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Abstract

Query segmentation, like text chunking,
is the first step towards query understand-
ing. In this study, we explore the effec-
tiveness of crowdsourcing for this task.
Through carefully designed control ex-
periments and Inter Annotator Agreement
metrics for analysis of experimental data,
we show that crowdsourcing may not be a
suitable approach for query segmentation
because the crowd seems to have a very
strong bias towards dividing the query into
roughly equal (often only two) parts. Sim-
ilarly, in the case of hierarchical or nested
segmentation, turkers have a strong prefer-
ence towards balanced binary trees.

1 Introduction

Text chunkingof Natural Language (NL) sentences
is a well studied problem that is an essential pre-
processing step for many NLP applications (Ab-
ney, 1991; Abney, 1995). In the context of Web
search queries,query segmentationis similarly the
first step towards analysis and understanding of
queries (Hagen et al., 2011). The task in both the
cases is to divide the sentence or the query into
contiguoussegmentsor chunks of words such that
the words from a segment are related to each other
more strongly than words from different segments
(Bendersky et al., 2009). It is typically assumed
that the segments are structurally and semantically
coherent and, therefore, the information contained
in them can be processed holistically.

∗The work was done during author’s internship at Mi-
crosoft Research Lab India.

† This author was supported by Microsoft Corporation
and Microsoft Research India under the Microsoft Research
India PhD Fellowship Award.

f Pipe representation Boundary var.
4 apply| first aid course| on line 1 0 0 1 0
3 apply first aid course| on line 0 0 0 1 0
2 apply first aid| course on line 0 0 1 0 0
1 apply| first aid| course| on line 1 0 1 1 0

Table 1: Example of flat segmentation by Turkers.
f is the frequency of annotations; segment bound-
aries are represented by|.

f Bracket representation Boundary var.
4 ((apply first) ((aid course) (on line))) 0 2 0 1 0
2 (((apply (first aid)) course) (on line)) 1 0 2 3 0
2 ((apply ((first aid) course)) (on line)) 2 0 1 3 0
1 (apply (((first aid) course) (on line))) 3 0 1 2 0
1 ((apply (first aid)) (course (on line))) 1 0 2 1 0

Table 2: Example of nested segmentation by Turk-
ers.f is the frequency of annotations.

A majority of work on query segmentation re-
lies on manually segmented queries by human ex-
perts for training and evaluation of segmentation
algorithms. These are typically small datasets and
even with detailed annotation guidelines and/or
close supervision, low Inter Annotator Agreement
(IAA) remains an issue. For instance, Table 1 il-
lustrates the variation in flat segmentation by 10
annotators. This confusion is mainly because the
definition of a segment in a query is ambiguous
and of an unspecified granularity. This is fur-
ther compounded by the fact that other than eas-
ily recognizable and agreed upon segments such as
Named Entities or Multi-Word Expressions, there
is no established notion of linguistic grouping such
as phrases and clauses in a query.

Although there is little work on the use of
crowdsourcing for query segmentation (Hagen et
al., 2011; Hagen et al., 2012), the idea that the
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crowd could be a potential (and cheaper) source
for reliable segmentation seems a reasonable as-
sumption. The need for larger datasets makes this
an attractive proposition. Also, a larger number
of annotations could be appropriately distilled to
obtain better quality segmentations.

In this paper we explore crowdsourcing as an
option for query segmentation through experi-
ments designed using Amazon Mechanical Turk
(AMT)1. We compare the results against gold
datasets created by trained annotators. We ad-
dress the issues pertaining to disagreements due to
both ambiguity and granularity and attempt to ob-
jectively quantify their role in IAA. To this end,
we also conduct similar annotation experiments
for NL sentences and randomly generated queries.
While queries are not as structured as NL sen-
tences they are not simply a set of random words.
Thus, it is necessary to compare query segmenta-
tion to theüber-structure of NL sentences as well
as the unter-structure of randomn-grams. This has
important implications for understanding any in-
herent biases annotators may have as a result of
the apparent lack of structure of the queries.

To quantify the effect of granularity on segmen-
tation, we also ask annotators to provide hierar-
chical or nested segmentations for real and ran-
dom queries, as well as sentences. Following
Abney’s (1992) proposal for hierarchical chunk-
ing of NL, we ask the annotators to groupex-
actly two words or segments at a time to recur-
sively form bigger segments. The concept is illus-
trated in Fig. 1. Table 2 shows annotations from
10 Turkers. It is important to constrain the join-
ing of exactly two segments or words at a time
to avoid the issue of fuzziness in granularity. We
shall refer to this style of annotation asNested
segmentation, whereas the non-hierarchical non-
constrained chunking will be referred to asFlat
segmentation.

Through statistical analysis of the experimen-
tal data we show that crowdsourcing may not be
the best practice for query segmentation, not only
because of ambiguity and granularity issues, but
because there exist very strong biases amongst an-
notators to divide a query into two roughly equal
parts that result in misleadingly high agreements.
As a part of our analysis framework, we introduce
a new IAA metric for comparison across flat and
nested segmentations. This versatile metric can be

1https://www.mturk.com/mturk/welcome

3

2

1

apply 0

first aid

course

0

on line

Figure 1: Nested Segmentation: Illustration.

readily adapted for measuring IAA for other lin-
guistic annotation tasks, especially when done us-
ing crowdsourcing.

The rest of the paper is organized as follows.
Sec 2 provides a brief overview of related work.
Sec 3 describes the experiment design and proce-
dure. In Sec 4, we introduce a new metric for IAA,
that could be uniformly applied across flat and
nested segmentations. Results of the annotation
experiments are reported in Sec 5. In Sec 6, we an-
alyze the possible statistical and linguistic biases
in annotation. Sec 7 concludes the paper by sum-
marizing the work and discussing future research
directions. All the annotated datasets used in this
research are freely available for non-commercial
research purposes2.

2 Related Work

Query segmentation was introduced by Risvik et.
al. (2003) as a possible means to improve Informa-
tion Retrieval. Since then there has been a signif-
icant amount of research exploring various algo-
rithms for this task and its use in IR (see Hagen et.
al. (2011) for a survey). Most of the research and
evaluation considers query segmentation as a pro-
cess analogous to identification of phrases within
a query which when put within double-quotes (im-
plying exact matching of the quoted phrase in the
document) leads to better IR performance. How-
ever, this is a very restricted view of the process
and does not take into account the full potential of
query segmentation.

A more generic notion of segments leads to di-
verse and ambiguous definitions, making its eval-
uation a hard problem (see Saha Roy et. al. (2012)
for a discussion on issues with evaluation). Most
automatic segmentation techniques (Bergsma and
Wang, 2007; Tan and Peng, 2008; Zhang et al.,

2Related datasets and supplementary material can be ac-
cessed fromhttp://bit.ly/161Gkk9 or can be ob-
tained by directly emailing the authors.
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2009; Brenes et al., 2010; Hagen et al., 2011; Li et
al., 2011) have so far been evaluated only against
a small set of human-annotated queries (Bergsma
and Wang, 2007). The reported low IAA for such
datasets casts serious doubts on the reliability of
annotation and the performance of the algorithms
evaluated on them (Hagen et al., 2011; Saha Roy
et al., 2012).

To address the problem of data scarcity, Ha-
gen et. al. (2011) have created larger annotated
datasets through crowdsourcing3. However, in
their approach the crowd is provided with a few
(four) possible segmentations of a query to choose
from (known through a personal communication
with a authors). Thus, it presupposes an automatic
process that can generate the correct segmentation
of a query within top few options. It is far from
obvious how to generate these initial segmenta-
tions in a reliable manner. This may also result
in an over-optimistic IAA. An ideal segmentation
should be based on the annotators’ own interpreta-
tion of the query. Nevertheless, if large scale data
has to be procured, crowdsourcing seems to be the
only efficient and effective model for this task, and
has been proven to be so for other IR and linguistic
annotations; see Carvalho et al. (2011) for exam-
ples of crowdsourcing for IR resources and (Snow
et al., 2008; Callison-Burch, 2009) for language
resources.

In the context of NL text, segmentation has
been traditionally referred to aschunkingand is
a well-studied problem. Abney (1991; 1992;
1995) defines a chunk as a sub-tree within a
syntactic phrase structure tree corresponding to
Noun, Prepositional, Adjectival, Adverbial and
Verb Phrases. Similarly, Bharati et al (1995) de-
fines it as Noun Group and Verb Group based only
on local surface information. However, cognitive
and annotation experiments for chunking of En-
glish (Abney, 1992) and other language text (Bali
et al., 2009) have shown that native speakers agree
on major clause and phrase boundaries, but may
not do so on more fine-grained chunks. One im-
portant implication of this is that annotators are
expected to agree more on the higher level bound-
aries for nested segmentation than the lower ones.
We note that hierarchical query segmentation was
proposed for the first time by Huang et al. (2010),
where the authors recursively split a query (or its
fragment) into exactly two parts and evaluate the

3http://www.webis.de/research/corpora

final output against human annotations.

3 Experiments

The annotation experiments have been designed to
systematically study the various aspects of query
segmentation. In order to verify the effective-
ness and reliability of crowdsourcing, we designed
an AMT experiment for flat segmentation of Web
search queries. As a baseline, we would like to
compare these annotations with those from hu-
man experts trained for the task. We shall refer
to this baseline as theGold annotationset. Since
we believe that the issue of granularity could be
the prime reason for previously reported low IAA
for segmentation, we also designed AMT-based
nested segmentation experiments for the same set
of queries, and obtained the corresponding gold
annotations.

Finally, to estimate the role of ambiguity inher-
ent in the structure of Web search queries on IAA,
we conducted two more control experiments, both
through crowdsourcing. First, flat and nested seg-
mentation of well-formed English, i.e., NL sen-
tences of similar length distribution; and second,
flat and nested segmentation of randomly gener-
ated queries. Higher IAA for NL sentences would
lead us to conclude that ambiguity and lack of
structure in queries is the main reason for low
agreements. On the other hand high or comparable
IAA for random queries would mean that annota-
tions have strong biases.

Thus, we have the following four pairs of anno-
tation experiments: flat and nested segmentation
of queries from crowdsourcing, corresponding flat
and nested gold annotations, flat and nested seg-
mentation of English sentences from crowdsourc-
ing, and flat and nested segmentations for ran-
domly generated queries through crowdsourcing.

3.1 Dataset

For our experiments, we need a set of Web search
queries and well-formed English sentences. Fur-
thermore, for generating the random queries, we
will use search query logs to learnn-gram mod-
els. In particular, we use the following datasets:

Q500, QG500: Saha Roy et al. (2012) re-
leased a dataset of500 queries, 5 to 8 words long,
for evaluation of various segmentation algorithms.
This dataset has flat segmentations from three an-
notators obtained under controlled experimental
settings, and can be considered asGold annota-
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Figure 2: Length distribution of datasets.

tions. Hence, we select this set for our experiments
as well. We procured the corresponding nested
segmentation for these queries from two human
experts, who are regular search engine users, be-
tween 20 and 30 years old, and familiar with var-
ious linguistic annotation tasks. They annotated
the data under supervision. They were trained and
paid for the task. We shall refer to the set of flat
and nested gold annotations asQG500, whereas
Q500will be reserved for AMT experiments.

Q700: Since500 queries may not be enough
for reliable conclusion and since the queries may
not have been chosen specifically for the purpose
of annotation experiments, we expanded the set
with another 700 queries sampled from a slice of
the query logs of Bing Australia4 containing 16.7
million queries issued over a period of one month
(May 2010). We picked, uniformly at random,
queries that are4 to 8 words long, have only En-
glish letters and numerals, and a highclick entropy
because “a query with a larger click entropy value
is more likely to be an informational or ambiguous
query” (Dou et al., 2008).Q500 consists of tail-
ish queries with frequency between 5 and 15 that
have at least one multiword named entity; but un-
like the case ofQ700, click-entropy was not con-
sidered during sampling. As we shall see, this dif-
ference is clearly reflected in the results.

S300: We randomly selected300 English sen-
tences from a collection of full texts of public do-
main books5 that were5 to 15 words long, and
checked them for well-formedness. This set will
be referred to asS300.

QRand: Instead of generating search queries
by throwing in words randomly, we thought it
will be more interesting to explore annotation of

4http://www.bing.com/?cc=au
5http://www.gutenberg.org

Parameter Flat Details Nested Details

Time needed: actual (allotted) 49 sec (10 min) 1 min 52 sec (15 min)
Reward per HIT $0.02 $0.06
Instruction video duration 26 sec 1 min 40 sec
Turker qualification Completion rate>100 tasks
Turker approval rate Acceptance rate>60 %
Turker location United States of America

Table 3: Specifics of the HITs for AMT.

queries generated usingn-gram models forn =
1, 2, 3. We estimated the models from the Bing
Australia log of 16.7 million queries. We gener-
ated 250 queries each of desired length distribu-
tion using the 1, 2 and 3-gram models. We shall
refer to these asU250, B250, T250 (for Uni, Bi
and Trigram) respectively, and the whole dataset
asQRand. Fig. 2 shows the query and sentence
length distribution for the various sets.

3.2 Crowdsourcing Experiments

We used AMT to get our annotations through
crowdsourcing. Pilot experiments were carried out
to test the instruction set and examples presented.
Based on the feedback, the precise instructions for
the final experiments were designed.

Two separate AMT Human Intelligence Tasks
(HITs) were designed for flat and nested query
segmentation. Also, the experiments for queries
(Q500+Q700) were conducted separately from
S300 and QRand. Thus, we had six HITs in
all. The concept of flat and nested segmentation
was introduced to the Turkers with the help of ex-
amples presented in two short videos6. When in
doubt regarding the meaning of a query, the Turk-
ers were advised to issue the query on a search
engine of their choice and find out its possible
interpretation(s). Note that we intentionally kept
definitions of flat and nested segmentation fuzzy
because (a) it would require very long instruction
manuals to cover all possible cases and (b) Turkers
do not tend to read verbose and complex instruc-
tions. Table 3 summarizes other specifics of HITs.

Honey potsor trap questions whose answers are
known a priori are often included in a HIT to iden-
tify turkers who are unable to solve the task ap-
propriately leading to incorrect annotations. How-
ever, this trick cannot be employed in our case be-
cause there is no notion of an absolutely correct
segmentation. We observe that even with unam-
biguous queries, even expert annotators may dis-

6Flat: http://youtu.be/eMeLjJIvIh0, Nested:
http://youtu.be/xE3rwANbFvU
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agree on some of the segment boundaries. Hence,
we decided to include annotations from all the
turkers, except for those that were syntactically ill-
formed (e.g., non-binary nested segmentation).

4 Inter Annotator Agreement

Inter Annotator Agreementis the only way to
judge the reliability of annotated data in absence
of an end application. Therefore, before we can
venture into analysis of the experimental data, we
need to formalize the notion of IAA for flat and
nested queries. The task is non-trivial for two
reasons. First, traditional IAA measures are de-
fined for a fixed set of annotators. However, for
crowdsourcing based annotations, different anno-
tators might have annotated different parts of the
dataset. For instance, we observed that a total
of 128 turkers have provided the flat annotations
for Q700, when we had only asked for10 anno-
tations per query. Thus, on average, a turker has
annotated only7.81% of the700 queries. In fact,
we found that31 turkers had annotated less than
5 queries. Hence, measures such as Cohen’sκ
(1960) cannot be directly applied in this context
because for crowdsourced annotations, we cannot
meaningfully compute annotator-specific distribu-
tion of the labels and biases.

Second, most of the standard annotation metrics
do not generalize for flat segmentation and trees.
Artstein and Poesio (2008) provides a comprehen-
sive survey of the IAA metrics and their usage in
NLP. They note that all the metrics assume that
a fixed set of labels are used for items. There-
fore, it is far from obvious how to compare chunk-
ing or segmentation thatcoversthe whole text or
that might haveoverlappingunits as in the case of
nested segmentation. Furthermore, we would like
to compare the reliability of flat and nested seg-
mentation, and therefore, ideally we would like to
have an IAA metric that can be meaningfully ap-
plied to both of these cases.

After considering various measures, we decided
to appropriately generalize one of the most versa-
tile and effective IAA metrics proposed till date,
the Kripendorff’sα (2004). To be consistent with
prior work, we will stick to the notation used
in Artstein and Poesio (2008) and redefine the
α in the context of flat and nested segmentation.
Note that though the notations introduced here will
be from the perspective of queries, it is equally
applicable to sentences and the generalization is

straightforward.

4.1 Notations and Definitions

Let Q be the set of all queries with cardinalityq.
A queryq ∈ Q can be represented as a sequence of
|q| words:w1w2 . . . w|q|. We introduce|q−1| ran-
dom variables,b1, b2, . . . b|q|−1, such thatbi rep-
resents the boundary between the wordswi and
wi+1. A flat or nested segmentation ofq, repre-
sented byqj , j varying from 1 to total number of
annotationsc, is a particular instantiation of these
boundary variables as described below.

Definition. A flat segmentation, qj can be
uniquely defined by a binary assignment of the
boundary variablesbj,i, wherebj,i = 1 iff wi and
wi+1 belong to two different flat segments. Oth-
erwise,bj,i = 0. Thus,q has2|q|−1 possible flat
segmentations.

Definition. A nested segmentationqj can also
be uniquely defined by assigning non-negative in-
tegers to the boundary variables such thatbj,i = 0
iff words wi andwi+1 form an atomic segment
(i.e., they are grouped together), elsebj,i = 1 +
max(lefti, righti), where lefti and righti are
the heights of the largest subtrees ending atwi and
beginning atwi+1 respectively.

This numbering scheme for nested segmenta-
tion can be understood through Fig. 1. Every in-
ternal node of the binary tree corresponding to the
nested segmentation is numbered according to its
height. The lowest internal nodes, both of whose
children are query words, are assigned a value of
0. Other internal nodes get a value of one greater
than the height of its higher child. Since every in-
ternal node corresponds to a boundary, we assign
the height of the node to the corresponding bound-
aries. The number of unique nested segmentations
of a query of length|q| is its correspondingCata-
lan number7.

Boundary variables for flat and nested segmen-
tation are illustrated with an example of each kind
in Tables 1 and 2 (last column).

4.2 Krippendorff ’s α for Segmentation

Krippendorff ’sα (Krippendorff, 2004) is an ex-
tremely versatile agreement coefficient, which is
based on the assumption that the expected agree-
ment is calculated by looking at the overall distri-
bution of judgments without regard to which anno-
tator produced them (Artstein and Poesio, 2008).

7http://goo.gl/vKQvK
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Hence, it is appropriate for crowdsourced annota-
tion, where the judgments come from a large num-
ber of unrelated annotators. Moreover, it allows
for different magnitudes of disagreement, which
is a useful feature as we might want to differen-
tially penalize disagreements at various levels of
the tree for nested segmentation.
α is defined as

α = 1− Do

De
= 1− s2within

s2total
(1)

whereDo andDe are, respectively, the observed
and expected disagreements that are measured by
s2within – the variance within the annotation of an
item ands2total – variance across annotations of
all items. We adapt the equations presented in
pp.565-566 of Artstein and Poesio (2008) for mea-
suring these quantities for queries:

s2within =
1

2qc(c− 1)

∑

q∈Q

c∑

m=1

c∑

n=1

d(qm, qn)

(2)

s2total =
1

2qc(qc− 1)

∑

q∈Q

c∑

m=1

∑

q′∈Q

c∑

n=1

d(qm, q′n)

(3)
where,d(qm, q′n) is a distance metric for the agree-
ment between annotationsqm andq′n.

We define two different distance metricsd1 and
d2 that are applicable to flat and nested segmenta-
tion. We shall first define these metrics for com-
paring queries with equal length (i.e.,|q| = |q′|):

d1(qm, q′n) =
1

|q| − 1

|q|−1∑

i=1

|bm,i − b′n,i| (4)

d2(qm, q′n) =
1

|q| − 1

|q|−1∑

i=1

|b2m,i − (b′n,i)
2| (5)

While d1 penalizes all disagreements equally,d2
penalizes disagreements higher up the tree more.
d2 might be a desirable metric for nested seg-
mentation, because research on sentence chunk-
ing shows that annotators agree more on clause or
major phrase boundaries, even though they may
not always agree on intra-clausal or intra-phrasal
boundaries (Bali et al., 2009). Note that for flat
segmentation,d1 andd2 are identical, and hence
we will denote them asd.

We propose the following extension to these
metrics for queries of unequal lengths. Without

loss of generality, let us assume that|q| < |q′|. k
is 1 or 2;r = |q′| − |q|+ 1.

dk(qm, q′n) =
1

r(|q| − 1)

r−1∑

a=0

|q|−1∑

i=1

|bkm,i − (b′n,i+a)
k| (6)

4.3 IAA under Random Bias Assumption

Krippendorff’sα uses the cross-item variance as
an estimate of chance agreement, which is reli-
able in general. However, this might result in mis-
leadingly low values of IAA, especially when the
items in the set are indeed expected to have sim-
ilar annotations. To resolve this, we also com-
pute the chance agreement under a random bias
model. The random model assumes thatall the
structural annotations ofq are equiprobable. For
flat segmentation, it boils down to the fact that
all the2|q|−1 annotations are equally likely, which
is equivalent to the assumption that any boundary
variablebi has 0.5 probability of being 0 and 0.5
for 1.

Analytical computation of the expected proba-
bility distributions of d1(qm, qn) and d2(qm, qn)
is harder for nested segmentation. Therefore, we
programmatically generate all possible trees forq,
which is again dependent only on|q| and com-
pute d1 and d2 between all pairs of trees, from
which the expected distributions can be readily
estimated. Let us denote this expected cumula-
tive probability distribution for flat segmentation
as Pd(x; |q|) = the probability that for a pair
of randomly chosen flat segmentations ofq, qm
andqn, d(qm, qn) ≥ x. Likewise, letPd1(x; |q|)
andPd2(x; |q|) be the respective probabilities that
for any two nested segmentationsqm and qn of
q, the following holds: d1(qm, qn) ≥ x and
d2(qm, qn) ≥ x.

We define the IAA under random bias model as
(k is 1, 2 or null):

S =
1

qc2

∑

q∈Q

c∑

m=1

c∑

n=1

Pdk(dk(qm, qn); |q|) (7)

Thus,S is the expected probability of observing a
similar or worse agreement by random chance, av-
eraged over all pairs of annotations for all queries,
and not a chance corrected IAA metric such as
α. Thus,S = 1 implies that the observed agree-
ment isalmost always better thanthat by random
chance andS = 0.5 and0 respectively imply that
the observed agreement isas good asandalmost
always worse thanthat by random chance. We
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Dataset Flat Nested
d1 d1 d2

Q700 0.21(0.59) 0.21(0.89) 0.16(0.68)
Q500 0.22(0.62) 0.15(0.70) 0.15(0.44)

QG500 0.61(0.88) 0.66(0.88) 0.67(0.80)
S300 0.27(0.74) 0.18(0.94) 0.14(0.75)
U250 0.23(0.89) 0.42(0.90) 0.30(0.78)
B250 0.22(0.86) 0.34(0.88) 0.22(0.71)
T250 0.20(0.86) 0.44(0.89) 0.34(0.76)

Table 4: Agreement Statistics:α(S).

also note that a high value ofS and low value
of α indicate that though the annotators agree on
the judgment of individual items, they also tend to
agree on judgments of two different items, which
in turn, could be due to strong annotator biases or
due to lack of variability of the dataset.

In the supplementary material, computations of
α and S have been explained in further details
through worked out examples. Tables for the ex-
pected distributions ofd, d1 andd2 under the ran-
dom annotation assumption are also available.

5 Results

Table 4 reports the values ofα and S for flat
and nested segmentation on the various datasets.
For nested segmentation, the values were com-
puted for two different distance metricsd1 and
d2. As expected, the highest value ofα for both
flat and nested segmentation is observed for gold
annotations. Anα > 0.6 indicates quite good
IAA, and thus, reliable annotations. Higherα for
nested segmentationQG500 than flat further vali-
dates our initial postulate that nested segmentation
may reduce disagreement from granularity issues
inherent in the definition of flat segmentation.

Opposite trends are observed forQ700, Q500
andS300, whereα for flat is the highest, followed
by that for nested usingd1, and thend2. More-
over, except for flat segmentation of sentences,α
lies between 0.14 and 0.22, which is quite low.
This clearly shows that segmentation, either flat
or nested, cannot be reliably procured through
crowdsourcing. Lowerα for d2 than d1 further
indicates that annotators disagree more for higher
levels of the trees, contrary to what we had ex-
pected. However, nearly equal IAA for sentences
and queries implies that low agreement may not be
an outcome of inherent ambiguity in the structure

of queries. Slightly higherα for flat segmentation
and a much higherα for nested segmentation of
QRand reinforce the fact that low IAA is not due
to a lack of structure in queries.

It is interesting to note thatα for nested segmen-
tation of S300and all segmentations ofQRand
are low or medium despite the fact thatS is very
high in all these cases. Thus, it is clear that an-
notators have a strong bias towards certain struc-
tures across queries. In the next section, we will
analyze some of these biases. We also computed
the IAA betweenQG500 and Q500, and found
α = 0.27. This is much lower thanα for QG500,
though slightly higher than that forQ500. We did
not observe any significant variation in agreement
with respect to the length of the queries.

6 Biases in Annotation

The IAA statistics clearly show that there are cer-
tain strong biases in both flat and nested query
segmentation, especially those obtained through
crowdsourcing. To identify these biases, we went
through the annotations and came up with possi-
ble hypotheses, which we tried to verify through
statistical analysis of the data. Here, we report the
most prominent biases that were thus discovered.
Bias 1: During flat segmentation, annotators pre-
fer dividing the query into two segments of roughly
equal length.

As discussed earlier, one of the major problems
of flat segmentation is the fuzziness in granularity.
In our experiments, we intentionally left the de-
cision of whether to go for fine or coarse-grained
segmentation to the annotator. However, it is sur-
prising to observe that annotators typically divide
the query into two segments (see Fig. 3, plots A1
and A2), and at times three, but hardly ever more
than three. This bias is observed across queries,
sentences and random queries, where the percent-
age of annotations with 2 or 3 segments are greater
than83%, 91% and96% respectively. This bias
is most strongly visible forQRand because the
lack of syntactic or semantic cohesion between the
words provides no clue for segmentation.

Furthermore, we observe that typically seg-
ments tend to be of equal length. For this, we com-
puted standard deviations (sd) of segment lengths
for all annotations having 2 or 3 segments; the dis-
tribution of sd is shown in Fig. 3, plots B1 and B2.
We observe that for all datasets, sd lies mainly be-
tween 0.5 and 1 (for perspective, consider a query
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Figure 3: Analysis of annotation biases: A1, A2 – number of segments per flat segmentation vs. length;
B1, B2 – standard deviation of segment length for flat segmentation; C1, C2– distribution of the tree
heights in nested segmentation.

Length Expected Q500 QG500 Q700 S300 QRand

5 2.57 2.00 2.02 2.08 2.02 2.01
6 3.24 2.26 2.23 2.23 2.24 2.02
7 3.88 2.70 2.71 2.67 2.55 2.62
8 4.47 2.89 2.68 2.72 2.72 2.35

Table 5: Average height for nested segmentation.

with 7 words; with two segments of length 3 and
4 the sd is 0.5, and for 2 and 5, the sd is 1.5), im-
plying that segments are roughly of equal length.

It is likely that due to this bias, theS or observed
agreement is moderately high for queries and very
high for sentences, but then it also leads to high
agreement across different queries and sentences
(i.e., highs2total) especially when they are of equal
length, which in turn brings down the value ofα –
the true agreement after bias correction.
Bias 2: During nested segmentation, annotators
prefer balanced binary trees.

Quite analogous to bias 1, for nested segmen-
tation we observe that annotators tend to prefer
more balanced binary trees. Fig. 3 plots C1 and C2
show the distribution of the tree heights for various
cases and Table 5 reports the corresponding aver-
age height of the trees for queries and sentences
of various lengths and the the expected value of
the height if all trees were equally likely. The ob-
served heights are much lower than the expected
values clearly implying the preference of the an-
notators for more balanced trees.

Thus, the crowd seems to choose the middle

path, avoiding extremes and hence may not be a
reliable source of annotation for query segmen-
tation. It can be argued that similar biases are
also observed for gold annotations, and therefore,
probably it is the inherent structure of the queries
and sentences that lead to such biased distribution
of segmentation patterns. However, note thatα for
QG500 is much higher than all other cases, which
shows that the true agreement between gold anno-
tators is immune to such biases or skewed distri-
butions in the datasets. Furthermore, high values
of α for QRand despite the very strong biases in
annotation shows that there perhaps is very little
choice that the annotators have while segmenting
randomly generated queries. On the other hand,
the textual coherence of the real queries and sen-
tences provide many different choices for segmen-
tation and the Turker typically gets carried away
by these biases, leading to lowα.

Bias 3: Phrase structure drives segmentation only
when reconcilable with Bias 1.Whenever the sen-
tence or query has a verb phrase (VP) spanning
roughly half of it, annotators seem to chunk be-
fore the VP as one would expect, quite as of-
ten as just after the verb, which is quite unex-
pected. For instance, the sentenceA gentle
sarcasm ruffled her anger. gathers as
many as eight flat annotations with a boundary be-
tweensarcasm and ruffled, and four with
a boundary betweenruffled andher. How-
ever, if the VP is very short consisting of a single
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Position Q500 QG500 Q700 S300 QRand

Both 2.24 0.37 2.78 2.08 0.63
None 50.34 56.85 35.74 35.84 39.81
Right 23.86 21.50 19.02 12.52 15.23
Left 18.08 15.97 40.59 45.96 21.21

Table 6: Percentages of positions of segment
boundaries with respect to prepositions. Prepo-
sitions occurring in the beginning or end of a
query/sentence have been excluded from the anal-
ysis; hence, numbers in a column do not total 100.

verb, as inA fleeting and furtive air
of triumph erupted., annotators seem to
attempt for a balanced annotation due toBias 1.
As a clear middle boundary is not present in such
sentences, the annotations show a lot more varia-
tion and disagreement. For instance, only 1 out of
10 annotations had a boundary beforeerupted
in the above example. In fact, at least one anno-
tation had a boundary after each word in the sen-
tence, with no clear majority.
Bias 4: Prepositions influence segment bound-
aries differently for queries and sentences.We
automatically labeled all the prepositions in the
flat annotations and classified them according to
the criterion of whether a boundary was placed
immediately before or after it, or on both sides
or neither side. The statistics, reported in Ta-
ble 6, show that for NL sentences a majority
of the boundaries are present before the prepo-
sition, marking the beginning of a prepositional
phrase. However, for queries, a much richer pat-
tern emerges depending on the specific preposi-
tion. For instance,to, of and for are often
chunked with the previous word (e.g.,how to |
choose a bike size, birthday party
ideas for | one year old). We believe
that this difference is because in sentences due
to the presence of a verb, the PP has a well-
defined head, lack of which leads to preposition
in queries getting chunked with words that form
more commonly seen patterns (e.g.,flights
to andtickets for).

Bias 3 and 4 present the complex interpretation
of the structure of queries by the annotators which
could be due to some emerging cognitive model of
queries among the search engine users. This is a
fascinating and unexplored aspect of query struc-
tures that demands deeper investigation through
cognitive and psycholinguistic experiments.

7 Conclusion

We have studied various aspects of query segmen-
tation through crowdsourcing by designing and
conducting suitable experiments. Analysis of ex-
perimental data leads us to conclude the follow-
ing: (a) crowdsoucing may not be a very effective
way to collect judgments for query segmentation;
(b) addressing fuzziness of granularity for flat seg-
mentation by introducing strict binary nested seg-
ments does not lead to better agreement in crowd-
sourced annotations, though it definitely improves
the IAA for gold standard segmentations, imply-
ing that low IAA in flat segmentation among ex-
perts is primarily an effect of unspecified granular-
ity of segments; (c) low IAA is not due to the in-
herent structural ambiguity in queries as this holds
true for sentences as well; (d) there are strong bi-
ases in crowdsourced annotations, mostly because
turkers prefer more balanced segment structures;
and (e) while annotators are by and large guided
by linguistic principles, application of these prin-
ciples differ between query and NL sentences and
also closely interact with other biases.

One of the important contributions of this work
is the formulation of a new IAA metric for com-
paring across flat and nested segmentations, espe-
cially for crowdsourcing based annotations. Since
trees are commonly used across various linguistic
annotations, this metric can have wide applicabil-
ity. The metric, moreover, can be easily adapted
to other annotation schemes as well by defining an
appropriate distance metric between annotations.
Since large scale data for query segmentation is
very useful, it would be interesting to see if the
problem can be rephrased to the Turkers in a way
so as to obtain more reliable judgments. Yet a
deeper question is regarding the theoretical status
of query structure, which though in an emergent
state is definitely an operating model for the anno-
tators. Our future work in this area would specifi-
cally target understanding and formalization of the
theoretical model underpinning a query.
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