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Abstract
Semantic parsing is the problem of de-
riving a structured meaning representation
from a natural language utterance. Here
we approach it as a straightforward ma-
chine translation task, and demonstrate
that standard machine translation com-
ponents can be adapted into a semantic
parser. In experiments on the multilingual
GeoQuery corpus we find that our parser
is competitive with the state of the art,
and in some cases achieves higher accu-
racy than recently proposed purpose-built
systems. These results support the use of
machine translation methods as an infor-
mative baseline in semantic parsing evalu-
ations, and suggest that research in seman-
tic parsing could benefit from advances in
machine translation.

1 Introduction

Semantic parsing (SP) is the problem of trans-
forming a natural language (NL) utterance into
a machine-interpretable meaning representation
(MR). It is well-studied in NLP, and a wide va-
riety of methods have been proposed to tackle
it, e.g. rule-based (Popescu et al., 2003), super-
vised (Zelle, 1995), unsupervised (Goldwasser et
al., 2011), and response-based (Liang et al., 2011).

At least superficially, SP is simply a machine
translation (MT) task: we transform an NL ut-
terance in one language into a statement of an-
other (un-natural) meaning representation lan-
guage (MRL). Indeed, successful semantic parsers
often resemble MT systems in several impor-
tant respects, including the use of word align-
ment models as a starting point for rule extrac-
tion (Wong and Mooney, 2006; Kwiatkowski et
al., 2010) and the use of automata such as tree
transducers (Jones et al., 2012) to encode the re-
lationship between NL and MRL.

The key difference between the two tasks is that
in SP, the target language (the MRL) has very dif-
ferent properties to an NL. In particular, MRs must
conform strictly to a particular structure so that
they are machine-interpretable. Contrast this with
ordinary MT, where varying degrees of wrongness
are tolerated by human readers (and evaluation
metrics). To avoid producing malformed MRs, al-
most all of the existing research on SP has focused
on developing models with richer structure than
those commonly used for MT.

In this work we attempt to determine how ac-
curate a semantic parser we can build by treating
SP as a pure MT task, and describe pre- and post-
processing steps which allow structure to be pre-
served in the MT process.

Our contributions are as follows: We develop
a semantic parser using off-the-shelf MT compo-
nents, exploring phrase-based as well as hierarchi-
cal models. Experiments with four languages on
the popular GeoQuery corpus (Zelle, 1995) show
that our parser is competitve with the state-of-
the-art, in some cases achieving higher accuracy
than recently introduced purpose-built semantic
parsers. Our approach also appears to require
substantially less time to train than the two best-
performing semantic parsers. These results sup-
port the use of MT methods as an informative
baseline in SP evaluations and show that research
in SP could benefit from research advances in MT.

2 MT-based semantic parsing

The input is a corpus of NL utterances paired with
MRs. In order to learn a semantic parser using
MT we linearize the MRs, learn alignments be-
tween the MRL and the NL, extract translation
rules, and learn a language model for the MRL.
We also specify a decoding procedure that will re-
turn structured MRs for an utterance during pre-
diction.
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states bordering Texas
state(next to(state(stateid(texas))))

⇓ STEM & LINEARIZE

state border texa
state1 next to1 state1 stateid1 texas0

⇓ ALIGN

state border texa

state1 next to1 state1 stateid1 texas0

⇓ EXTRACT (PHRASE)

〈 state , state1 〉
〈 state border , state1 border1 〉
〈 texa , state1 stateid1 texas0 〉

...

⇓ EXTRACT (HIER)

[X] → 〈state , state1〉
[X] → 〈state [X] texa ,

state1 [X] state1 stateid1 texas0〉
...

Figure 1: Illustration of preprocessing and rule ex-
traction.

Linearization We assume that the MRL is
variable-free (that is, the meaning representation
for each utterance is tree-shaped), noting that for-
malisms with variables, like the λ-calculus, can
be mapped onto variable-free logical forms with
combinatory logics (Curry et al., 1980).

In order to learn a semantic parser using MT
we begin by converting these MRs to a form more
similar to NL. To do so, we simply take a preorder
traversal of every functional form, and label every
function with the number of arguments it takes.
After translation, recovery of the function is easy:
if the arity of every function in the MRL is known,
then every traversal uniquely specifies its corre-
sponding tree. Using an example from GeoQuery,
given an input function of the form

answer(population(city(cityid(‘seattle’, ‘wa’))))

we produce a “decorated” translation input of the
form

answer1 population1 city1 cityid2 seattle0 wa0
where each subscript indicates the symbol’s arity
(constants, including strings, are treated as zero-
argument functions). Explicit argument number

labeling serves two functions. Most importantly,
it eliminates any possible ambiguity from the tree
reconstruction which takes place during decod-
ing: given any sequence of decorated MRL to-
kens, we can always reconstruct the correspond-
ing tree structure (if one exists). Arity labeling ad-
ditionally allows functions with variable numbers
of arguments (e.g. cityid, which in some training
examples is unary) to align with different natural
language strings depending on context.

Alignment Following the linearization of the
MRs, we find alignments between the MR tokens
and the NL tokens using the IBM Model 4 (Brown
et al., 1993). Once the alignment algorithm is
run in both directions (NL to MRL, MRL to NL),
we symmetrize the resulting alignments to obtain
a consensus many-to-many alignment (Och and
Ney, 2000; Koehn et al., 2005).

Rule extraction From the many-to-many align-
ment we need to extract a translation rule ta-
ble, consisting of corresponding phrases in NL
and MRL. We consider a phrase-based transla-
tion model (Koehn et al., 2003) and a hierarchi-
cal translation model (Chiang, 2005). Rules for
the phrase-based model consist of pairs of aligned
source and target sequences, while hierarchical
rules are SCFG productions containing at most
two instances of a single nonterminal symbol.

Note that both extraction algorithms can learn
rules which a traditional tree-transducer-based ap-
proach cannot—for example the right hand side

[X] river1 all0 traverse1 [X]

corresponding to the pair of disconnected tree
fragments:

[X]
��

traverse
��

river
��

[X]

all
(where each X indicates a gap in the rule).

Language modeling In addition to translation
rules learned from a parallel corpus, MT systems
also rely on an n-gram language model for the tar-
get language, estimated from a (typically larger)
monolingual corpus. In the case of SP, such a
monolingual corpus is rarely available, and we in-
stead use the MRs available in the training data to
learn a language model of the MRL. This informa-
tion helps guide the decoder towards well-formed
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structures; it encodes, for example, the preferences
of predicates of the MRL for certain arguments.

Prediction Given a new NL utterance, we need
to find the n best translations (i.e. sequences
of decorated MRL tokens) that maximize the
weighted sum of the translation score (the prob-
abilities of the translations according to the rule
translation table) and the language model score, a
process usually referred to as decoding. Standard
decoding procedures for MT produce an n-best list
of all possible translations, but here we need to
restrict ourselves to translations corresponding to
well-formed MRs. In principle this could be done
by re-writing the beam search algorithm used in
decoding to immediately discard malformed MRs;
for the experiments in this paper we simply filter
the regular n-best list until we find a well-formed
MR. This filtering can be done with time linear in
the length of the example by exploiting the argu-
ment label numbers introduced during lineariza-
tion. Finally, we insert the brackets according to
the tree structure specified by the argument num-
ber labels.

3 Experimental setup

Dataset We conduct experiments on the Geo-
Query data set. The corpus consists of a set of
880 natural-language questions about U.S. geog-
raphy in four languages (English, German, Greek
and Thai), and their representations in a variable-
free MRL that can be executed against a Prolog
database interface. Initial experimentation was
done using 10 fold cross-validation on the 600-
sentence development set and the final evaluation
on a held-out test set of 280 sentences. All seman-
tic parsers for GeoQuery we compare against also
makes use of NP lists (Jones et al., 2012), which
contain MRs for every noun phrase that appears in
the NL utterances of each language. In our exper-
iments, the NP list was included by appending all
entries as extra training sentences to the end of the
training corpus of each language with 50 times the
weight of regular training examples, to ensure that
they are learned as translation rules.

Evaluation for each utterance is performed by
executing both the predicted and the gold standard
MRs against the database and obtaining their re-
spective answers. An MR is correct if it obtains
the same answer as the gold standard MR, allow-
ing for a fair comparison between systems using
different learning paradigms. Following Jones et

al. (2012) we report accuracy, i.e. the percent-
age of NL questions with correct answers, and F1,
i.e. the harmonic mean of precision (percentage of
correct answers obtained).

Implementation In all experiments, we use the
IBM Model 4 implementation from the GIZA++
toolkit (Och and Ney, 2000) for alignment, and
the phrase-based and hierarchical models imple-
mented in the Moses toolkit (Koehn et al., 2007)
for rule extraction. The best symmetrization algo-
rithm, translation and language model weights for
each language are selected using cross-validation
on the development set. In the case of English and
German, we also found that stemming (Bird et al.,
2009; Porter, 1980) was hepful in reducing data
sparsity.

4 Results

We first compare the results for the two translation
rule extraction models, phrase-based and hierar-
chical (“MT-phrase” and “MT-hier” respectively
in Table 1). We find that the hierarchical model
performs better in all languages apart from Greek,
indicating that the long-range reorderings learned
by a hierarchical translation system are useful for
this task. These benefits are most pronounced in
the case of Thai, likely due to the the language’s
comparatively different word order.

We also present results for both models with-
out using the NP lists for training in Table 2. As
expected, the performances are almost uniformly
lower, but the parser still produces correct output
for the majority of examples.

As discussed above, one important modifica-
tion of the MT paradigm which allows us to pro-
duce structured output is the addition of structure-
checking to the beam search. It is not evident,
a priori, that this search procedure is guaran-
teed to find any well-formed outputs in reasonable
time; to test the effect of this extra requirement on

en de el th

MT-phrase 75.3 68.8 70.4 53.0
MT-phrase (-NP) 63.4 65.8 64.0 39.8

MT-hier 80.5 68.9 69.1 70.4
MT-hier (-NP) 62.5 69.9 62.9 62.1

Table 2: GeoQuery accuracies with and without
NPs. Rows with (-NP) did not use the NP list.

49



English [en] German [de] Greek [el] Thai [th]
Acc. F1 Acc. F1 Acc. F1 Acc. F1

WASP 71.1 77.7 65.7 74.9 70.7 78.6 71.4 75.0
UBL 82.1 82.1 75.0 75.0 73.6 73.7 66.4 66.4
tsVB 79.3 79.3 74.6 74.6 75.4 75.4 78.2 78.2

hybrid-tree 76.8 81.0 62.1 68.5 69.3 74.6 73.6 76.7
MT-phrase 75.3 75.8 68.8 70.8 70.4 73.0 53.0 54.4

MT-hier 80.5 81.8 68.9 71.8 69.1 72.3 70.4 70.7

Table 1: Accuracy and F1 scores for the multilingual GeoQuery test set. Results for other systems as
reported by Jones et al. (2012).

the speed of SP, we investigate how many MRs
the decoder needs to generate before producing
one which is well-formed. In practice, increasing
search depth in the n-best list from 1 to 50 results
in a gain of no more than a percentage point or
two, and we conclude that our filtering method is
appropriate for the task.

We also compare the MT-based semantic
parsers to several recently published ones: WASP

(Wong and Mooney, 2006), which like the hier-
archical model described here learns a SCFG to
translate between NL and MRL; tsVB (Jones et
al., 2012), which uses variational Bayesian infer-
ence to learn weights for a tree transducer; UBL

(Kwiatkowski et al., 2010), which learns a CCG
lexicon with semantic annotations; and hybrid-
tree (Lu et al., 2008), which learns a synchronous
generative model over variable-free MRs and NL
strings.

In the results shown in Table 1 we observe that
on English GeoQuery data, the hierarchical trans-
lation model achieves scores competitive with the
state of the art, and in every language one of the
MT systems achieves accuracy at least as good as
a purpose-built semantic parser.

We conclude with an informal test of training
speeds. While differences in implementation and
factors like programming language choice make
a direct comparison of times necessarily impre-
cise, we note that the MT system takes less than
three minutes to train on the GeoQuery corpus,
while the publicly-available implementations of
tsVB and UBL require roughly twenty minutes and
five hours respectively on a 2.1 GHz CPU. So
in addition to competitive performance, the MT-
based parser also appears to be considerably more
efficient at training time than other parsers in the
literature.

5 Related Work

WASP, an early automatically-learned SP system,
was strongly influenced by MT techniques. Like
the present work, it uses GIZA++ alignments as
a starting point for the rule extraction procedure,
and algorithms reminiscent of those used in syn-
tactic MT to extract rules.

tsVB also uses a piece of standard MT ma-
chinery, specifically tree transducers, which have
been profitably employed for syntax-based ma-
chine translation (Maletti, 2010). In that work,
however, the usual MT parameter-estimation tech-
nique of simply counting the number of rule oc-
currences does not improve scores, and the au-
thors instead resort to a variational inference pro-
cedure to acquire rule weights. The present work
is also the first we are aware of which uses phrase-
based rather than tree-based machine translation
techniques to learn a semantic parser. hybrid-tree
(Lu et al., 2008) similarly describes a generative
model over derivations of MRL trees.

The remaining system discussed in this paper,
UBL (Kwiatkowski et al., 2010), leverages the fact
that the MRL does not simply encode trees, but
rather λ-calculus expressions. It employs resolu-
tion procedures specific to the λ-calculus such as
splitting and unification in order to generate rule
templates. Like other systems described, it uses
GIZA alignments for initialization. Other work
which generalizes from variable-free meaning rep-
resentations to λ-calculus expressions includes the
natural language generation procedure described
by Lu and Ng (2011).

UBL, like an MT system (and unlike most of the
other systems discussed in this section), extracts
rules at multiple levels of granularity by means of
this splitting and unification procedure. hybrid-
tree similarly benefits from the introduction of

50



multi-level rules composed from smaller rules, a
process similar to the one used for creating phrase
tables in a phrase-based MT system.

6 Discussion

Our results validate the hypothesis that it is possi-
ble to adapt an ordinary MT system into a work-
ing semantic parser. In spite of the compara-
tive simplicity of the approach, it achieves scores
comparable to (and sometimes better than) many
state-of-the-art systems. For this reason, we argue
for the use of a machine translation baseline as a
point of comparison for new methods. The results
also demonstrate the usefulness of two techniques
which are crucial for successful MT, but which are
not widely used in semantic parsing. The first is
the incorporation of a language model (or com-
parable long-distance structure-scoring model) to
assign scores to predicted parses independent of
the transformation model. The second is the
use of large, composed rules (rather than rules
which trigger on only one lexical item, or on tree
portions of limited depth (Lu et al., 2008)) in
order to “memorize” frequently-occurring large-
scale structures.

7 Conclusions

We have presented a semantic parser which uses
techniques from machine translation to learn map-
pings from natural language to variable-free mean-
ing representations. The parser performs com-
parably to several recent purpose-built semantic
parsers on the GeoQuery dataset, while training
considerably faster than state-of-the-art systems.
Our experiments demonstrate the usefulness of
several techniques which might be broadly applied
to other semantic parsers, and provides an infor-
mative basis for future work.
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