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Abstract

Toponym resolvers identify the specific lo-
cations referred to by ambiguous place-
names in text. Most resolvers are based on
heuristics using spatial relationships be-
tween multiple toponyms in a document,
or metadata such as population. This pa-
per shows that text-driven disambiguation
for toponyms is far more effective. We ex-
ploit document-level geotags to indirectly
generate training instances for text classi-
fiers for toponym resolution, and show that
textual cues can be straightforwardly in-
tegrated with other commonly used ones.
Results are given for both 19th century
texts pertaining to the American Civil War
and 20th century newswire articles.

1 Introduction

It has been estimated that at least half of the
world’s stored knowledge, both printed and digi-
tal, has geographic relevance, and that geographic
information pervades many more aspects of hu-
manity than previously thought (Petras, 2004;
Skupin and Esperbé, 2011). Thus, there is value
in connecting linguistic references to places (e.g.
placenames) to formal references to places (coor-
dinates) (Hill, 2006). Allowing for the querying
and exploration of knowledge in a geographically
informed way requires more powerful tools than a
keyword-based search can provide, in part due to
the ambiguity of toponyms (placenames).

Toponym resolution is the task of disambiguat-
ing toponyms in natural language contexts to geo-
graphic locations (Leidner, 2008). It plays an es-
sential role in automated geographic indexing and
information retrieval. This is useful for histori-
cal research that combines age-old geographic is-
sues like territoriality with modern computational
tools (Guldi, 2009), studies of the effect of histor-

ically recorded travel costs on the shaping of em-
pires (Scheidel et al., 2012), and systems that con-
vey the geographic content in news articles (Teitler
et al., 2008; Sankaranarayanan et al., 2009) and
microblogs (Gelernter and Mushegian, 2011).

Entity disambiguation systems such as those of
Kulkarni et al. (2009) and Hoffart et al. (2011)
disambiguate references to people and organiza-
tions as well as locations, but these systems do not
take into account any features or measures unique
to geography such as physical distance. Here we
demonstrate the utility of incorporating distance
measurements in toponym resolution systems.

Most work on toponym resolution relies on
heuristics and hand-built rules. Some use sim-
ple rules based on information from a gazetteer,
such as population or administrative level (city,
state, country, etc.), resolving every instance of
the same toponym type to the same location re-
gardless of context (Ladra et al., 2008). Others use
relationships between multiple toponyms in a con-
text (local or whole document) and look for con-
tainment relationships, e.g. London and England
occurring in the same paragraph or as the bigram
London, England (Li et al., 2003; Amitay et al.,
2004; Zong et al., 2005; Clough, 2005; Li, 2007;
Volz et al., 2007; Jones et al., 2008; Buscaldi and
Rosso, 2008; Grover et al., 2010). Still others first
identify unambiguous toponyms and then disam-
biguate other toponyms based on geopolitical re-
lationships with or distances to the unambiguous
ones (Ding et al., 2000). Many favor resolutions of
toponyms within a local context or document that
cover a smaller geographic area over those that are
more dispersed (Rauch et al., 2003; Leidner, 2008;
Grover et al., 2010; Loureiro et al., 2011; Zhang
et al., 2012). Roberts et al. (2010) use relation-
ships learned between people, organizations, and
locations from Wikipedia to aid in toponym reso-
lution when such named entities are present, but
do not exploit any other textual context.
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Most of these approaches suffer from a major
weakness: they rely primarily on spatial relation-
ships and metadata about locations (e.g., popu-
lation). As such, they often require nearby to-
ponyms (including unambiguous or containing to-
ponyms) to resolve ambiguous ones. This reliance
can result in poor coverage when the required in-
formation is missing in the context or when a doc-
ument mentions locations that are neither nearby
geographically nor in a geopolitical relationship.
There is a clear opportunity that most ignore:
use non-toponym textual context. Spatially rel-
evant words like downtown that are not explicit
toponyms can be strong cues for resolution (Hol-
lenstein and Purves, 2012). Furthermore, the con-
nection between non-spatial words and locations
has been successfully exploited in data-driven
approaches to document geolocation (Eisenstein
et al., 2010, 2011; Wing and Baldridge, 2011;
Roller et al., 2012) and other tasks (Hao et al.,
2010; Pang et al., 2011; Intagorn and Lerman,
2012; Hecht et al., 2012; Louwerse and Benesh,
2012; Adams and McKenzie, 2013).

In this paper, we learn resolvers that use all
words in local or document context. For example,
the word lobster appearing near the toponym Port-
land indicates the location is Portland in Maine
rather than Oregon or Michigan. Essentially, we
learn a text classifier per toponym. There are no
massive collections of toponyms labeled with lo-
cations, so we train models indirectly using geo-
tagged Wikipedia articles. Our results show these
text classifiers are far more accurate than algo-
rithms based on spatial proximity or metadata.
Furthermore, they are straightforward to combine
with such algorithms and lead to error reductions
for documents that match those algorithms’ as-
sumptions.

Our primary focus is toponym resolution, so we
evaluate on toponyms identified by human anno-
tators. However, it is important to consider the
utility of an end-to-end toponym identification and
resolution system, so we also demonstrate that
performance is still strong when toponyms are de-
tected with a standard named entity recognizer.

We have implemented all the models discussed
in this paper in an open source software package
called Fieldspring, which is available on GitHub:
http://github.com/utcompling/fieldspring

Explicit instructions are provided for preparing
data and running code to reproduce our results.

Figure 1: Points representing the United States.

2 Data

2.1 Gazetteer

Toponym resolvers need a gazetteer to obtain can-
didate locations for each toponym. Additionally,
many gazetteers include other information such as
population and geopolitical hierarchy information.
We use GEONAMES, a freely available gazetteer
containing over eight million entries worldwide.1

Each location entry contains a name (sometimes
more than one) and latitude/longitude coordinates.
Entries also include the location’s administrative
level (e.g. city or state) and its position in the
geopolitical hierarchy of countries, states, etc.

GEONAMES gives the locations of regional
items like states, provinces, and countries as single
points. This is clearly problematic when we seek
connections between words and locations: e.g. we
might learn that many words associated with the
USA are connected to a point in Kansas. To get
around this, we represent regional locations as a
set of points derived from the gazetteer. Since re-
gional locations are named in the entries for loca-
tions they contain, all locations contained in the
region are extracted (in some cases over 100,000
of them) and then k-means is run to find a smaller
set of spatial centroids. These act as a tractable
proxy for the spatial extent of the entire region. k
is set to the number of 1◦ by 1◦ grid cells covered
by that region. Figure 1 shows the points com-
puted for the United States.2 A nice property of
this representation is that it does not involve re-
gion shape files and the additional programming
infrastructure they require.

1Downloaded April 16, 2013 from www.geonames.
org.

2The representation also contains three points each in
Hawaii and Alaska not shown in Figure 1.
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Corpus docs toks types tokstop typestop ambavg ambmax

TRC-DEV 631 136k 17k 4356 613 15.0 857
TRC-DEV-NER - - - 3165 391 18.2 857
TRC-TEST 315 68k 11k 1903 440 13.7 857
TRC-TEST-NER - - - 1346 305 15.7 857
CWAR-DEV 228 33m 200k 157k 850 29.9 231
CWAR-TEST 113 25m 305k 85k 760 31.5 231

Table 1: Statistics of the corpora used for evaluation. Columns subscripted by top give figures for
toponyms. The last two columns give the average number of candidate locations per toponym token and
the number of candidate locations for the most ambiguous toponym.

A location for present purposes is thus a set of
points on the earth’s surface. The distance be-
tween two locations is computed as the great circle
distance between the closest pair of representative
points, one from each location.

2.2 Toponym Resolution Corpora

We need corpora with toponyms identified and re-
solved by human annotators for evaluation. The
TR-CONLL corpus (Leidner, 2008) contains 946
REUTERS news articles published in August
1996. It has about 204,000 words and articles
range in length from a few hundred words to sev-
eral thousand words. Each toponym in the corpus
was identified and resolved by hand.3 We place
every third article into a test portion (TRC-TEST)
and the rest in a development portion. Since our
methods do not learn from explicitly labeled to-
ponyms, we do not need a training set.

The Perseus Civil War and 19th Century Amer-
ican Collection (CWAR) contains 341 books (58
million words) written primarily about and during
the American Civil War (Crane, 2000). Toponyms
were annotated by a semi-automated process: a
named entity recognizer identified toponyms, and
then coordinates were assigned using simple rules
and corrected by hand. We divide CWAR into de-
velopment (CWAR-DEV) and test (CWAR-TEST)
sets in the same way as TR-CONLL.

Table 1 gives statistics for both corpora, includ-
ing the number and ambiguity of gold standard
toponyms for both as well as NER identified to-

3We found several systematic types of errors in the origi-
nal TR-CONLL corpus, such as coordinates being swapped
for some locations and some longitudes being zero or the neg-
ative of their correct values. We repaired many of these er-
rors, though some more idiosyncratic mistakes remain. We,
along with Jochen Leidner, will release this updated version
shortly and will link to it from our Fieldspring GitHub page.

ponyms for TR-CONLL.4 We use the pre-trained
English NER from the OpenNLP project.5

2.3 Geolocated Wikipedia Corpus

The GEOWIKI dataset contains over one million
English articles from the February 11, 2012 dump
of Wikipedia. Each article has human-annotated
latitude/longitude coordinates. We divide the cor-
pus into training (80%), development (10%), and
test (10%) at random and perform preprocessing
to remove markup in the same manner as Wing
and Baldridge (2011). The training portion is used
here to learn models for text-driven resolvers.

3 Toponym Resolvers

Given a set of toponyms provided via annotations
or identified using NER, a resolver must select a
candidate location for each toponym (or, in some
cases, a resolver may abstain). Here, we describe
baseline resolvers, a heuristic resolver based on
the usual cues used in most toponym resolvers,
and several text-driven resolvers. We also discuss
combining heuristic and text-driven resolvers.

3.1 Baseline Resolvers

RANDOM For each toponym, the RANDOM re-
solver randomly selects a location from those as-
sociated in the gazetteer with that toponym.

POPULATION The POPULATION resolver se-
lects the location with the greatest population for
each toponym. It is generally quite effective, but
when a toponym has several locations with large
populations, it is often wrong. Also, it can only be
used when such information is available, and it is

4States and countries are not annotated in CWAR, so we
do not evaluate end-to-end using NER plus toponym resolu-
tion for it as there are many (falsely) false positives.

5opennlp.apache.org
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less effective if the population statistics are from a
time period different from that of the corpus.

3.2 SPIDER
Leidner (2008) describes two general and useful
minimality properties of toponyms:

• one sense per discourse: multiple tokens of
a toponym in the same text generally do not
refer to different locations in the same text
• spatial minimality: different toponyms in a

text tend refer to spatially near locations

Many toponym resolvers exploit these (Smith and
Crane, 2001; Rauch et al., 2003; Leidner, 2008;
Grover et al., 2010; Loureiro et al., 2011; Zhang
et al., 2012). Here, we define SPIDER (Spatial
Prominence via Iterative Distance Evaluation and
Reweighting) as a strong representative of such
textually unaware approaches. In addition to cap-
turing both minimality properties, it also identifies
the relative prominence of the locations for each
toponym in a given corpus.

SPIDER resolves each toponym by finding the
location for each that minimizes the sum distance
to all locations for all other toponyms in the same
document. On the first iteration, it tends to select
locations that clump spatially: if Paris occurs with
Dallas, it will choose Paris, Texas even though the
topic may be a flight from Texas to France. Further
iterations bring Paris, France into focus by captur-
ing its prominence across the corpus. The key in-
tuition is that most documents will discuss Paris,
France and only a small portion of these mention
places close to Paris, Texas; thus, Paris, France
will be selected on the first iteration for many
documents (though not for the Dallas document).
SPIDER thus assigns each candidate location a
weight (initialized to 1.0), which is re-estimated
on each iteration. The adjusted distance between
two locations is computed as the great circle dis-
tance divided by the product of the two locations’
weights. At the end of an iteration, each candi-
date location’s weight is updated to be the frac-
tion of the times it was chosen times the number
of candidates for that toponym. The weights are
global, with one for each location in the gazetteer,
so the same weight vector is used for each token
of a given toponym on a given iteration.

For example, if after the first iteration Paris,
France is chosen thrice, Paris, Texas once, and
Paris, Arkansas never, the global weights of these
locations are (3/4)∗3=2.25, (1/4)∗3=.75, and

(0/4)∗3=0, respectively (assume, for the exam-
ple, there are no other locations named Paris). The
sum of the weights remains equal to the number
of candidate locations. The updated weights are
used on the next iteration, so Paris, France will
seem “closer” since any distance computed to it
is divided by a number greater than one. Paris,
Texas will seem somewhat further away, and Paris,
Arkansas infinitely far away. The algorithm con-
tinues for a fixed number of iterations or until the
weights do not change more than some thresh-
old. Here, we run SPIDER for 10 iterations; the
weights have generally converged by this point.

When only one toponym is present in a doc-
ument, we simply select the candidate with the
greatest weight. When there is no such weight in-
formation, such as when the toponym does not co-
occur with other toponyms anywhere in the cor-
pus, we select a candidate at random.

SPIDER captures prominence, but we stress it
is not our main innovation: its purpose is to be a
benchmark for text-driven resolvers to beat.

3.3 Text-Driven Resolvers

The text-driven resolvers presented in this section
all use local context windows, document context,
or both, to inform disambiguation.

TRIPDL We use a document geolocator
trained on GEOWIKI’s document location labels.
Others—such as Smith and Crane (2001)—have
estimated a document-level location to inform
toponym resolution, but ours is the first we are
aware of to use training data from a different
domain to build a document geolocator that uses
all words (not only toponyms) to estimate a
document’s location. We use the document geolo-
cation method of Wing and Baldridge (2011). It
discretizes the earth’s surface into 1◦ by 1◦ grid
cells and assigns Kullback-Liebler divergences to
each cell given a document, based on language
models learned for each cell from geolocated
Wikipedia articles. We obtain the probability of a
cell c given a document d by the standard method
of exponentiating the negative KL-divergence and
normalizing these values over all cells:

P (c|d) = exp(−KL(c, d))∑
c′ exp(−KL(c′, d))

This distribution is used for all toponyms t in d
to define distributions PDL(l|t, d) over candidate
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locations of t in document d to be the portion of
P (c|d) consistent with the t’s candidate locations:

PDL(l|t, d) =
P (cl|d)∑

l′∈G(t) P (cl′ |d)
where G(t) is the set of the locations for t in the
gazetteer, and cl is the cell containing l. TRIPDL
(Toponym Resolution Informed by Predicted Doc-
ument Locations) chooses the location that maxi-
mizes PDL.

WISTR While TRIPDL uses an off-the-shelf
document geolocator to capture the geographic
gist of a document, WISTR (Wikipedia Indirectly
Supervised Toponym Resolver) instead directly
targets each toponym. It learns text classifiers
based on local context window features trained on
instances automatically extracted from GEOWIKI.

To create the indirectly supervised training data
for WISTR, the OpenNLP named entity recog-
nizer detects toponyms in GEOWIKI, and can-
didate locations for each toponym are retrieved
from GEONAMES. Each toponym with a loca-
tion within 10km of the document location is con-
sidered a mention of that location. For example,
the Empire State Building Wikipedia article has a
human-provided location label of (40.75,-73.99).
The toponym New York is mentioned several times
in the article, and GEONAMES lists a New York at
(40.71,-74.01). These points are 4.8km apart, so
each mention of New York in the document is con-
sidered a reference to New York City.

Next, context windows w of twenty words to
each side of each toponym are extracted as fea-
tures. The label for a training instance is the
candidate location closest to the document loca-
tion. We extract 1,489,428 such instances for to-
ponyms relevant to our evaluation corpora. These
instances are used to train logistic regression clas-
sifiers P (l|t, w) for location l and toponym t. To
disambiguate a new toponym, WISTR chooses
the location that maximizes this probability.

Few such probabilistic toponym resolvers ex-
ist in the literature. Li (2007) builds a probabil-
ity distribution over locations for each toponym,
but still relies on nearby toponyms that could refer
to regions that contain that toponym and requires
hand construction of distributions. Other learn-
ing approaches to toponym resolution (e.g. Smith
and Mann (2003)) require explicit unambiguous
mentions like Portland, Maine to construct train-
ing instances, while our data gathering methodol-

ogy does not make such an assumption. Overell
and Rüger (2008) and Overell (2009) only use
nearby toponyms as features. Mani et al. (2010)
and Qin et al. (2010) use other word types but
only in a local context, and they require toponym-
labeled training data. Our approach makes use of
all words in local and document context and re-
quires no explicitly labeled toponym tokens.

TRAWL We bring TRIPDL, WISTR, and
standard toponym resolution cues about ad-
ministrative levels together with TRAWL (To-
ponym Resolution via Administrative levels and
Wikipedia Locations). The general form of a prob-
abilistic resolver that utilizes such information to
select a location l̂ for a toponym t in document d
may be defined as

l̂ = argmaxl P (l, al|t, d).
where al is the administrative level (country, state,
city) for l in the gazetteer. This captures the fact
that countries (like Sudan) tend to be referred to
more often than small cities (like Sudan, Texas).
The above term is simplified as follows:

P (l, al|t, d) = P (al|t, d)P (l|al, t, d)
≈ P (al|t)P (l|t, d)

where we approximate the administrative level
prediction as independent of the document, and
the location as independent of administrative level.
The latter term is then expressed as a linear combi-
nation of the local context (WISTR) and the doc-
ument context (TRIPDL):

P (l|t, d) = λtP (l|t, ct) + (1−λt)PDL(l|t, d).
λt, the weight of the local context distribution, is
set according to the confidence that a prediction
based on local context is correct:

λt =
f(t)

f(t)+C ,

where f(t) is the fraction of training instances
of toponym t of all instances extracted from
GEOWIKI. C is set experimentally; C=.0001 was
the optimal value for CWAR-DEV. Intuitively, the
larger C is, the greater f(t) must be for the local
context to be trusted over the document context.

We define P (a|t), the administrative level com-
ponent, to be the fraction of representative points
for a location l̂ out of the number of representa-
tives points for all candidate locations l ∈ t,

||Rl̂||∑
l′∈t ||Rl′ ||

1470



where ||Rl|| is the number of representative points
of l. This boosts states and countries since higher
probability is assigned to locations with more
points (and cities have just one point).

Taken together, the above definitions yield the
TRAWL resolver, which selects the optimal can-
didate location l̂ according to

l̂ = argmaxl P (al|t)(λtP (l|t, ct) + (1−λt)PDL(l|t, d)).

3.4 Combining Resolvers and Backoff

SPIDER begins with uniform weights for each
candidate location of each toponym. WISTR
and TRAWL both output distributions over these
locations based on outside knowledge sources,
and can be used as more informed initializa-
tions of SPIDER than the uniform ones. We
call these combinations WISTR+SPIDER and
TRAWL+SPIDER.6

WISTR fails to predict when encountering a
toponym it has not seen in the training data, and
TRIPDL fails when a toponym only has locations
in cells with no probability mass. TRAWL fails
when both of these are true. In these cases, we
select the candidate location geographically clos-
est to the most likely cell according to TRIPDL’s
P (c|d) distribution.

3.5 Document Size

For SPIDER, runtime is quadratic in the size
of documents, so breaking up documents vastly
reduces runtime. It also restricts the minimal-
ity heuristic—appropriately—to smaller spans of
text. For resolvers that take into account the sur-
rounding document when determining how to re-
solve a toponym, such as TRIPDL and TRAWL,
it can often be beneficial to divide documents into
smaller subdocuments in order to get a better esti-
mate of the overall geographic prominence of the
text surrounding a toponym, but at a more coarse-
grained level than the local context models pro-
vide. For these reasons, we simply divide each
book in the CWAR corpus into small subdocu-
ments of at most 20 sentences.

4 Evaluation

Many prior efforts use a simple accuracy metric:
the fraction of toponyms whose predicted location

6We scale each toponym’s distribution as output by
WISTR or TRAWL by the number of candidate locations
for that toponym, since the total weight for each toponym in
SPIDER is the number of candidate locations, not 1.

is the same as the gold location. Such a met-
ric can be problematic, however. The gazetteer
used by a resolver may not contain, for a given
toponym, a location whose latitude and longitude
exactly match the gold label for the toponym (Lei-
dner, 2008). Also, some errors are worse than oth-
ers, e.g. predicting a toponym’s location to be on
the other side of the world versus predicting it to
be a different city in the same country—accuracy
does not reflect this difference.

We choose a metric that instead measures the
distance between the correct and predicted loca-
tion for each toponym and compute the mean and
median of all such error distances. This is used
in document geolocation work (Eisenstein et al.,
2010, 2011; Wing and Baldridge, 2011; Roller
et al., 2012) and is related to the root mean squared
distance metric discussed by Leidner (2008).

It is important to understand performance on
plain text (without gold toponyms), which is the
typical use case for applications using toponym
resolvers. Both the accuracy metric and the error-
distance metric encounter problems when the set
of predicted toponyms is not the same as the set
of gold toponyms (regardless of locations), e.g.
when a named entity recognizer is used to iden-
tify toponyms. In this case, we can use precision
and recall, where a true positive is defined as the
prediction of a correctly identified toponym’s lo-
cation to be as close as possible to its gold la-
bel, given the gazetteer used. False positives oc-
cur when the NER incorrectly predicts a toponym,
and false negatives occur when it fails to predict a
toponym identified by the annotator. When a cor-
rectly identified toponym receives an incorrect lo-
cation prediction, this counts as both a false nega-
tive and a false positive. We primarily present re-
sults from experiments with gold toponyms but in-
clude an accuracy measure for comparability with
results from experiments run on plain text with
a named entity recognizer. This accuracy met-
ric simply computes the fraction of toponyms that
were resolved as close as possible to their gold la-
bel given the gazetteer.

5 Results

Table 2 gives the performance of the resolvers
on the TR-CONLL and CWAR test sets when
gold toponyms are used. Values for RANDOM

and SPIDER are averaged over three trials. The
ORACLE row gives results when the candidate
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Resolver TRC-TEST CWAR-TEST

Mean Med. A Mean Med. A
ORACLE 105 19.8 100.0 0.0 0.0 100.0
RANDOM 3915 1412 33.5 2389 1027 11.8
POPULATION 216 23.1 81.0 1749 0.0 59.7
SPIDER10 2180 30.9 55.7 266 0.0 57.5
TRIPDL 1494 29.3 62.0 847 0.0 51.5
WISTR 279 22.6 82.3 855 0.0 69.1
WISTR+SPIDER10 430 23.1 81.8 201 0.0 85.9
TRAWL 235 22.6 81.4 945 0.0 67.8
TRAWL+SPIDER10 297 23.1 80.7 148 0.0 78.2

Table 2: Accuracy and error distance metrics on test sets with gold toponyms.

Figure 2: Visualization of how SPIDER clumps
most predicted locations in the same region
(above), on the CWAR-DEV corpus. TRAWL’s
output (below) is much more dispersed.

from GEONAMES closest to the annotated loca-
tion is always selected. The ORACLE mean and
median error values on TR-CONLL are nonzero
due to errors in the annotations and inconsisten-
cies stemming from the fact that coordinates from
GEONAMES were not used in the annotation of
TR-CONLL.

On both datasets, SPIDER achieves errors and
accuracies much better than RANDOM, validating
the intuition that authors tend to discuss places
near each other more often than not, while some
locations are more prominent in a given corpus
despite violating the minimality heuristic. The
text-driven resolvers vastly outperform SPIDER,
showing the effectiveness of textual cues for to-
ponym resolution.

The local context resolver WISTR is very
effective: it has the highest accuracy for
TR-CONLL, though two other text-based re-
solvers also beat the challenging POPULATION

baseline’s accuracy. TRAWL achieves a better
mean distance metric for TR-CONLL, and when
used to seed SPIDER, it obtains the lowest mean
error on CWAR by a large margin. SPIDER
seeded with WISTR achieves the highest accu-
racy on CWAR. The overall geographic scope
of CWAR, a collection of documents about the
American Civil War, is much smaller than that of
TR-CONLL (articles about international events).
This makes toponym resolution easier overall (es-
pecially error distances) for minimality resolvers
like SPIDER, which primarily seek tightly clus-
tered sets of locations. This behavior is quite
clear in visualizations of predicted locations such
as Figure 2.

On the CWAR dataset, POPULATION performs
relatively poorly, demonstrating the fragility of
population-based decisions for working with his-
torical corpora. (Also, we note that POPULATION

is not a resolver per se since it only ever predicts
one location for a given toponym, regardless of
context.)

Table 3 gives results on TRC-TEST when NER-
identified toponyms are used. In this case, the
ORACLE results are less than 100% due to the lim-
itations of the NER, and represent the best possible
results given the NER we used.

When resolvers are run on NER-identified to-
ponyms, the text-driven resolvers that use lo-
cal context again easily beat SPIDER. WISTR
achieves the best performance. The named en-
tity recognizer is likely better at detecting com-
mon toponyms than rare toponyms due to the na-
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Resolver P R F
ORACLE 82.6 59.9 69.4
RANDOM 25.1 18.2 21.1
POPULATION 71.6 51.9 60.2
SPIDER10 40.5 29.4 34.1
TRIPDL 51.8 37.5 43.5
WISTR 73.9 53.6 62.1
WISTR+SPIDER10 73.2 53.1 61.5
TRAWL 72.5 52.5 60.9
TRAWL+SPIDER10 72.0 52.2 60.5

Table 3: Precision, recall, and F-score of resolvers
on TRC-TEST with NER-identified toponyms.

ture of its training data, and many more local con-
text training instances were extracted from com-
mon toponyms than from rare ones in Wikipedia.
Thus, our model that uses only these local context
models does best when running on NER-identified
toponyms. We also measured the mean and me-
dian error distance for toponyms correctly identi-
fied by the named entity recognizer, and found that
they tended to be 50-200km worse than for gold
toponyms. This also makes sense given the named
entity recognizer’s tendency to detect common to-
ponyms: common toponyms tend to be more am-
biguous than others.

Results on TR-CONLL indicate much higher
performance than the resolvers presented by Lei-
dner (2008), whose F-scores do not exceed 36.5%
with either gold or NER toponyms.7 TRC-TEST

is a subset of the documents Leidner uses (he did
not split development and test data), but the results
still come from overlapping data. The most direct
comparison is SPIDER’s F-score of 39.7% com-
pared to his LSW03 algorithm’s 35.6% (both are
minimality resolvers). However, our evaluation is
more penalized since SPIDER loses precision for
NER’s false positives (Jack London as a location)
while Leidner only evaluated on actual locations.
It thus seems fair to conclude that the text-driven
classifiers, with F-scores in the mid-50’s, are much
more accurate on the corpus than previous work.

6 Error Analysis

Table 4 shows the ten toponyms that caused the
greatest total error distances from TRC-DEV with
gold toponyms when resolved by TRAWL, the re-
solver that achieves the lowest mean error on that

7Leidner (2008) reports precision, recall, and F-score val-
ues even with gold toponyms, since his resolvers can abstain.

dataset among all our resolvers.

Washington, the toponym contributing the most
total error, is a typical example of a toponym that
is difficult to resolve, as there are two very promi-
nent locations within the United States with the
name. Choosing one when the other is correct re-
sults in an error of over 4000 kilometers. This oc-
curs, for example, when TRAWL chooses Wash-
ington state in the phrase Israel’s ambassador to
Washington, where more knowledge about the
status of Washington, D.C. as the political cen-
ter of the United States (e.g. in the form of more
or better contextual training instances) could over-
turn the administrative level component’s prefer-
ence for states.

An instance of California in a baseball-related
news article is incorrectly predicted to be the town
California, Pennsylvania. The context is: ...New
York starter Jimmy Key left the game in the first
inning after Seattle shortstop Alex Rodriguez lined
a shot off his left elbow. The Yankees have lost
12 of their last 19 games and their lead in the AL
East over Baltimore fell to five games. At Califor-
nia, Tim Wakefield pitched a six-hitter for his third
complete game of the season and Mo Vaughn and
Troy O’Leary hit solo home runs in the second in-
ning as the surging Boston Red Sox won their third
straight 4-1 over the California Angels. Boston
has won seven of eight and is 20-6... The pres-
ence of many east coast cues—both toponym and
otherwise—make it unsurprising that the resolver
would predict California, Pennsylvania despite the
administrative level component’s heavier weight-
ing of the state.

The average errors for the toponyms Australia
and Russia are fairly small and stem from differ-
ences in how countries are represented across dif-
ferent gazetteers, not true incorrect predictions.

Table 5 shows the toponyms with the great-
est errors from CWAR-DEV with gold toponyms
when resolved by WISTR+SPIDER. Rome is
sometimes predicted as cities in Italy and other
parts of Europe rather than Rome, Georgia, though
it correctly selects the city in Georgia more often
than not due to SPIDER’s preference for tightly
clumped sets of locations. Mexico, however, fre-
quently gets incorrectly selected as a city in Mary-
land near many other locations in the corpus when
TRAWL’s administrative level component is not
present. Many other of the toponyms contributing
to the total error such as Jackson and Lexington are
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Toponym N Mean Total
Washington 25 3229 80717
Gaza 12 5936 71234
California 8 5475 43797
Montana 3 11635 34905
WA 3 11221 33662
NZ 2 14068 28136
Australia 88 280 24600
Russia 72 260 18712
OR 2 9242 18484
Sydney 12 1422 17067

Table 4: Toponyms with the greatest total error
distances in kilometers from TRC-DEV with gold
toponyms resolved by TRAWL. N is the number
of instances, and the mean error for each toponym
type is also given.

Toponym N Mean Total
Mexico 1398 2963 4142102
Jackson 2485 1210 3007541
Monterey 353 2392 844221
Haymarket 41 15663 642170
McMinnville 145 3307 479446
Alexandria 1434 314 450863
Eastport 184 2109 388000
Lexington 796 442 351684
Winton 21 15881 333499
Clinton 170 1401 238241

Table 5: Top errors from CWAR-DEV resolved by
TRAWL+SPIDER.

simply the result of many American towns sharing
the same names and a lack of clear disambiguating
context.

7 Conclusion

Our text-driven resolvers prove highly effective
for both modern day newswire texts and 19th cen-
tury texts pertaining to the Civil War. They eas-
ily outperform standard minimality toponym re-
solvers, but can also be combined with them. This
strategy works particularly well when predicting
toponyms on a corpus with relatively restricted
geographic extents. Performance remains good
when resolving toponyms identified automatically,
indicating that end-to-end systems based on our
models may improve the experience of digital hu-
manities scholars interested in finding and visual-
izing toponyms in large corpora.

Acknowledgements

We thank: the three anonymous reviewers, Grant
DeLozier, and the UT Austin Natural Language
Learning reading group, for their helpful feed-
back; Ben Wing, for his document geoloca-
tion software; Jochen Leidner, for providing the
TR-CONLL corpus as well as feedback on earlier
versions of this paper; and Scott Nesbit, for pro-
viding the annotations for the CWAR corpus. This
research was supported by a grant from the Morris
Memorial Trust Fund of the New York Commu-
nity Trust.

References

B. Adams and G. McKenzie. Inferring thematic
places from spatially referenced natural lan-
guage descriptions. Crowdsourcing Geographic
Knowledge, pages 201–221, 2013.

E. Amitay, N. Har’El, R. Sivan, and A. Soffer.
Web-a-Where: geotagging web content. In Pro-
ceedings of the 27th annual international ACM
SIGIR conference on Research and development
in information retrieval, pages 273–280, 2004.

D. Buscaldi and P. Rosso. A conceptual density-
based approach for the disambiguation of to-
ponyms. International Journal of Geographical
Information Science, 22(3):301–313, 2008.

P. Clough. Extracting metadata for spatially-
aware information retrieval on the internet. In
Proceedings of the 2005 workshop on Ge-
ographic information retrieval, pages 25–30.
ACM, 2005.

G. Crane. The Perseus Digital Library, 2000. URL
http://www.perseus.tufts.edu.

J. Ding, L. Gravano, and N. Shivakumar. Comput-
ing geographical scopes of web resources. In
Proceedings of the 26th International Confer-
ence on Very Large Data Bases, pages 545–556,
2000.

J. Eisenstein, B. O’Connor, N. Smith, and E. Xing.
A latent variable model for geographic lexical
variation. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 1277–1287, 2010.

J. Eisenstein, A. Ahmed, and E. Xing. Sparse ad-
ditive generative models of text. In Proceedings
of the 28th International Conference on Ma-
chine Learning, pages 1041–1048, 2011.

1474



J. Gelernter and N. Mushegian. Geo-parsing mes-
sages from microtext. Transactions in GIS, 15
(6):753–773, 2011.

C. Grover, R. Tobin, K. Byrne, M. Woollard,
J. Reid, S. Dunn, and J. Ball. Use of the Ed-
inburgh geoparser for georeferencing digitized
historical collections. Philosophical Transac-
tions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 368(1925):
3875–3889, 2010.

J. Guldi. The spatial turn. Spatial Humanities: a
Project of the Institute for Enabling, 2009.

Q. Hao, R. Cai, C. Wang, R. Xiao, J. Yang,
Y. Pang, and L. Zhang. Equip tourists with
knowledge mined from travelogues. In Pro-
ceedings of the 19th international conference on
World wide web, pages 401–410, 2010.

B. Hecht, S. Carton, M. Quaderi, J. Schöning,
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