8115 | 7934 8528 86.15 source: past, developing, lesser, ...
HUANG-50 7429 7990 7901 | 79.03 8489 8561 target: ill. madonna. low
LSA-50 7283 79.67 8067 | 7871 8344 8473 i ’ ’ T
LSA-200 7370 80.03 8091 | 79.12 8483 8531 DEPRESSING
B. Baselines source: versa, redemption, townsfolk . . .
RANDOM-50 w/ re-embedding 7290  79.12 8021 | 7829 8401 84.87 target: hate, pressured, unanswered
RANDOM-200 w/ re-embedding 7293 7920 8029 | 7831 8408 8491 ’ ’ ’
NULL w/ re-embedding 7292 79.18 8024 | 7829 84.10  84.98 BRILLIANT
HLBL-200 w/o re-embedding 67.88 7260 73.10 | 79.02 8383 85383 - - - -
C&W-200 w/o re-embedding 68.17 7272 7338 | 79.30 85.15 86.15 source: high-quality, obsession, hate ...
HUANG-50 w/o re-embedding 67.89  72.63 73.12 | 79.13 8494 8599 target: all-out, bold, Smiling .
C. Related methods
Joint training (Maas, 2011) — — 84.65 | — — 8890  Table 2: A representative set of words from the 20 closest-
Bag of Words SVM — — — 79.17 8497  86.14

Table 1: Classification accuracy for the sentiment task (IMDB
movie review dataset (Maas et al., 2011)). Subtable A compares
performance of the re-embedded vocabulary, induced from a
given source embedding. Subtable B contains a set of base-
lines: X-w/o re-embedding indicates using a source embedding

X directly without re-embedding.

Training set size: We note that with a sufficient
number of training instances for each word in the
test set, additional knowledge from an external
embedding does little to improve performance.
Source embeddings: We find C&W embeddings
to perform best for the task of sentiment classi-
fication. These embeddings were found to per-
form well in other NLP tasks as well (Turian et
al., 2010).

Embedding dimensionality: We observe that for
HLBL, C&W and LSA source embeddings (for all
training set sizes), 200 dimensions outperform 50.
While a smaller number of dimensions has been
shown to work better in other tasks (Turian et al.,
2010), re-embedding words may benefit from a
larger initial dimension of the word vector space.
We leave the testing of this hypothesis for future
work.

Additional features: Across all embeddings, ap-
pending the document’s binary bag-of-words rep-
resentation increases classification accuracy.

6 Future Work

While “semantic smoothing” obtained from intro-
ducing an external embedding helps to improve
performance in the sentiment classification task,
the method does not help to re-embed words that
do not appear in the training set to begin with. Re-
turning to our example, if we found dramatic and
pleasant to be “far” in the original (source) em-
bedding space, but re-embed them such that they
are “near” (for the task of movie review sentiment
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ranked (cosine-distance) words to (boring, bad, depressing,
brilliant) extracted from the source and target (C&W-200)
embeddings. Source embeddings give higher rank to words
that are related, but not necessarily indicative of sentiment,
e.g. brilliant and obsession. Target words tend to be tuned
and ranked higher based on movie-sentiment-based rela-
tions.

classification, for example), then we might ex-
pect words such as melodramatic, powerful, strik-
ing, enjoyable to be re-embedded nearby as well,
even if they did not appear in the training set.
The objective for this optimization problem can be
posed by requiring that the distance between ev-
ery pair of words in the source and target embed-
dings is preserved as much as possible, i.e. min
(¢idj — ¢icdj)? Vi, j (where, with some abuse of
notation, ¢ and q; are the source and target em-
beddings respectively). However, this objective is
no longer convex in the embeddings. Global re-
embedding constitutes our ongoing work and may
pose an interesting challenge to the community.

7 Conclusion

We presented a novel approach to adapting exist-
ing word vectors for improving performance in
a text classification task. While we have shown
promising results in a single task, we believe that
the method is general enough to be applied to
a range of supervised tasks and source embed-
dings. As sophistication of unsupervised methods
grows, scaling to ever-more massive datasets, so
will the representational power and coverage of in-
duced word vectors. Techniques for leveraging the
large amount of unsupervised data, but indirectly
through word vectors, can be instrumental in cases
where the data is not directly available, training
time is valuable and a set of easy low-dimensional
“plug-and-play” features is desired.
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