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Abstract

In this paper we present a novel ap-
proach to modelling distributional seman-
tics that represents meaning as distribu-
tions over relations in syntactic neighbor-
hoods. We argue that our model approxi-
mates meaning in compositional configu-
rations more effectively than standard dis-
tributional vectors or bag-of-words mod-
els. We test our hypothesis on the problem
of judging event coreferentiality, which in-
volves compositional interactions in the
predicate-argument structure of sentences,
and demonstrate that our model outper-
forms both state-of-the-art window-based
word embeddings as well as simple ap-
proaches to compositional semantics pre-
viously employed in the literature.

1 Introduction

Distributional Semantic Models (DSM) are popu-
lar in computational semantics. DSMs are based
on the hypothesis that the meaning of a word or
phrase can be effectively captured by the distribu-
tion of words in its neighborhood. They have been
successfully used in a variety of NLP tasks includ-
ing information retrieval (Manning et al., 2008),
question answering (Tellex et al., 2003), word-
sense discrimination (Schiitze, 1998) and disam-
biguation (McCarthy et al., 2004), semantic sim-
ilarity computation (Wong and Raghavan, 1984;
McCarthy and Carroll, 2003) and selectional pref-
erence modeling (Erk, 2007).

A shortcoming of DSMs is that they ignore the
syntax within the context, thereby reducing the
distribution to a bag of words. Composing the
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distributions for “Lincoln”, “Booth”, and “killed”
gives the same result regardless of whether the in-
put is “Booth killed Lincoln™ or “Lincoln killed
Booth”. But as suggested by Pantel and Lin (2000)
and others, modeling the distribution over prefer-
ential attachments for each syntactic relation sep-
arately yields greater expressive power. Thus, to
remedy the bag-of-words failing, we extend the
generic DSM model to several relation-specific
distributions over syntactic neighborhoods. In
other words, one can think of the Structured DSM
(SDSM) representation of a word/phrase as sev-
eral vectors defined over the same vocabulary,
each vector representing the word’s selectional
preferences for its various syntactic arguments.

We argue that this representation not only cap-
tures individual word semantics more effectively
than the standard DSM, but is also better able to
express the semantics of compositional units. We
prove this on the task of judging event coreference.

Experimental results indicate that our model
achieves greater predictive accuracy on the task
than models that employ weaker forms of compo-
sition, as well as a baseline that relies on state-
of-the-art window based word embeddings. This
suggests that our formalism holds the potential of
greater expressive power in problems that involve
underlying semantic compositionality.

2 Related Work

Next, we relate and contrast our work to prior re-
search in the fields of Distributional Vector Space
Models, Semantic Compositionality and Event
Co-reference Resolution.

2.1 DSMs and Compositionality

The underlying idea that “a word is characterized
by the company it keeps” was expressed by Firth
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(1957). Several works have defined approaches to
modelling context-word distributions anchored on
a target word, topic, or sentence position. Collec-
tively these approaches are called Distributional
Semantic Models (DSMs).

While DSMs have been very successful on a va-
riety of tasks, they are not an effective model of
semantics as they lack properties such as compo-
sitionality or the ability to handle operators such
as negation. In order to model a stronger form of
semantics, there has been a recent surge in stud-
ies that phrase the problem of DSM composition-
ality as one of vector composition. These tech-
niques derive the meaning of the combination of
two words a and b by a single vector ¢ = f(a, b).
Mitchell and Lapata (2008) propose a framework
to define the composition ¢ = f(a, b, r, K') where
r is the relation between a and b, and K is the
additional knowledge used to define composition.
While this framework is quite general, the actual
models considered in the literature tend to disre-
gard K and r and mostly perform component-wise
addition and multiplication, with slight variations,
of the two vectors. To the best of our knowledge
the formulation of composition we propose is the
first to account for both K and r within this com-
positional framework.

Dinu and Lapata (2010) and Séaghdha and Ko-
rhonen (2011) introduced a probabilistic model
to represent word meanings by a latent variable
model. Subsequently, other high-dimensional ex-
tensions by Rudolph and Giesbrecht (2010), Ba-
roni and Zamparelli (2010) and Grefenstette et
al. (2011), regression models by Guevara (2010),
and recursive neural network based solutions by
Socher et al. (2012) and Collobert et al. (2011)
have been proposed. However, these models do
not efficiently account for structure.

Pantel and Lin (2000) and Erk and Padé (2008)
attempt to include syntactic context in distribu-
tional models. A quasi-compositional approach
was attempted in Thater et al. (2010) by a com-
bination of first and second order context vectors.
But they do not explicitly construct phrase-level
meaning from words which limits their applicabil-
ity to real world problems. Furthermore, we also
include structure into our method of composition.
Prior work in structure aware methods to the best
of our knowledge are (Weisman et al., 2012) and
(Baroni and Lenci, 2010). However, these meth-
ods do not explicitly model composition.
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2.2 Event Co-reference Resolution

While automated resolution of entity coreference
has been an actively researched area (Haghighi
and Klein, 2009; Stoyanov et al., 2009; Raghu-
nathan et al., 2010), there has been relatively lit-
tle work on event coreference resolution. Lee
et al. (2012) perform joint cross-document entity
and event coreference resolution using the two-
way feedback between events and their arguments.
We, on the other hand, attempt a slightly different
problem of making co-referentiality judgements
on event-coreference candidate pairs.

3 Structured Distributional Semantics

In this paper, we propose an approach to incorpo-
rate structure into distributional semantics (more
details in Goyal et al. (2013)). The word distribu-
tions drawn from the context defined by a set of
relations anchored on the target word (or phrase)
form a set of vectors, namely a matrix for the tar-
get word. One axis of the matrix runs over all
the relations and the other axis is over the distri-
butional word vocabulary. The cells store word
counts (or PMI scores, or other measures of word
association). Note that collapsing the rows of the
matrix provides the standard dependency based
distributional representation.

3.1 Building Representation: The PropStore

To build a lexicon of SDSM matrices for a given
vocabulary we first construct a proposition knowl-
edge base (the PropStore) created by parsing the
Simple English Wikipedia. Dependency arcs are
stored as 3-tuples of the form (wy, 7, w2), denot-
ing an occurrence of words w;, word wy related
by r. We also store sentence indices for triples
as this allows us to achieve an intuitive technique
to achieve compositionality. In addition to the
words’ surface-forms, the PropStore also stores
their POS tags, lemmas, and Wordnet supersenses.
This helps to generalize our representation when
surface-form distributions are sparse.

The PropStore can be used to query for the ex-
pectations of words, supersenses, relations, etc.,
around a given word. In the example in Figure 1,
the query (SST(W7) = verb.consumption, ?, dobj)
i.e. “what is consumed” might return expectations
[pasta:1, spaghetti:1, mice:1 ...]. Relations and
POS tags are obtained using a dependency parser
Tratz and Hovy (2011), supersense tags using sst-
light Ciaramita and Altun (2006), and lemmas us-



John eats pasta Mary eats Spaghetti with chopsticks Cows ruminate

1) {(John/NNP/john/Noun.person, nsubj, eats/VBG/eat/verb.consumption ),
(eats/VBG/eat/verb.consumption, dobj, pasta/NN/pasta/noun.food) }

2) {(Mary/NNP/mary/Noun.person), nsubj, (eats/VBG/eat/verb.consumption) ... }

3) {(Cows/NNP/cow/Noun.animal),nsubj,(ruminate/VBG/ruminate/verb.consumption) }

Figure 1: Sample sentences & triples

ing Wordnet Fellbaum (1998).

3.2 Mimicking Compositionality

For representing intermediate multi-word phrases,
we extend the above word-relation matrix symbol-
ism in a bottom-up fashion using the PropStore.
The combination hinges on the intuition that when
lexical units combine to form a larger syntactically
connected phrase, the representation of the phrase
is given by its own distributional neighborhood
within the embedded parse tree. The distributional
neighborhood of the net phrase can be computed
using the PropStore given syntactic relations an-
chored on its parts. For the example in Figure
1, we can compose SST(w;) = Noun.person and
Lemma(¥¥1) = eat appearing together with a nsubj
relation to obtain expectations around “people eat”
yielding [pasta:1, spaghetti:1 ...] for the object
relation, [room:2, restaurant:1 . . .] for the location
relation, etc. Larger phrasal queries can be built to
answer queries like “What do people in China eat
with?”, “What do cows do?”, etc. All of this helps
us to account for both relation r and knowledge K
obtained from the PropStore within the composi-
tional framework ¢ = f(a,b,r, K).

The general outline to obtain a composition
of two words is given in Algorithm 1, which
returns the distributional expectation around the
composed unit. Note that the entire algorithm can
conveniently be written in the form of database
queries to our PropStore.

Algorithm 1 ComposePair(w, r, w2)

M < queryMatrix(w) (1)
My < queryMatrix(ws) 2)
SentIDs < M (r) N Ma(r) 3)

return (MM SentIDs) U (MsN SentIDs))  (4)

For the example “noun.person nsubj eat”, steps
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(1) and (2) involve querying the PropStore for the
individual tokens, noun.person and eat. Let the re-
sulting matrices be M; and Mo, respectively. In
step (3), SentIDs (sentences where the two words
appear with the specified relation) are obtained by
taking the intersection between the nsubj compo-
nent vectors of the two matrices M7 and M. In
step (4), the entries of the original matrices M;
and M, are intersected with this list of common
SentIDs. Finally, the resulting matrix for the com-
position of the two words is simply the union of
all the relationwise intersected sentence IDs. Intu-
itively, through this procedure, we have computed
the expectation around the words w; and w2 when
they are connected by the relation “r”.

Similar to the two-word composition process,
given a parse subtree 7' of a phrase, we obtain
its matrix representation of empirical counts over
word-relation contexts (described in Algorithm 2).
Let the £ = {e;...e,} be the set of edges in T,
€; = (wil, T, wiQ)Vi =1...n.

Algorithm 2 ComposePhrase(7T)

SentIDs < All Sentences in corpus
fori=1—ndo

M1 + queryMatrix(w;1)

Mo < queryMatrix(w;2)

SentIDs < SentIDs N(Mj (r;) N Ma(r;))
end for
return ((M11N SentIDs) U (Mi2N SentIDs)
U (M,1N SentIDs) U (M,,2N SentIDs))

The phrase representations becomes sparser as
phrase length increases. For this study, we restrict
phrasal query length to a maximum of three words.

3.3 Event Coreferentiality

Given the SDSM formulation and assuming no
sparsity constraints, it is possible to calculate



SDSM matrices for composed concepts. However,
are these correct? Intuitively, if they truly capture
semantics, the two SDSM matrix representations
for “Booth assassinated Lincoln” and “Booth shot
Lincoln with a gun" should be (almost) the same.
To test this hypothesis we turn to the task of pre-
dicting whether two event mentions are coreferent
or not, even if their surface forms differ. It may be
noted that this task is different from the task of full
event coreference and hence is not directly compa-
rable to previous experimental results in the liter-
ature. Two mentions generally refer to the same
event when their respective actions, agents, pa-
tients, locations, and times are (almost) the same.
Given the non-compositional nature of determin-
ing equality of locations and times, we represent
each event mention by a triple E = (e, a,p) for
the event, agent, and patient.

In our corpus, most event mentions are verbs.
However, when nominalized events are encoun-
tered, we replace them by their verbal forms. We
use SRL Collobert et al. (2011) to determine the
agent and patient arguments of an event mention.
When SRL fails to determine either role, its empir-
ical substitutes are obtained by querying the Prop-
Store for the most likely word expectations for
the role. It may be noted that the SDSM repre-
sentation relies on syntactic dependancy relations.
Hence, to bridge the gap between these relations
and the composition of semantic role participants
of event mentions we empirically determine those
syntactic relations which most strongly co-occur
with the semantic relations connecting events,
agents and patients. The triple (e, a, p) is thus the
composition of the triples (a, relationsetqgent, €)
and (p, relationsetpatient, €), and hence a com-
plex object. To determine equality of this complex
composed representation we generate three levels
of progressively simplified event constituents for
comparison:

Level 1: Full Composition:

M. = ComposePhrase(e, a,p).

Level 2: Partial Composition:

M,

Mpart:ep = ComposePair(e,r,p).
Level 3: No Composition:

art:EA = ComposePair(e,r, a)

Mg = queryMatriz(e)
My = queryMatriz(a)
Mp = queryMatriz(p)
To
events

judge coreference between
El and E2, we compute pair-
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wise similarities Sim(M1 yy, M2yu1),
Sim(M1part:54, M2pare:Ea), etc., for each
level of the composed triple representation. Fur-
thermore, we vary the computation of similarity
by considering different levels of granularity
(lemma, SST), various choices of distance
metric (Euclidean, Cityblock, Cosine), and
score normalization techniques (Row-wise, Full,
Column-collapsed). This results in 159 similarity-
based features for every pair of events, which are
used to train a classifier to decide conference.

4 Experiments

We evaluate our method on two datasets and com-
pare it against four baselines, two of which use
window based distributional vectors and two that
employ weaker forms of composition.

4.1 Datasets

IC Event Coreference Corpus: The dataset
(Hovy et al., 2013), drawn from 100 news articles
about violent events, contains manually created
annotations for 2214 pairs of co-referent and non-
coreferent events each. Where available, events’
semantic role-fillers for agent and patient are an-
notated as well. When missing, empirical substi-
tutes were obtained by querying the PropStore for
the preferred word attachments.

EventCorefBank (ECB) corpus: This corpus
(Bejan and Harabagiu, 2010) of 482 documents
from Google News is clustered into 45 topics,
with event coreference chains annotated over each
topic. The event mentions are enriched with se-
mantic roles to obtain the canonical event struc-
ture described above. Positive instances are ob-
tained by taking pairwise event mentions within
each chain, and negative instances are generated
from pairwise event mentions across chains, but
within the same topic. This results in 11039 posi-
tive instances and 33459 negative instances.

4.2 Baselines

To establish the efficacy of our model, we compare
SDSM against a purely window-based baseline
(DSM) trained on the same corpus. In our exper-
iments we set a window size of seven words. We
also compare SDSM against the window-based
embeddings trained using a recursive neural net-
work (SENNA) (Collobert et al., 2011) on both
datsets. SENNA embeddings are state-of-the-art
for many NLP tasks. The second baseline uses



’ ‘ IC Corpus ECB Corpus
Prec Rec F-1 Acc Prec Rec F-1 Acc
SDSM | 0.916 | 0.929 | 0.922 | 0.906 | 0.901 | 0.401 | 0.564 | 0.843
Senna | 0.850 | 0.881 | 0.865 | 0.835 | 0.616 | 0.408 | 0.505 | 0.791
DSM | 0.743 | 0.843 | 0.790 | 0.740 | 0.854 | 0.378 | 0.524 | 0.830
MVC | 0.756 | 0.961 | 0.846 | 0.787 | 0.914 | 0.353 | 0.510 | 0.831
AVC | 0.753 | 0.941 | 0.837 | 0.777 | 0.901 | 0.373 | 0.528 | 0.834

Table 1: Cross-validation Performance on IC and ECB dataset

SENNA to generate level 3 similarity features for
events’ individual words (agent, patient and ac-
tion). As our final set of baselines, we extend two
simple techniques proposed by (Mitchell and Lap-
ata, 2008) that use element-wise addition and mul-
tiplication operators to perform composition. We
extend it to our matrix representation and build
two baselines AVC (element-wise addition) and
MVC (element-wise multiplication).

4.3 Discussion

Among common classifiers, decision-trees (J48)
yielded best results in our experiments. Table 1
summarizes our results on both datasets.

The results reveal that the SDSM model con-
sistently outperforms DSM, SENNA embeddings,
and the MVC and AVC models, both in terms
of F-1 score and accuracy. The IC corpus com-
prises of domain specific texts, resulting in high
lexical overlap between event mentions. Hence,
the scores on the IC corpus are consistently higher
than those on the ECB corpus.

The improvements over DSM and SENNA em-
beddings, support our hypothesis that syntax lends
greater expressive power to distributional seman-
tics in compositional configurations. Furthermore,
the increase in predictive accuracy over MVC and
AVC shows that our formulation of composition
of two words based on the relation binding them
yields a stronger form of compositionality than
simple additive and multiplicative models.

Next, we perform an ablation study to deter-
mine the most predictive features for the task of
event coreferentiality. The forward selection pro-
cedure reveals that the most informative attributes
are the level 2 compositional features involving
the agent and the action, as well as their individ-
ual level 3 features. This corresponds to the in-
tuition that the agent and the action are the prin-
cipal determiners for identifying events. Features
involving the patient and level 1 features are least
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useful. This is probably because features involv-
ing full composition are sparse, and not as likely
to provide statistically significant evidence. This
may change as our PropStore grows in size.

5 Conclusion and Future Work

We outlined an approach that introduces structure
into distributed semantic representations gives us
an ability to compare the identity of two repre-
sentations derived from supposedly semantically
identical phrases with different surface realiza-
tions. We employed the task of event coreference
to validate our representation and achieved sig-
nificantly higher predictive accuracy than several
baselines.

In the future, we would like to extend our model
to other semantic tasks such as paraphrase detec-
tion, lexical substitution and recognizing textual
entailment. We would also like to replace our syn-
tactic relations to semantic relations and explore
various ways of dimensionality reduction to solve
this problem.
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