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Abstract Pipe representation Boundary var.
apply| first aid coursé on line 10010
apply first aid coursgon line 00010
apply first aid course on line 00100

apply| first aid| course| on line 10110

Query segmentation, like text chunking,
is the first step towards query understand-
ing. In this study, we explore the effec-
tiveness of crowdsourcing for this task.
Through carefully designed control ex-
periments and Inter Annotator Agreement
metrics for analysis of experimental data,
we show that crowdsourcing may not be a
suitable approach for query segmentation f
because the crowd seems to have a very 4
strong bias towards dividing the query into 2
2
1
1

PN WA

Table 1: Example of flat segmentation by Turkers.
f is the frequency of annotations; segment bound-
aries are represented hy

Bracket representation Boundary var.
((apply first) ((aid course) (on line))) 02010
(((apply (first aid)) course) (on line)) 10230
((apply ((first aid) course)) (on line)) 20130
(apply (((first aid) course) (on line))) 30120
((apply (first aid)) (course (on line))) 10210

roughly equal (often only two) parts. Sim-
ilarly, in the case of hierarchical or nested

segmentation, turkers have a strong prefer- _
ence towards balanced binary trees. Table 2: Example of nested segmentation by Turk-

ers.f is the frequency of annotations.

1 Introduction

Text chunking)f Natural Language (NL) sentences A majority of work on query segmentation re-
is a well studied prObIem that is an essential Préties on manua”y Segmented queries by human ex-
processing step for many NLP applications (Ab-perts for training and evaluation of segmentation
ney, 1991; Abney, 1995). In the context of Webga|gorithms. These are typically small datasets and
search queriegjuery segmentatiois similarly the  even with detailed annotation guidelines and/or
first step towards analysis and understanding oflose supervision, low Inter Annotator Agreement
queries (Hagen et al., 2011). The task in both thg|AA) remains an issue. For instance, Table 1 il-
cases is to divide the sentence or the query int@strates the variation in flat segmentation by 10
contiguoussegmentsr chunks of words such that annotators. This confusion is mainly because the
the words from a segment are related to each othefefinition of a segment in a query is ambiguous
more strongly than words from different segmentsand of an unspecified granularity. This is fur-
(Bendersky et al., 2009). It is typically assumedther compounded by the fact that other than eas-
that the segments are structurally and semanticallyy recognizable and agreed upon segments such as
coherent and, therefore, the information containefjamed Entities or Multi-Word Expressions, there

in them can be processed holistically. is no established notion of linguistic grouping such
“The work was done during author's internship at Mi- &S phrases and clauses in a query.
crosoft Research Lab India. Although there is little work on the use of

T This author was supported by Microsoft Corporation

and Microsoft Research India under the Microsoft Researcifrowdsourcing for query segmentatiqn (Hagen et
India PhD Fellowship Award. al., 2011; Hagen et al., 2012), the idea that the
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crowd could be a potential (and cheaper) source 3
for reliable segmentation seems a reasonable as- /\

sumption. The need for larger datasets makes this 2 0
an attractive proposition. Also, a larger number /\ o The
of annotations could be appropriately distilled to 1 course
obtain better quality segmentations. applyAO
In this paper we explore crowdsourcing as an
option for query segmentation through experi- first  aid

ments designed using Amazon Mechanical Turk
(AMT)L. We compare the results against gold
datasets created by trained annotators. We ad- _ _
dress the issues pertaining to disagreements due §adily adapted for measuring 1AA for other lin-
both ambiguity and granularity and attempt to Ob_gmstlc annotatlpn tasks, especially when done us-
jectively quantify their role in IAA. To this end, [Ng crowdsourcing. , _

we also conduct similar annotation experiments 1€ rest of the paper is organized as follows.
for NL sentences and randomly generated querieS€C 2 Provides a brief overview of related work.
While queries are not as structured as NL senS€C 3 describes the experiment design and proce-
tences they are not simply a set of random wordsdure. In Sec 4, we introduce a new metric for IAA,
Thus, it is necessary to compare query segmentéhat could be uniformly applied across flat and
tion to theiiber-structure of NL sentences as well"eésted segmentations. Results of the annotation
as the unter-structure of randorgrams. This has €XPeriments are reported in Sec 5. In Sec 6, we an-
important implications for understanding any in- alyze the possible statistical and linguistic biases

herent biases annotators may have as a result § @hnotation. Sec 7 concludes the paper by sum-
the apparent lack of structure of the queries. marizing the work and discussing future research
To quantify the effect of granularity on Segmen_directions. All the annotated datasets used in this

tation, we also ask annotators to provide hierarf€search are freely available for non-commercial

chical or nested segmentations for real and ranr_esearch purposés

dom queries, as well as sentences._ Followingz Related Work
Abney’s (1992) proposal for hierarchical chunk-
ing of NL, we ask the annotators to grogx- Query segmentation was introduced by Risvik et.
actly twowords or segments at a time to recur-al. (2003) as a possible means to improve Informa-
sively form bigger segments. The concept is illus-tion Retrieval. Since then there has been a signif-
trated in Fig. 1. Table 2 shows annotations fromicant amount of research exploring various algo-
10 Turkers. It is important to constrain the join- rithms for this task and its use in IR (see Hagen et.
ing of exactly two segments or words at a timeal. (2011) for a survey). Most of the research and
to avoid the issue of fuzziness in granularity. Weevaluation considers query segmentation as a pro-
shall refer to this style of annotation &ested cess analogous to identification of phrases within
segmentationwhereas the non-hierarchical non-a query which when put within double-quotes (im-
constrained chunking will be referred to Bt  plying exact matching of the quoted phrase in the
segmentation document) leads to better IR performance. How-
Through statistical analysis of the experimen-ever, this is a very restricted view of the process
tal data we show that crowdsourcing may not beand does not take into account the full potential of
the best practice for query segmentation, not onlfluery segmentation.
because of ambiguity and granularity issues, but A more generic notion of segments leads to di-
because there exist very strong biases amongst averse and ambiguous definitions, making its eval-
notators to divide a query into two roughly equaluation a hard problem (see Saha Roy et. al. (2012)
parts that result in misleadingly high agreementsfor a discussion on issues with evaluation). Most
As a part of our analysis framework, we introduce@utomatic segmentation techniques (Bergsma and
a new IAA metric for comparison across flat andWang, 2007; Tan and Peng, 2008; Zhang et al.,
nested segmentations. This versatile metric can be 2gejated datasets and supplementary material can be ac-

- cessed fromhttp://bit.ly/161CGkk9 or can be ob-
*ht t ps: // www. nt ur k. cont nt ur k/ wel corre tained by directly emailing the authors.

Figure 1: Nested Segmentation: Illustration.
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2009; Brenes et al., 2010; Hagen et al., 2011; Li efinal output against human annotations.
al., 2011) have so far been evaluated only against _
a small set of human-annotated queries (Bergsmd EXperiments

and Wang, 2007). The reported low IAA for such h tati . tsh b desianed t
datasets casts serious doubts on the reliability o}— € annotalion experiments have been designed 1o

annotation and the performance of the aIgorithms?yStemat'C?”y study the various aspects of query
segmentation. In order to verify the effective-

evaluated on them (Hagen et al., 2011; Saha Ro - . .
val (Hag ’ ’ Xess and reliability of crowdsourcing, we designed

etal., 2012). ) _
) . an AMT experiment for flat segmentation of Web
To address the problem of data scarcity, Ha_search ueries. As a baseline, we would like to
gen et. al. (2011) have created larger annotated q ' !

. compare these annotations with those from hu-
datasets through crowdsourcthg However, in P

their approach the crowd is provided with a feWman experts trained for the task. We shall refer
: . to this baseline as th&old annotationset. Since
(four) possible segmentations of a query to choose

.~ ~"We believe that the issue of granularity could be
from (known through a personal communication . .
) ) the prime reason for previously reported low IAA
with a authors). Thus, it presupposes an automati

for segmentation, we also designed AMT-based
process that can generate the correct segmentation . .

- : : nested segmentation experiments for the same set
of a query within top few options. It is far from

. - of queries, and obtained the corresponding gold
obvious how to generate these initial segmenta- quert P 99
: ) . ) annotations.
tions in a reliable manner. This may also result™ _. . L
in an over-optimistic IAA. An ideal segmentation Finally, to estimate the role of ambiguity inher-
' ent in the structure of Web search queries on 1AA,

should be based on the annotators’ own interpreta- .
Pretele conducted two more control experiments, both

tion of the query. Nevertheless, if large scale dat . )
query . g at’nrough crowdsourcing. First, flat and nested seg-
has to be procured, crowdsourcing seems to be the

L : . mentation of well-formed English, i.e., NL sen-
only efficient and effective model for this task, and e S
- tences of similar length distribution; and second,
has been proven to be so for other IR and linguisti :
lat and nested segmentation of randomly gener-

annotations; see Carvalho et al. (2011) for exam- : .
ons, v ( ) X ated queries. Higher IAA for NL sentences would

ples of crow.dsour.cmg for IR resources and (SHOV\fead us to conclude that ambiguity and lack of
et al., 2008; Callison-Burch, 2009) for language . o ;
structure in queries is the main reason for low

resources. _
agreements. On the other hand high or comparable

In the context of NL text, segmentation has )
been traditionallv referred to ashunkingand i IAA for random queries would mean that annota-
een traditionafly reterred 1o & 9and 1S ions have strong biases.

a well-studied problem.  Abney (1991; 1992; Thus, we have the following four pairs of anno-

1995) defines a chunk as a sub-tree within . ) . :
. . ation experiments: flat and nested segmentation
syntactic phrase structure tree corresponding to

Noun, Prepositional, Adjectival, Adverbial and of queries from crowdsourcing, corresponding flat

Verb Phrases. Similarly, Bharati et al (1995) de_and nested gold annotations, flat and nested seg-

. : i f English f -
fines it as Noun Group and Verb Group based onlymentatlon of English sentences from crowdsourc

. . ... Ing, and flat and nested segmentations for ran-
on local surface information. However, cognitive domly generated queries through crowdsourcing
and annotation experiments for chunking of En- '
glish (Abney, 1992) and other language text (Bali3 1 pataset
et al., 2009) have shown that native speakers agree

on major clause and phrase boundaries, but mal):/or our experiments, we need a set of Web search

not do so on more fine-grained chunks. One imdueries and well-formed English sentences. Fur-
portant implication of this is that annotators arethermore, for generating the random queries, we

expected to agree more on the higher level bound/ill use search query logs to learrgram mod-
aries for nested segmentation than the lower one§!S: In particular, we use the following datasets:
We note that hierarchical query segmentation was @900, QG500: Saha Roy et al. (2012) re-
proposed for the first time by Huang et al. (2010),/6ased a dataset 600 queries, 5 to 8 words long,
where the authors recursively split a query (or itsfOr evaluation of various segmentation algorithms.

fragment) into exactly two parts and evaluate thel Nis dataset has flat segmentations from three an-
notators obtained under controlled experimental

Shtt p: // www. webi s. de/ r esear ch/ cor por a settings, and can be considered@ald annota-
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80

70 Parameter Flat Details Nested Details
g 60 Time needed: actual (allotted) 49 sec (10 min) 1 min 52 sec (15 min)
3 Reward per HIT $0.02 $0.06
% 50 Instruction video duration 26 sec 1 min 40 sec
o 40 Q300 Turker qualification Completion rate100 tasks
8 39 Q700 Turker approval rate Acceptance raté0 %
c . . .
g 36 = Sen300 Turker location United States of America
()
e H QRand -
4 I J ( Table 3: Specifics of the HITs for AMT.
0 | In = -
3 4 5 6 7 8 9

Number of words per Ttem queries generated usinggram models fom =

1,2,3. We estimated the models from the Bing
Australia log of 16.7 million queries. We gener-
ated 250 queries each of desired length distribu-

tions. Hence, we select this set for our experimentdon using the 1, 2 and 3-gram models. We shalll
as well. We procured the corresponding nestediefer to these a&l250, B250, T250 (for Uni, Bi
segmentation for these queries from two humar@nd Trigram) respectively, and the whole dataset
experts, who are regular search engine users, b@8sQRand. Fig. 2 shows the query and sentence
tween 20 and 30 years old, and familiar with var-length distribution for the various sets.

ious linguistic annotation tasks. They annotate
the data under supervision. They were trained an
paid for the task. We shall refer to the set of flate used AMT to get our annotations through
and nested gold annotations @S500, whereas crowdsourcing. Pilot experiments were carried out

Q500will be reserved for AMT experiments. to test the instruction set and exgmples prgsented.
Q700: Since500 queries may not be enough Based on the feedback, the precise instructions for

for reliable conclusion and since the queries mayh€ final experiments were designed.

not have been chosen specifically for the purpose WO séparate AMT Human Intelligence Tasks

of annotation experiments, we expanded the sdfi/TS) were designed for flat and nested query
with another 700 queries sampled from a slice of€gmentation. Also, the experiments for queries
the query logs of Bing Australfacontaining 16.7 (Q200+Q700 were conducted separately from

million queries issued over a period of one month>300 @nd QRand. - Thus, we had six HITs in
(May 2010). We picked, uniformly at random all. The concept of flat and nested segmentation
queries that ard to 8 words long, have only En. Was introduced to the Turkers with the help of ex-

glish letters and numerals, and a higick entropy ~ 2MPles presented in two short vidéoshen in
because “a query with a larger click entropy valuedoubt regarding the meaning of a query, the Turk-
is more likely to be an informational or ambiguous €S Were advised to issue the query on a search
query” (Dou et al., 2008)Q500 consists of tail- engine of their choice and find out its possible

ish queries with frequency between 5 and 15 thai[nterpretation(s). Note that we intentionally kept

have at least one multiword named entity: but un_definitions of flat and nested segmentation fuzzy

like the case 0700, click-entropy was not con- because (a) it would rquire very long instruction
sidered during sampling. As we shall see, this dif_manuals to cover all possible cases and (b)_Turkers
ference is clearly reflected in the results. do not tend to read verbose and complex instruc-
$300: We randomly selected00 English sen- tions. Table 3 summarizes other specifics of HITs.
tences from a collection of full texts of public do- Honey p(_)ts?r trap que_stlons Whose answers are
main bookS that were5 to 15 words long, and known a priori are often included in a HIT to iden-

checked them for well-formedness. This set WiIItncy tu_rkers who' are u_nable o solve the task ap-
be referred to aS300 propriately leading to incorrect annotations. How-

. ._ever, this trick cannot be employed in our case be-
QRand: Instead of generating search queries Pioy

S ._“cause there is no notion of an absolutely correct
by throwing in words randomly, we thought it

will be more interesting to explore annotation ofsegmentation. We observe that even with unam-
9 P biguous queries, even expert annotators may dis-

Figure 2: Length distribution of datasets.

.2 Crowdsourcing Experiments

*ht t p: / / wwv. bi ng. conf ?cc=au ®Flat: http://youtu.be/ eMeLj JI vl hO, Nested:
Shtt p: // www. gut enber g. or g htt p://yout u. be/ xE3r wANbFvU
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agree on some of the segment boundaries. Hencstraightforward.
we decided to include annotations from all the _ o
turkers, except for those that were syntactically ill-4-1  Notations and Definitions

formed (e.g., non-binary nested segmentation). Let @ be the set of all queries with cardinality

A queryq € @ can be represented as a sequence of
4 Inter Annotator Agreement gl words:wyws . .. wy,. We introduceq — 1| ran-
] dom variablesp, bo, . .. b|q|_1, such thatb; rep-
Inter Annotator Agreemenis the only way to resents the boundary between the worgsand

judge the reliability of annotated data in absenceﬁwiﬂl A flat or nested segmentation of repre-

of an end application. Therefore, before we Calanied byy;. j varying from 1 to total number of

venture into an_aly5|s of th? experimental data, Wednnotations;, is a particular instantiation of these
need to formalize the notion of I1AA for flat and boundary variables as described below

nested queries. The task is non-trivial for two

First. traditional IAA q Definition A flat segmentationg; can be
reasons. First, traditiona measures are eImiquely defined by a binary assignment of the
fined for a fixed set of annotators. However, for

q ina based ati giff ‘ boundary variables; ;, whereb; ; = 1 iff w; and
crowdsourcing based annotations, differen anno{uiﬂ belong to two different flat segments. Oth-

tators might have annotated different parts of theetwise,bj,i — 0. Thus,q has2/7-1 possible flat

dataset. For instance, we observed that a tOtaslegmentations

?f 125; étarkerr]s have E r(;wdeld thi f:ja:csgnotatlons Definition. A nested segmentatiay} can also
orQ when we had only aske anno- e uniquely defined by assigning non-negative in-

tatlorlstpzr qt:er%/.l;hl;s:[,hor;o?)verag_e, a Iturfke; h egers to the boundary variables such that= 0
annotated only.81% of the quenes. Intact, g \yords w; andw; 1, form an atomic segment

we found that31 turkers had annotated less than(i'e” they are grouped together), else — 1 +

5 queries. Hence, measures such as COhensmam(lefti,righti), wherele ft; and right; are

(1960) cannot be directly applied in this contextthe heights of the largest subtrees ending,znd
because for crowdsourced annotations, we cannot

. o eginning atw; 1 respectively.
meaningfully compute annotator-specific distribu- . .
. ) This numbering scheme for nested segmenta-
tion of the labels and biases.

tion can be understood through Fig. 1. Every in-

q Second, molgt offtheﬂstandard annqtatlon(;netrlc%mal node of the binary tree corresponding to the
° nOF generaiize for at Segmgntatlon and rees osted segmentation is numbered according to its
Artstein and Poesio (2008) provides acomprehenﬁeight The lowest internal nodes, both of whose

sive survey of the IAA metrics and their usage iNhildren are query words, are assigned a value of

NLP. They note that all the metrics assume thab_ Other internal nodes get a value of one greater

a fixe.d. set of Iabels.are used for items. Therey,,, ye height of its higher child. Since every in-
fore, it is far from obvious how to compare chunk-

X ) ternal node corresponds to a boundary, we assign
ing or segmentation thatoversthe whole text or

h iaht h la0Di . i th ; the height of the node to the corresponding bound-
that might haveoverlappingunits as in the case of g oq The number of unigue nested segmentations

nested segmentation. Furthermore, we would IikeOf a query of lengthg| is its correspondingata-
to compare the reliability of flat and nested $€04an numbef

mentation, and therefore, ideally we would like to

have an IAA metric that can be meaningfully aP"tation are illustrated with an example of each kind

plied to bOth,Of these cgses. . in Tables 1 and 2 (last column).
After considering various measures, we decided

to appropriately generalize one of the most versa4.2 Krippendorff’s « for Segmentation
tile and effective IAA metrics proposed till date

Boundary variables for flat and nested segmen-

the Kripendorff'sa: (2004). To be consistent with Krippendorff S (Krippendorft, 20.04) IS an ex-.
tremely versatile agreement coefficient, which is

prior work, we will stick to the notation used based on the assumption that the expected agree-
in Artstein and Poesio (2008) and redefine the

. .ment is calculated by looking at the overall distri-
« in the context of flat and nested segmentation y g

. : . bution of judgments without regard to which anno-
Note that though the notations introduced here W'”?ator produced them (Artstein and Poesio, 2008).

be from the perspective of queries, it is equally
applicable to sentences and the generalization is “http://goo. gl / vKQvK
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Hence, it is appropriate for crowdsourced annotaloss of generality, let us assume that < |¢|.
tion, where the judgments come from a large numis 1 or 2;r = |¢/| — |¢| + 1.

ber of unrelated annotators. Moreover, it allows

for different magnitudes of disagreement, which 1 , ,

is a useful feature as we might want to differen- @ (@m, dn) = =D DD Jbmi = (bniva)”| (6)
tially penalize disagreements at various levels of om0

r—1]q|—1

the tree for nested segmentation. 4.3 |AA under Random Bias Assumption
a is defined as Krippendorff's o« uses the cross-item variance as
D 2 an estimate of chance agreement, which is reli-
a=1-""=1- “JQL’”" (1) ablein general. However, this might result in mis-
De Stotal leadingly low values of IAA, especially when the

where D, and D, are, respectively, the observed ?tems in the. set are indeed expgcted to have sim-
and expected disagreements that are measured i§f annotations. To resolve this, we also com-
52 _ the variance within the annotation of an Pute the chance agreement under a random bias

within
item ands2, , — variance across annotations of M0d€l- The random model assumes thfitthe

all items. We adapt the equations presented igtructural annotations of are equiprobable For

pp.565-566 of Artstein and Poesio (2008) for meaflat segmentation, it boils down to the fact that
suring these quantities for queries: all the2!7=! annotations are equally likely, which

is equivalent to the assumption that any boundary
variableb; has 0.5 probability of being 0 and 0.5

(¢ (¢
Swithin = 2qc((1:—1) Z Z Z d(qm. qn) for 1.

q€Q@m=1n=1 5 Analytical computation of the expected proba-
. c c (2) bility distributions of di (g, ¢,) and da(qm, ¢n)
2 - / is harder for nested segmentation. Therefore, we
Stotal = d(qm, @) i i '
o 2qe(qe — 1) q%; q%; e programmatically generate all possible treesgfor

(3) which is again dependent only dg| and com-
where d(qn, q,,) is a distance metric for the agree- pute d; and d, between all pairs of trees, from
ment between annotations, andg,,. which the expected distributions can be readily

We define two different distance metrigsand estimated. Let us denote this expected cumula-
ds that are applicable to flat and nested segmentdive probability distribution for flat segmentation
tion. We shall first define these metrics for com-as P,(z;|q|) = the probability that for a pair

paring queries with equal length (i.&;] = |¢']): of randomly chosen flat segmentations ¢fg,,
andgn, d(gm,qn) > =. Likewise, letPy, (z;|q|)
1 ld=t and Py, (; |q|) be the respective probabilities that
/ /
d1(gm. 4n) = =1 Y lbmi=b:l 4 for any two nested segmentatiops and g, of
i=1 q, the following holds: d;(¢,q,) > = and

\ql—l dQ(QTI’MQTL) Z Z.
1 1 Z 82— ()2 (5) We define the IAA under random bias model as
N =1

d2(Qma an) =

lq] (kis 1, 2 or null):

While d; penalizes all disagreements equatly, 1 SR .
penalizes disagreements higher up the tree more.S " qc? z;? Z:I Z;Pdk(dk(qm’q”)’ lal) (@)
gel m=1n=

ds might be a desirable metric for nested seg-
mentation, because research on sentence churikhus,S is the expected probability of observing a
ing shows that annotators agree more on clause aimilar or worse agreement by random chance, av-
major phrase boundaries, even though they magraged over all pairs of annotations for all queries,
not always agree on intra-clausal or intra-phrasaand not a chance corrected IAA metric such as
boundaries (Bali et al., 2009). Note that for flate. Thus,S = 1 implies that the observed agree-
segmentationd; andds are identical, and hence ment isalmost always better thattat by random
we will denote them as. chance and = 0.5 and0 respectively imply that
We propose the following extension to thesethe observed agreementds good asaandalmost
metrics for queries of unequal lengths. Withoutalways worse tharnhat by random chance. We
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of queries. Slightly highes for flat segmentation

Dataset Flat Nested and a much highet for nested segmentation of
dy d; ds QRand reinforce the fact that low IAA is not due

Q700 0.21(0.59) 0.21(0.89) 0.16(0.68) to alack of structure in queries.

Q500 0.22(0.62) 0.15(0.70) 0.15(0.44) ltisinteresting to note that for nested segmen-
QG500 0.61(0.88) 0.66(0.88) 0.67(0.80) tation of S300and all segmentations @&@Rand
S300 0.27(0.74) 0.18(0.94) 0.14(0.75) are low or medium despite the fact thatis very
U250 0.23(0.89) 0.42(0.90) 0.30(0.78) high in all these cases. Thus, it is clear that an-
B250 0.22(0.86) 0.34(0.88) 0.22(0.71) notators have a strong bias towards certain struc-
T250 0.20(0.86) 0.44(0.89) 0.34(0.76) tures across queries. In the next section, we will

analyze some of these biases. We also computed
the 1AA betweenQG500 and Q500, and found
o = 0.27. This is much lower than for QG500,

also note that a high value of and low value though slightly higher than that f@500. We did

of « indicate that though the annotators agree oﬁ"_)t observe any significant variation _in agreement
the judgment of individual items, they also tend toWlth respect to the length of the queries.

agree on judgments of two different items, which Biases in Annotation

in turn, could be due to strong annotator biases o?

due to lack of variability of the dataset. The IAA statistics clearly show that there are cer-
In the supplementary material, computations okain strong biases in both flat and nested query
o and S have been explained in further details segmentation, especially those obtained through
through worked out examples. Tables for the exzrowdsourcing. To identify these biases, we went
pected distributions of, d; andd, under the ran-  through the annotations and came up with possi-
dom annotation assumption are also available. pje hypotheses, which we tried to verify through
statistical analysis of the data. Here, we report the
most prominent biases that were thus discovered.

Table 4 reports the values of and S for flat ~ Bias 1. During flat segmentation, annotators pre-
and nested segmentation on the various datasefer dividing the query into two segments of roughly
For nested segmentation, the values were conequal length.
puted for two different distance metricg and As discussed earlier, one of the major problems
do>. As expected, the highest value @ffor both  of flat segmentation is the fuzziness in granularity.
flat and nested segmentation is observed for golth our experiments, we intentionally left the de-
annotations. Am > 0.6 indicates quite good cision of whether to go for fine or coarse-grained
IAA, and thus, reliable annotations. Higherfor ~ segmentation to the annotator. However, it is sur-
nested segmentati€pG500than flat further vali-  prising to observe that annotators typically divide
dates our initial postulate that nested segmentatiothhe query into two segments (see Fig. 3, plots Al
may reduce disagreement from granularity issueand A2), and at times three, but hardly ever more
inherent in the definition of flat segmentation. than three. This bias is observed across queries,
Opposite trends are observed 700, Q500 sentences and random queries, where the percent-
andS30Q whereqx for flat is the highest, followed age of annotations with 2 or 3 segments are greater
by that for nested usingd;, and thend;. More- than83%, 91% and96% respectively. This bias
over, except for flat segmentation of sentenees, is most strongly visible foQRand because the
lies between 0.14 and 0.22, which is quite low.lack of syntactic or semantic cohesion between the
This clearly shows that segmentation, either flatvords provides no clue for segmentation.
or nested, cannot be reliably procured through Furthermore, we observe that typically seg-
crowdsourcing. Lowery for dy thand; further mentstend to be of equal length. For this, we com-
indicates that annotators disagree more for highgouted standard deviations (sd) of segment lengths
levels of the trees, contrary to what we had ex{or all annotations having 2 or 3 segments; the dis-
pected. However, nearly equal IAA for sentencedribution of sd is shown in Fig. 3, plots B1 and B2.
and queries implies that low agreement may not b&Ve observe that for all datasets, sd lies mainly be-
an outcome of inherent ambiguity in the structuretween 0.5 and 1 (for perspective, consider a query

Table 4: Agreement Statistica:(.S).

5 Results
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Figure 3: Analysis of annotation biases: Al, A2 — number of segmentsgiesetimentation vs. length;
B1, B2 — standard deviation of segment length for flat segmentation; C%, di&ribution of the tree
heights in nested segmentation.

Length Expected Q500 QG500 Q700 S300 QRand path, avoiding extremes and hence may not be a

5 257 200 202 208 202 201 reliable source of annotation for query segmen-
6 3.24 2.26 2.23 223 224 2.02 tati It b d that simil bi

2 388 270 271 267 255 262 tation. It can be argued that similar biases are
8 4.47 289 268 272 272 235 also observed for gold annotations, and therefore,

probably it is the inherent structure of the queries
and sentences that lead to such biased distribution
of segmentation patterns. However, note thé&r
with 7 words; with two segments of length 3 and QG500is much higher than all other cases, which
4 the sd is 0.5, and for 2 and 5, the sd is 1.5) imShows that the true agreement between gold anno-
plying that segments are roughly of equal length. tatqrs Is immune to such biases or skevyed distri-
Itis likely that due to this bias, thg or observed butions in the datasets. Furthermore, high values
agreement is moderately high for queries and ver)(?f . for'QRand despite the very 5”0”9 b|ases_ n
high for sentences, but then it also leads to high';mnotatlon shows that there perhaps is very little

agreement across different queries and sentencggoéce tlhat the anndotator§ hav%wh;:e ser?mehntmdg
(i.e., highs? , ) especially when they are of equal randomly generated queries. On the other hand,

length, which in turn brings down the value @t the textual ggherencz%f the reﬁl guer;es and sen-
the true agreement after bias correction. teqces provide many di e_rentc olces for segmen-
. . . tation and the Turker typically gets carried away
Bias 2 During nested segmentation, annotators . .
. by these biases, leading to lew
prefer balanced binary trees.

Quite analogous to bias 1, for nested segmerBias 3 Phrase structure drives segmentation only
tation we observe that annotators tend to prefewhen reconcilable with Bias Whenever the sen-
more balanced binary trees. Fig. 3 plots C1 and CZnce or query has a verb phrase (VP) spanning
show the distribution of the tree heights for variousroughly half of it, annotators seem to chunk be-
cases and Table 5 reports the corresponding avefiore the VP as one would expect, quite as of-
age height of the trees for queries and sentencaen as just after the verb, which is quite unex-
of various lengths and the the expected value opected. For instance, the sententegent | e
the height if all trees were equally likely. The ob-sarcasm ruf fl ed her anger. gathers as
served heights are much lower than the expecteghany as eight flat annotations with a boundary be-
values clearly implying the preference of the antweensar casmandr uf f | ed, and four with
notators for more balanced trees. a boundary betweenuf f | ed andher . How-

Thus, the crowd seems to choose the middlever, if the VP is very short consisting of a single

Table 5: Average height for nested segmentation
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7 Conclusion

Position Q500 QG500 Q700 S300 QRand

Both 224 037 278 208 0.63 We have studied various aspects of query segmen-
None 50.34 56.85 3574 35.84 39.81 tation through crowdsourcing by designing and
Right 23.86 21.50 19.02 12,52 15.23  conducting suitable experiments. Analysis of ex-
Left 18.08 1597  40.59 4596 21.21  perimental data leads us to conclude the follow-
» ing: (a) crowdsoucing may not be a very effective
Table 6:, Per_centages of posﬂmn_; of segmer\}vay to collect judgments for query segmentation;
b_o_undarles W'_th r(_aspect to preposmons. Prepo(b) addressing fuzziness of granularity for flat seg-
sitions occurring in the beginning or end of & 0nation by introducing strict binary nested seg-

query/sentence have been excluded from the an&\lﬁents does not lead to better agreement in crowd-

ysis; hence, numbers in a column do not total 100sourced annotations, though it definitely improves

the 1AA for gold standard segmentations, imply-
verb, asilA fleeting and furtive air ing that low IAA in flat segmentation among ex-
of triunph erupted., annotators seem to pertsis primarily an effect of unspecified granular-
attempt for a balanced annotation dueBias 1 ity of segments; (c) low IAA is not due to the in-
As a clear middle boundary is not present in suctherent structural ambiguity in queries as this holds
sentences, the annotations show a lot more varidrue for sentences as well; (d) there are strong bi-
tion and disagreement. For instance, only 1 out ofises in crowdsourced annotations, mostly because
10 annotations had a boundary befereupt ed  turkers prefer more balanced segment structures;
in the above example. In fact, at least one annoand (e) while annotators are by and large guided
tation had a boundary after each word in the senby linguistic principles, application of these prin-

tence, with no clear majority. ciples differ between query and NL sentences and
Bias 4 Prepositions influence segment bound-also closely interact with other biases.
aries differently for queries and sentence®ve One of the important contributions of this work

automatically labeled all the prepositions in theis the formulation of a new IAA metric for com-
flat annotations and classified them according tgaring across flat and nested segmentations, espe-
the criterion of whether a boundary was placedcially for crowdsourcing based annotations. Since
immediately before or after it, or on both sidestrees are commonly used across various linguistic
or neither side. The statistics, reported in Ta-annotations, this metric can have wide applicabil-
ble 6, show that for NL sentences a majorityity. The metric, moreover, can be easily adapted
of the boundaries are present before the prepde other annotation schemes as well by defining an
sition, marking the beginning of a prepositionalappropriate distance metric between annotations.
phrase. However, for queries, a much richer patSince large scale data for query segmentation is
tern emerges depending on the specific preposirery useful, it would be interesting to see if the
tion. For instancet o, of andfor are often problem can be rephrased to the Turkers in a way
chunked with the previous word (e.bow t o | SO as to obtain more reliable judgments. Yet a
choose a bi ke size, birthday party deeper question is regarding the theoretical status
i deas for | one year ol d). We believe of query structure, which though in an emergent
that this difference is because in sentences dustate is definitely an operating model for the anno-
to the presence of a verb, the PP has a welltators. Our future work in this area would specifi-
defined head, lack of which leads to prepositioncally target understanding and formalization of the
in queries getting chunked with words that formtheoretical model underpinning a query.
more commonly seen patterns (e.fjl,i ghts
toandtickets for). Acknowledgments

Bias 3 and 4 present the complex interpretation
of the structure of queries by the annotators whictVe thank Ed Cutrell and Andrew Cross, Microsoft
could be due to some emerging cognitive model oRResearch Lab India, for their help in setting up the
queries among the search engine users. This isAMT experiments. We would also like to thank
fascinating and unexplored aspect of query strucAnusha Suresh, IIT Kharagpur, India, for helping
tures that demands deeper investigation througHs With data preparation.
cognitive and psycholinguistic experiments.

1721



References

Steven P. Abney. 1991Parsing By Chunks Kluwer
Academic Publishers.

Steven P. Abney. 1992. Prosodic Structure, Perfor-
mance Structure And Phrase StructurePceed-
ings 5th DARPA Workshop on Speech and Natural
Language pages 425-428. Morgan Kaufmann.

Steven P. Abney. 1995. Chunks and dependencies:

Bringing processing evidence to bear on syntax.

Zhicheng Dou, Ruihua Song, Xiaojie Yuan, and Ji-

Rong Wen. 2008. Are Click-through Data Adequate
for Learning Web Search Rankings? mMnoceed-
ings of the 17th ACM Conference on Information
and Knowledge Managemeipiages 73—-82. ACM.

Matthias Hagen, Martin Potthast, Benno Stein, and

Christof Biautigam. 2011. Query Segmentation
Revisited. InProceedings of the 20th Interna-
tional Conference on World Wide Wepages 97—
106. ACM.

Computational Linguistics and the Foundations of Matthias Hagen, Martin Potthast, Anna Beyer, and

Linguistic Theorypages 145-164.

Ron Artstein and Massimo Poesio. 2008. Inter-coder
agreement for computational linguistic€omputa-
tional Linguistics 34(4):555-596.

Kalika Bali, Monojit Choudhury, Diptesh Chatterjee,

Benno Stein. 2012. Towards Optimum Query Seg-
mentation: In Doubt Without. IProceedings of the
Conference on Information and Knowledge Man-
agementpages 1015-1024.

Jian Huang, Jianfeng Gao, Jiangbo Miao, Xiaolong

Li, Kuansan Wang, Fritz Behr, and C. Lee Giles.
2010. Exploring web scale language models for

Sankalan Prasad, and Arpit Maheswari.. 2009. Cor- gagarch query processing. ioceedings of the 19th
relates between Performance, Prosodic and Phrase international conference on World wide wab\Ww

Structures in Bangla and Hindi: Insights from a Psy-
cholinguistic Experiment. IiProceedings of Inter-

'10, pages 451-460, New York, NY, USA. ACM.

national Conference on Natural Language ProcessKlaus Krippendorff. 2004. Content Analysis: An

ing, pages 101 —110.

Michael Bendersky, W. B. Croft, and David A. Smith.

Introduction to its Methodology Sage,Thousand
Oaks, CA.

2009. Two-stage query segmentation for informa-Yanen Li, Bo-Jun Paul Hsu, ChengXiang Zhai, and

tion retrieval. InProceedings of the 32nd interna-
tional ACM Special Interest Group on Information
Retrieval (SIGIR) Conference on Research and De-
velopment in Information Retrievgdlages 810-811.
ACM.

Shane Bergsma and Qin Iris Wang. 2007. Learning
Noun Phrase Query Segmentation. Aroceedings
of Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL) pages 819-826.

Akshar Bharati, Vineet Chaitanya, Rajeev Sangal, and
KV Ramakrishnamacharyulu. 199%\atural lan-
guage processing: a Paninian perspectiyentice-
Hall of India New Delhi.

David J. Brenes, Daniel Gayo-Avello, and Rodrigo
Garcia. 2010. On the fly query segmentation using
snippets. ICERI 10 pages 259-266.

Chris Callison-Burch. 2009. Fast, cheap, and cre-
ative: evaluating translation quality using amazon’s
mechanical turk. IProceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing EMNLP '09, pages 286—295. Associa-
tion for Computational Linguistics.

Kuansan Wang. 2011. Unsupervised query segmen-
tation using clickthrough for information retrieval.
In SIGIR '11, pages 285-294. ACM.

Knut Magne Risvik, Tomasz Mikolajewski, and Peter

Boros. 2003. Query segmentation for web search.
In WWW (Posters)

Rishiraj Saha Roy, Niloy Ganguly, Monojit Choud-

hury, and Srivatsan Laxman. 2012. An IR-based
Evaluation Framework for Web Search Query Seg-
mentation. IrProceedings of the International ACM
Special Interest Group on Information Retrieval (SI-
GIR) Conference on Research and Development in
Information Retrievalpages 881-890. ACM.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and

Andrew Y. Ng. 2008. Cheap and fast—but is it

good?: evaluating non-expert annotations for natural
language tasks. IRroceedings of the Conference on

Empirical Methods in Natural Language Process-

ing, EMNLP '08, pages 254-263, Stroudsburg, PA,

USA. Association for Computational Linguistics.

Bin Tan and Fuchun Peng. 2008. Unsupervised Query

Segmentation Using Generative Language Models
and Wikipedia. InProceedings of the 17th Inter-
national Conference on World Wide Web (WWW)
pages 347-356. ACM.

Vitor R Carvalho, Matthew Lease, and Emine Yilmaz. chao Zhang, Nan Sun, Xia Hu, Tingzhu Huang, and

2011. Crowdsourcing for search evaluatiohCM
Sigir forum 44(2):17-22.

Jacob Cohen. 1960. A Coefficient of Agreement for

Nominal Scales. Educational and Psychological
Measurement20(1):37-46.

1722

Tat-Seng Chua. 2009. Query segmentation based on
eigenspace similarity. 1Proceedings of the ACL-
IJCNLP 2009 Conference Short PapersCLShort

'09, pages 185-188, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.



