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Abstract 

In this paper, we combine easy-first de-

pendency parsing and POS tagging algo-

rithms with beam search and structured 

perceptron. We propose a simple variant 

of “early-update” to ensure valid update 

in the training process. The proposed so-

lution can also be applied to combine 

beam search and structured perceptron 

with other systems that exhibit spurious 

ambiguity. On CTB, we achieve 94.01% 

tagging accuracy and 86.33% unlabeled 

attachment score with a relatively small 

beam width. On PTB, we also achieve 

state-of-the-art performance. 

1 Introduction 

The easy-first dependency parsing algorithm 

(Goldberg and Elhadad, 2010) is attractive due to 

its good accuracy, fast speed and simplicity. The 

easy-first parser has been applied to many appli-

cations (Seeker et al., 2012; Søggard and Wulff, 

2012). By processing the input tokens in an easy-

to-hard order, the algorithm could make use of 

structured information on both sides of the hard 

token thus making more indicative predictions. 

However, rich structured information also causes 

exhaustive inference intractable. As an alterna-

tive, greedy search which only explores a tiny 

fraction of the search space is adopted (Goldberg 

and Elhadad, 2010). 

 To enlarge the search space, a natural exten-

sion to greedy search is beam search. Recent 

work also shows that beam search together with 

perceptron-based global learning (Collins, 2002) 

enable the use of non-local features that are help-

ful to improve parsing performance without 

overfitting (Zhang and Nivre, 2012). Due to the-

se advantages, beam search and global learning 

has been applied to many NLP tasks (Collins and 

Roark 2004; Zhang and Clark, 2007). However, 

to the best of our knowledge, no work in the lit-

erature has ever applied the two techniques to 

easy-first dependency parsing.  

While applying beam-search is relatively 

straightforward, the main difficulty comes from 

combining easy-first dependency parsing with 

perceptron-based global learning. In particular, 

one needs to guarantee that each parameter up-

date is valid, i.e., the correct action sequence has 

lower model score than the predicted one
1
. The 

difficulty in ensuring validity of parameter up-

date for the easy-first algorithm is caused by its 

spurious ambiguity, i.e., the same result might be 

derived by more than one action sequences.  

For algorithms which do not exhibit spurious 

ambiguity, “early update” (Collins and Roark 

2004) is always valid: at the k-th step when the 

single correct action sequence falls off the beam, 

                                                 
1 As shown by (Huang et al., 2012), only valid update guar-

antees the convergence of any perceptron-based training. 

Invalid update may lead to bad learning or even make the 

learning not converge at all. 

Figure 1: Example of cases without/with spurious 

ambiguity. The 3 × 1 table denotes a beam. “C/P” 

denotes correct/predicted action sequence. The 

numbers following C/P are model scores. 
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its model score must be lower than those still in 

the beam (as illustrated in figure 1, also see the 

proof in (Huang et al., 2012)). While for easy-

first dependency parsing, there could be multiple 

action sequences that yield the gold result (C1 and 

C2 in figure 1). When all correct sequences fall 

off the beam, some may indeed have higher 

model score than those still in the beam (C2 in 

figure 1), causing invalid update. 

For the purpose of valid update, we present a 

simple solution which is based on early update. 

The basic idea is to use one of the correct action 

sequences that were pruned right at the k-th step 

(C1 in figure 1) for parameter update.  

The proposed solution is general and can also 

be applied to other algorithms that exhibit spuri-

ous ambiguity, such as easy-first POS tagging 

(Ma et al., 2012) and transition-based dependen-

cy parsing with dynamic oracle (Goldberg and 

Nivre, 2012). In this paper, we report experi-

mental results on both easy-first dependency 

parsing and POS tagging (Ma et al., 2012). We 

show that both easy-first POS tagging and de-

pendency parsing can be improved significantly 

from beam search and global learning. Specifi-

cally, on CTB we achieve 94.01% tagging accu-

racy which is the best result to date
2
 for a single 

tagging model. With a relatively small beam, we 

achieve 86.33% unlabeled score (assume gold 

tags), better than state-of-the-art transition-based 

parsers (Huang and Sagae, 2010; Zhang and 

Nivre, 2011). On PTB, we also achieve good 

results that are comparable to the state-of-the-art. 

2 Easy-first dependency parsing 

The easy-first dependency parsing algorithm 

(Goldberg and Elhadad, 2010) builds a depend-

ency tree by performing two types of actions 

LEFT(i) and RIGHT(i) to a list of sub-tree struc-

tures p1,…, pr. pi is initialized with the i-th word  

                                                 
2 Joint tagging-parsing models achieve higher accuracy, but 

those models are not directly comparable to ours.  

Algorithm 1: Easy-first with beam search 

Input:     sentence   of n words,  beam width s 

Output:  one best dependency tree 
     (     )        

         ( )   

    (  ) 

            // top s extensions from the beam 

1                     // initially, empty beam 
2 for    1   1 do 

3             (        ) 
4 return        ( )   // tree built by the best sequence  

 

of the input sentence. Action LEFT(i)/RIGHT(i) 

attaches pi to its left/right neighbor and then re-

moves pi from the sub-tree list. The algorithm 

proceeds until only one sub-tree left which is the 

dependency tree of the input sentence (see the 

example in figure 2). Each step, the algorithm 

chooses the highest score action to perform ac-

cording to the linear model: 

     ( )     ( ) 

Here,   is the weight vector and   is the feature 

representation. In particular,  (    ( ) 
     ( )) denotes features extracted from pi. 

The parsing algorithm is greedy which ex-

plores a tiny fraction of the search space. Once 

an incorrect action is selected, it can never yield 

the correct dependency tree. To enlarge the 

search space, we introduce the beam-search ex-

tension in the next section. 

3 Easy-first with beam search  

In this section, we introduce easy-first with beam 

search in our own notations that will be used 

throughout the rest of this paper.  

For a sentence x of n words, let   be the action 

(sub-)sequence that can be applied, in sequence, 

to x and the result sub-tree list is denoted by 

 ( )  For example, suppose x is “I am valid” and 

y is [RIGHT(1)], then y(x) yields figure 2(b). Let 

   to be LEFT(i)/RIGHT(i) actions where    1   . 
Thus, the set of all possible one-action extension 

of   is: 

     ( )            ( )   

Here, ‘ ’ means insert   to the end of  . Follow-

ing (Huang et al., 2012), in order to formalize 

beam search, we also use the          
    ( ) 

operation which returns the top s action sequenc-

es in   according to    ( ). Here,  denotes a 

set of action sequences,   ( ) denotes the sum of 

feature vectors of each action in    

Pseudo-code of easy-first with beam search is 

shown in algorithm 1. Beam search grows s 

(beam width) action sequences in parallel using a  

Figure 2: An example of parsing “I am valid”. Spu-

rious ambiguity: (d) can be derived by both 

[RIGHT(1), LEFT(2)] and [LEFT(3), RIGHT(1)]. 
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Algorithm 2: Perceptron-based training over one 

training sample (   ) 
Input:    (   ), s, parameter   

Output: new parameter    

    (       )        
     (      ( ))

   

   (  ) 

 // top correct extension from the beam 

1         

2 for    1   1 do 

3     ̂      (          ) 

4            (        ) 

5    if           // all correct seq. falls off the beam 

6              ( ̂)   (     ) 

7         break 

8 if        ( )      // full update 

9          ( ̂)   (       )  

10 return   

 

beam  , (sequences in   are sorted in terms of 

model score, i.e.,    (    )      (  1 ) ). 

At each step, the sequences in   are expanded in 

all possible ways and then   is filled up with the 

top s newly expanded sequences (line 2 ~ line 3). 

Finally, it returns the dependency tree built by 

the top action sequence in      . 

4 Training  

To learn the weight vector  , we use the percep-

tron-based global learning
3
 (Collins, 2002) which 

updates   by rewarding the feature weights fired 

in the correct action sequence and punish those 

fired in the predicted incorrect action sequence. 

Current work (Huang et al., 2012) rigorously 

explained that only valid update ensures conver-

gence of any perceptron variants. They also justi-

fied that the popular “early update” (Collins and  

Roark, 2004) is valid for the systems that do not 

exhibit spurious ambiguity
4
.  

However, for the easy-first algorithm or more 

generally, systems that exhibit spurious ambigui-

ty, even “early update” could fail to ensure valid-

ity of update (see the example in figure 1). For 

validity of update, we propose a simple solution 

which is based on “early update” and which can 

accommodate spurious ambiguity. The basic idea 

is to use the correct action sequence which was  

                                                 
3 Following (Zhang and Nivre, 2012), we say the training 

algorithm is global if it optimizes the score of an entire ac-

tion sequence. A local learner trains a classifier which dis-

tinguishes between single actions. 
4 As shown in (Goldberg and Nivre 2012), most transition-

based dependency parsers (Nivre et al., 2003; Huang and 

Sagae 2010;Zhang and Clark 2008) ignores spurious ambi-

guity by using a static oracle which maps a dependency tree 

to a single action sequence.  

Features of (Goldberg and Elhadad, 2010) 
for p in pi-1, pi, pi+1 wp-vlp, wp-vrp, tp-vlp,  

tp-vrp, tlcp, trcp, wlcp, wlcp 
for p in pi-2, pi-1, pi, pi+1, pi+2 tp-tlcp,  tp-trcp, tp-tlcp-trcp 
for p, q, r in (pi-2, pi-1, pi), (pi-

1, pi+1, pi), (pi+1, pi+2 ,pi) 
tp-tq-tr, tp-tq-wr 

for p, q in (pi-1, pi) tp-tlcp-tq,   tp-trcp-tq,   ,tp-tlcp-wq,, 

 tp-trcp-wq,   tp-wq-tlcq,  tp-wq-trcq 

 
Table 1: Feature templates for English dependency 

parsing. wp denotes the head word of p, tp denotes the 

POS tag of wp. vlp/vrp denotes the number p’s of 

left/right child. lcp/rcp denotes p’s leftmost/rightmost 

child. pi denotes partial tree being considered. 

 

pruned right at the step when all correct sequence 

falls off the beam (as C1 in figure 1).  

Algorithm 2 shows the pseudo-code of the 

training procedure over one training sample 

(   ), a sentence-tree pair. Here we assume   to 

be the set of all correct action sequences/sub-

sequences. At step k, the algorithm constructs a 

correct action sequence  ̂ of length k by extend-

ing those in      (line 3). It also checks whether 

   no longer contains any correct sequence. If so, 

 ̂ together with       are used for parameter up-

date (line 5 ~ line 6). It can be easily verified that 

each update in line 6 is valid. Note that both 

‘TOPC’ and the operation in line 5 use   to check 

whether an action sequence y is correct or not. 

This  can  be  efficiently  implemented   (without 

explicitly enumerating  ) by checking if each 

LEFT(i)/RIGHT(i) in y are compatible with (   ): 
pi already collected all its dependents according 

to t; pi is attached to the correct neighbor sug-

gested by t.  

5 Experiments 

For English, we use PTB as our data set. We use 

the standard split for dependency parsing and the 

split used by (Ratnaparkhi, 1996) for POS tag-

ging. Penn2Malt
5
 is used to convert the bracket-

ed structure into dependencies. For dependency 

parsing, POS tags of the training set are generat-

ed using 10-fold jack-knifing.  

For Chinese, we use CTB 5.1 and the split 

suggested by (Duan et al., 2007) for both tagging 

and dependency parsing. We also use Penn2Malt 

and the head-finding rules of (Zhang and Clark 

2008) to convert constituency trees into depend-

encies. For dependency parsing, we assume gold 

segmentation and POS tags for the input.  

                                                 
5 http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html 
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Features used in English dependency parsing 

are listed in table 1. Besides the features in 

(Goldberg and Elhadad, 2010), we also include 

some trigram features and valency features 

which are useful for transition-based dependency 

parsing (Zhang and Nivre, 2011). For English 

POS tagging, we use the same features as in 

(Shen et al., 2007). For Chinese POS tagging and 

dependency parsing, we use the same features as 

(Ma et al., 2012). All of our experiments are 

conducted on a Core i7 (2.93GHz) machine, both 

the tagger and parser are implemented using C++.  

5.1 Effect of beam width 

Tagging/parsing performances with different 

beam widths on the development set are listed in 

table 2 and table 3. We can see that Chinese POS  

tagging, dependency parsing as well as English 

dependency parsing greatly benefit from beam 

search. While tagging accuracy on English only 

slightly improved. This may because that the 

accuracy of the greedy baseline tagger is already 

very high and it is hard to get further improve-

ment. Table 2 and table 3 also show that the 

speed of both tagging and dependency parsing 

drops linearly with the growth of beam width. 

5.2 Final results 

Tagging results on the test set together with some 

previous results are listed in table 4. Dependency 

parsing results on CTB and PTB are listed in ta-

ble 5 and table 6, respectively. 

On CTB, tagging accuracy of our greedy base-

line is already comparable to the state-of-the-art. 

As the beam size grows to 5, tagging accuracy 

increases to 94.01% which is 2.3% error reduc-

tion. This is also the best tagging accuracy com-

paring with previous single tagging models (For 

limited space, we do not list the performance of 

joint tagging-parsing models).  

Parsing performances on both PTB and CTB 

are significantly improved with a relatively small 

beam width (s = 8). In particular, we achieve 

86.33% uas on CTB which is 1.54% uas im-

provement over the greedy baseline parser. 

Moreover, the performance is better than the best 

transition-based parser (Zhang and Nivre, 2011) 

which adopts a much larger beam width (s = 64).  

6 Conclusion and related work 

This work directly extends (Goldberg and El-

hadad, 2010) with beam search and global learn-

ing. We show that both the easy-first POS tagger 

and dependency parser can be significantly impr- 

s PTB CTB speed  

1 97.17 93.91 1350 

3 97.20 94.15 560 

5 97.22 94.17 385 

 

Table 2: Tagging accuracy vs beam width vs. Speed is 

evaluated using the number of sentences that can be 

processed in one second 

 

s 
PTB CTB 

speed 
uas compl uas compl 

1 91.77 45.29 84.54 33.75 221 

2 92.29 46.28 85.11 34.62 124 

4 92.50 46.82 85.62 37.11 71 

8 92.74 48.12 86.00 35.87 39 

 
Table 3: Parsing accuracy vs beam width. ‘uas’ and 

‘compl’ denote unlabeled score and complete match 

rate respectively (all excluding punctuations). 

 
PTB CTB 

(Collins, 2002) 97.11 (Hatori et al., 2012) 93.82 

(Shen et al., 2007) 97.33 (Li et al., 2012) 93.88 

(Huang et al., 2012) 97.35 (Ma et al., 2012) 93.84 

this work   1 97.22 this work   1 93.87 

this work     97.28 this work     94.01
†
 

 
Table 4: Tagging results on the test set. ‘

†
’ denotes 

statistically significant over the greedy baseline by 

McNemar’s test (      ) 
 

Systems s uas compl 

(Huang and Sagae, 2010) 8 85.20 33.72 

(Zhang and Nivre, 2011) 64 86.00 36.90 

(Li et al., 2012) － 86.55 － 

this work 1 84.79 32.98 

this work 8 86.33
†
 36.13 

 

Table 5: Parsing results on CTB test set. 

  

Systems s uas compl 

(Huang and Sagae, 2010) 8 92.10 － 

(Zhang and Nivre, 2011) 64 92.90 48.50 

(Koo and Collins, 2010) － 93.04 － 

this work 1 91.72 44.04 

this work 8 92.47
†
 46.07 

 

Table 6: Parsing results on PTB test set.  

 

oved using beam search and global learning. 

This work can also be considered as applying 

(Huang et al., 2012) to the systems that exhibit 

spurious ambiguity. One future direction might 

be to apply the training method to transition-

based parsers with dynamic oracle (Goldberg and 

Nivre, 2012) and potentially further advance per-

formances of state-of-the-art transition-based 

parsers. 
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Shen et al., (2007) and (Shen and Joshi, 2008) 

also proposed bi-directional sequential classifica-

tion with beam search for POS tagging and 

LTAG dependency parsing, respectively. The 

main difference is that their training method aims 

to learn a classifier which distinguishes between 

each local action while our training method aims 

to distinguish between action sequences. Our 

method can also be applied to their framework. 
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