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Abstract

We address the challenge of generating natu-
ral language abstractive summaries for spoken
meetings in a domain-independent fashion.
We apply Multiple-Sequence Alignment to in-
duce abstract generation templates that can be
used for different domains. An Overgenerate-
and-Rank strategy is utilized to produce and
rank candidate abstracts. Experiments us-
ing in-domain and out-of-domain training on
disparate corpora show that our system uni-
formly outperforms state-of-the-art supervised
extract-based approaches. In addition, human
judges rate our system summaries significantly
higher than compared systems in fluency and
overall quality.

1 Introduction

Meetings are a common way to collaborate,
share information and exchange opinions. Con-
sequently, automatically generated meeting sum-
maries could be of great value to people and busi-
nesses alike by providing quick access to the es-
sential content of past meetings. Focused meet-
ing summaries have been proposed as particularly
useful; in contrast to summaries of a meeting as
a whole, they refer to summaries of a specific as-
pect of a meeting, such as the DECISIONS reached,
PROBLEMS discussed, PROGRESS made or AC-
TION ITEMS that emerged (Carenini et al., 2011).
Our goal is to provide an automatic summariza-
tion system that can generate abstract-style fo-
cused meeting summaries to help users digest the
vast amount of meeting content in an easy manner.

Existing meeting summarization systems re-
main largely extractive: their summaries are com-
prised exclusively of patchworks of utterances se-
lected directly from the meetings to be summa-
rized (Riedhammer et al., 2010; Bui et al., 2009;
Xie et al., 2008). Although relatively easy to con-
struct, extractive approaches fall short of produc-
ing concise and readable summaries, largely due
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C: Looking at what we’ve got, we we want an LCD dis-
play with a spinning wheel.

B: You have to have some push-buttons, don’t you?

C: Just spinning and not scrolling, I would say.

B: I think the spinning wheel is definitely very now.

A: but since LCDs seems to be uh a definite yes,

C: We’re having push-buttons on the outside

C: and then on the inside an LCD with spinning wheel,

Decision Abstract (Summary):
The remote will have push buttons outside, and an LCD
and spinning wheel inside.

A: and um I’m not sure about the buttons being in the
shape of fruit though.

D: Maybe make it like fruity colours or something.

C: The power button could be like a big apple or some-
thing.

D: Um like I'm just thinking bright colours.

Problem Abstract (Summary):
How to incorporate a fruit and vegetable theme into the
remote.

Figure 1: Clips from the AMI meeting corpus (Mc-
cowan et al., 2005). A, B, C and D refer to distinct
speakers. Also shown is the gold-standard (manual)
abstract (summary) for the decision and the problem.

to the noisy, fragmented, ungrammatical and un-
structured text of meeting transcripts (Murray et
al., 2010b; Liu and Liu, 2009).

In contrast, human-written meeting summaries
are typically in the form of abstracts — distilla-
tions of the original conversation written in new
language. A user study from Murray et al. (2010b)
showed that people demonstrate a strong prefer-
ence for abstractive summaries over extracts when
the text to be summarized is conversational. Con-
sider, for example, the two types of focused sum-
mary along with their associated dialogue snippets
in Figure 1. We can see that extracts are likely to
include unnecessary and noisy information from
the meeting transcripts. On the contrary, the man-
ually composed summaries (abstracts) are more
compact and readable, and are written in a dis-
tinctly non-conversational style.
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To address the limitations of extract-based sum-
maries, we propose a complete and fully automatic
domain-independent abstract generation frame-
work for focused meeting summarization. Fol-
lowing existing language generation research (An-
geli et al., 2010; Konstas and Lapata, 2012), we
first perform content selection: given the dia-
logue acts relevant to one element of the meet-
ing (e.g. a single decision or problem), we train
a classifier to identify summary-worthy phrases.
Next, we develop an “overgenerate-and-rank”
strategy (Walker et al., 2001; Heilman and Smith,
2010) for surface realization, which generates and
ranks candidate sentences for the abstract. Af-
ter redundancy reduction, the full meeting abstract
can thus comprise the focused summary for each
meeting element. As described in subsequent sec-
tions, the generation framework allows us to iden-
tify and reformulate the important information for
the focused summary. Our contributions are as fol-
lows:

e To the best of our knowledge, our system is
the first fully automatic system to generate
natural language abstracts for spoken meet-
ings.

e We present a novel template extraction al-
gorithm, based on Multiple Sequence Align-
ment (MSA) (Durbin et al., 1998), to induce
domain-independent templates that guide ab-
stract generation. MSA is commonly used
in bioinformatics to identify equivalent frag-
ments of DNAs (Durbin et al.,, 1998) and
has also been employed for learning para-
phrases (Barzilay and Lee, 2003).

e Although our framework requires labeled
training data for each type of focused sum-
mary (decisions, problems, etc.), we also
make initial tries for domain adaptation so
that our summarization method does not need
human-written abstracts for each new meet-
ing domain (e.g. faculty meetings, theater
group meetings, project group meetings).

We instantiate the abstract generation frame-
work on two corpora from disparate domains
— the AMI Meeting Corpus (Mccowan et al.,
2005) and ICSI Meeting Corpus (Janin et al.,
2003) — and produce systems to generate fo-
cused summaries with regard to four types of

meeting elements: DECISIONs, PROBLEMSs, AC-
TION ITEMSs, and PROGRESS. Automatic eval-
uation (using ROUGE (Lin and Hovy, 2003) and
BLEU (Papineni et al., 2002)) against manually
generated focused summaries shows that our sum-
marizers uniformly and statistically significantly
outperform two baseline systems as well as a
state-of-the-art supervised extraction-based sys-
tem. Human evaluation also indicates that the
abstractive summaries produced by our systems
are more linguistically appealing than those of
the utterance-level extraction-based system, pre-
ferring them over summaries from the extraction-
based system of comparable semantic correctness
(62.3% vs. 37.7%).

Finally, we examine the generality of our model
across domains for two types of focused summa-
rization — decisions and problems — by train-
ing the summarizer on out-of-domain data (i.e. the
AMI corpus for use on the ICSI meeting data,
and vice versa). The resulting systems yield re-
sults comparable to those from the same system
trained on in-domain data, and statistically signif-
icantly outperform supervised extractive summa-
rization approaches trained on in-domain data.

2 Related Work

Most research on spoken dialogue summariza-
tion attempts to generate summaries for full dia-
logues (Carenini et al., 2011). Only recently has
the task of focused summarization been studied.
Supervised methods are investigated to identify
key phrases or utterances for inclusion in the de-
cision summary (Fernidndez et al., 2008; Bui et
al., 2009). Based on Ferndndez et al. (2008), a
relation representation is proposed by Wang and
Cardie (2012) to form structured summaries; we
adopt this representation here for content selec-
tion.

Our research is also in line with generating ab-
stractive summaries for conversations. Extrac-
tive approaches (Murray et al., 2005; Xie et al.,
2008; Galley, 2006) have been investigated exten-
sively in conversation summarization. Murray et
al. (2010a) present an abstraction system consist-
ing of interpretation and transformation steps. Ut-
terances are mapped to a simple conversation on-
tology in the interpretation step according to their
type, such as a decision or problem. Then an in-
teger linear programming approach is employed
to select the utterances that cover more entities as
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Dialogue Acts:

C: Looking at what we've got,
we we want [an LCD display
with a spinning wheel].

B: You have to have some
push-buttons, don't you? !

C: Just spinning and not Extraction | Relation Instances: Filling
scrolling , | would say . <want, an LCD display with a spinning
B: I think the spinning wheel is wheel>

Relation

<want, an LCD display with a spinning wheel>

Learned Templates 5 * The team will want an LCD display with a
N spinning wheel.
* The team with work with an LCD display
with a spinning wheel.

* The group decide to use an LCD display with
N a spinning wheel.
V|| ... (other possibilities)

One-Best
Abstract:

The group decide to
use an LCD display
IStatisticall| with a spinning IPost-

R,,,,k,-,,-g' wheel.

Final Summary:

| The group decide to
use an LCD display with
a spinning wheel.

definitely very now. <an LCD display, with a spinning

A: but since LCDs seems to be wheel>

uh a definite yes, <have, some push-buttons>

C: We're having push-buttons <having, push-buttons on the outside>
[on the outside] <push-buttons, on the outside>

<push-buttons, on the outside>

* Push-buttons are going to be on the outside.
* Push-buttons on the outside will be used.

+ There will be push-buttons on the outside.
... (other possibilities) outside.

There will be push-

One-Best .
buttons on the outside.

Abstract:
There will be push-
buttons on the

C: and then on the inside an <an LCD, with spinning wheel>
LCD with spinning wheel, ... (other possibilities)

... (all possible abstracts per relation
instance)

... (one-best abstract
per relation instance)

Content Selection

Surface Realization

Figure 2: The abstract generation framework. It takes as input a cluster of meeting-item-specific dialogue acts,
from which one focused summary is constructed. Sample relation instances are denoted in bold (The indicators
are further ifalicized and the arguments are in [brackets]). Summary-worthy relation instances are identified by
content selection module (see Section 4) and then filled into the learned templates individually. A statistical ranker
subsequently selects one best abstract per relation instance (see Section 5.2). The post-selection component reduces
the redundancy and outputs the final summary (see Section 5.3).

determined by an external ontology. Liu and Liu
(2009) apply sentence compression on extracted
summary utterances. Though some of the unnec-
essary words are dropped, the resulting compres-
sions can still be ungrammatical and unstructured.

This work is also broadly related to ex-
pert system-based language generation (Reiter
and Dale, 2000) and concept-to-text generation
tasks (Angeli et al., 2010; Konstas and Lapata,
2012), where the generation process is decom-
posed into content selection (or text planning) and
surface realization. For instance, Angeli et al.
(2010) learn from structured database records and
parallel textual descriptions. They generate texts
based on a series of decisions made to select the
records, fields, and proper templates for render-
ing. Those techniques that are tailored to specific
domains (e.g. weather forecasts or sportcastings)
cannot be directly applied to the conversational
data, as their input is well-structured and the tem-
plates learned are domain-specific.

3 Framework

Our domain-independent abstract generation
framework produces a summarizer that gener-
ates a grammatical abstract from a cluster of
meeting-element-related dialogue acts (DAs) —
all utterances associated with a single decision,
problem, action item or progress step of interest.
Note that identifying these DA clusters is a diffi-
cult task in itself (Bui et al., 2009). Accordingly,
our experiments evaluate two conditions — one
in which we assume that they are perfectly iden-
tified, and one in which we identify the clusters
automatically.

The summarizer consists of two major compo-
nents and is depicted in Figure 2. Given the DA
cluster to be summarized, the Content Selection
module identifies a set of summary-worthy rela-
tion instances represented as indicator-argument
pairs (i.e. these constitute a finer-grained represen-
tation than DAs). The Surface Realization compo-
nent then generates a short summary in three steps.
In the first step, each relation instance is filled into
templates with disparate structures that are learned
automatically from the training set (Template Fill-
ing). A statistical ranker then selects one best ab-
stract per relation instance (Statistical Ranking).
Finally, selected abstracts are processed for redun-
dancy removal in Post-Selection. Detailed descrip-
tions for each individual step are provided in Sec-
tions 4 and 5.

4 Content Selection

Phrase-based content selection approaches have
been shown to support better meeting sum-
maries (Ferndndez et al., 2008). Therefore, we
chose a content selection representation of a finer
granularity than an utterance: we identify relation
instances that can both effectively detect the cru-
cial content and incorporate enough syntactic in-
formation to facilitate the downstream surface re-
alization.

More specifically, our relation instances are
based on information extraction methods that
identify a lexical indicator (or trigger) that evokes
a relation of interest and then employ syntac-
tic information, often in conjunction with se-
mantic constraints, to find the argument con-
stituent(or target phrase) to be extracted. Rela-
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tion instances, then, are represented by indicator-
argument pairs (Chen et al., 2011). For example,
in the DA cluster of Figure 2, (want, an LCD dis-
play with a spinning wheel) and (push-buttons, on
the outside) are two relation instances.

Relation Instance Extraction We adopt and
extend the syntactic constraints from Wang and
Cardie (2012) to identify all relation instances in
the input utterances; the summary-worthy ones
will be selected by a discriminative classifier.
Constituent and dependency parses are obtained
by the Stanford parser (Klein and Manning, 2003).
Both the indicator and argument take the form of
constituents in the parse tree. We restrict the el-
igible indicator to be a noun or verb; the eligi-
ble arguments is a noun phrase (NP), prepositional
phrase (PP) or adjectival phrase (ADJP). A valid
indicator-argument pair should have at least one
content word and satisfy one of the following con-
straints:

e When the indicator is a noun, the argument
has to be a modifier or complement of the in-
dicator.

e When the indicator is a verb, the argument
has to be the subject or the object if it is an
NP, or a modifier or complement of the indi-
cator if it is a PP/ADJP.

We view relation extraction as a binary classifi-
cation problem rather than a clustering task (Chen
et al., 2011). All relation instances can be cate-
gorized as summary-worthy or not, but only the
summary-worthy ones are used for abstract gen-
eration. A discriminative classifier is trained for
this purpose based on Support Vector Machines
(SVMs) (Joachims, 1998) with an RBF kernel.
For training data construction, we consider a re-
lation instance to be a positive example if it shares
any content word with its corresponding abstracts,
and a negative example otherwise. The features
used are shown in Table 1.

5 Surface Realization

In this section, we describe surface realization,
which renders the relation instances into natural
language abstracts. This process begins with tem-
plate extraction (Section 5.1). Once the templates
are learned, the relation instances from Section 4
are filled into the templates to generate an abstract
(see Section 5.2). Redundancy handling is dis-
cussed in Section 5.3.

Basic Features

number of words/content words

portion of content words/stopwords

number of content words in indicator/argument
number of content words that are also in previous DA
indicator/argument only contains stopword?
number of new nouns

Content Features

has capitalized word?

has proper noun?

TF/IDF/TFIDF min/max/average

Discourse Features

main speaker or not?

is in an adjacency pair (AP)?

is in the source/target of the AP?

number of source/target DA in the AP

is the target of the AP a positive/negative/neutral response?
is the source of the AP a question?

Syntax Features

indicator/argument constituent tag

dependency relation of indicator and argument

Table 1: Features for content selection. Most are
adapted from previous work (Galley, 2006; Xie et al.,
2008; Wang and Cardie, 2012). Every basic or con-
tent feature is concatenated with the constituent tags of
indicator and argument to compose a new one. Main
speakers include the most talkative speaker (who has
said the most words) and other speakers whose word
count is more than 20% of the most talkative one (Xie
et al., 2008). Adjacency pair (AP) (Galley, 2006) is
an important conversational analysis concept; each AP
consists of a source utterance and a target utterance pro-
duced by different speakers.

5.1 Template Extraction

Sentence Clustering. Template extraction starts
with clustering the sentences that constitute the
manually generated abstracts in the training data
according to their lexical and structural similarity.
From each cluster, multiple-sequence alignment
techniques are employed to capture the recurring
patterns.

Intuitively, desirable templates are those that
can be applied in different domains to generate
the same type of focused summary (e.g. decision
or problem summaries). We do not want sen-
tences to be clustered only because they describe
the same domain-specific details (e.g. they are all
about “data collection”), which will lead to frag-
mented templates that are not reusable for new do-
mains. We therefore replace all appearances of
dates, numbers, and proper names with generic la-
bels. We also replace words that appear in both
the abstract and supporting dialogue acts by a la-
bel indicating its phrase type. For any noun phrase
with its head word abstracted, the whole phrase is
also replaced with “NP”.
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1) The group were not sure whether to [include],, [a recharger for the remote]y, .

2) The group were not sure whether to use [plastic and rubber or titanium for the case]y, .
3) The group were not sure whether [the remote control], should include [functions for
controlling video], .

4) They were not sure how much [a recharger], would cost to make .

... (Other abstracts)

@ Generic Label Replacement + Clustering
1) The group were not sure whether to VP NP .
2) The group were not sure whether to use NP .
3) The group were not sure whether NP should include NP .
4) They were not sure how much NP would cost to make .

1T msa

T S T o S
W ermey end

would

Template Examples:

Fine T1: The group were not sure whether to SLOT,, NP . (1, 2)

Fine T2: The group were not sure whether NP SLOT,, SLOT,,, NP . (3)

Fine T3: SLOT,, were not sure SLOT,ya00 SLOT yaose NP SLOT,, SLOT, 5 SLOT,, SLOT,,
SLOTp. (4)

Coarse T1: SLOT,, SLOTy, were not sure SLOT gy, SLOT,p SLOT,, SLOTy,. (1, 2)
Coarse T2: SLOT,,, SLOT, were not sure SLOTggag SLOTy, SLOT, 5 SLOT,, SLOTyp. (3)
Coarse T3: SLOT,, were not sure SLOTyapp SLOT\yyape SLOTyp SLOT,,p SLOT,, SLOT,
SLOT,, . (4)

Figure 3: Example of template extraction by Multiple-
Sequence Alignment for problem abstracts from AMI.
Backbone nodes shared by at least 50% sentences are
shaded. The grammatical errors exist in the original
abstracts.

Following Barzilay and Lee (2003), we ap-
proach the sentence clustering task by hierarchical
complete-link clustering with a similarity metric
based on word n-gram overlap (n = 1, 2, 3). Clus-
ters with fewer than three abstracts are removed'.

Learning the Templates via MSA. For learn-
ing the structural patterns among the abstracts,
Multiple-Sequence Alignment (MSA) is first com-
puted for each cluster. MSA takes as input multi-
ple sentences and one scoring function to measure
the similarity between any two words. For inser-
tions or deletions, a gap cost is also added. MSA
can thus find the best way to align the sequences
with insertions or deletions in accordance with the
scorer. However, computing an optimal MSA is
NP-complete (Wang and Jiang, 1994), thus we
implement an approximate algorithm (Needleman
and Wunsch, 1970) that iteratively aligns two se-
quences each time and treats the resulting align-
ment as a new sequence’. Figure 3 demonstrates
an MSA computed from a sample cluster of ab-

!Clustering stops when the similarity between any pair-
wise clusters is below 5. This is applied to every type of sum-
marization. We tune the parameter on a small held-out devel-
opment set by manually evaluating the induced templates. No
significant change is observed within a small range.

2We adopt the scoring function for MSA from Barzilay
and Lee (2003), where aligning two identical words scores
1, inserting a gap scores —0.01, and aligning two different
words scores —0.5.

stracts. The MSA is represented in the form of
word lattice, from which we can detect the struc-
tural similarities shared by the sentences.

To transform the resulting MS As into templates,
we need to decide whether a word in the sentence
should be retained to comprise the template or ab-
stracted. The backbone nodes in an MSA are iden-
tified as the ones shared by more than 50%? of the
cluster’s sentences (shaded in gray in Figure 3).
We then create a FINE template for each sentence
by abstracting the non-backbone words, i.e. re-
placing each of those words with a generic token
(last step in Figure 3). We also create a COARSE
template that only preserves the nodes shared by
all of the cluster’s sentences. By using the op-
erations above, domain-independent patterns are
thus identified and domain-specific details are re-
moved.

Note that we do not explicitly evaluate the qual-
ity of the learned templates, which would require
a significant amount of manual evaluation. In-
stead, they are evaluated extrinsically. We encode
the templates as features (Angeli et al., 2010) that
could be selected or ignored in the succeeding ab-
stract ranking model.

5.2 Template Filling

An Overgenerate-and-Rank Approach. Since
filling the relation instances into templates of dis-
tinct structures may result in abstracts of vary-
ing quality, we rank the abstracts based on the
features of the template, the transformation con-
ducted, and the generated abstract. This is realized
by the Overgenerate-and-Rank strategy (Walker et
al., 2001; Heilman and Smith, 2010). It takes as
input a set of relation instances (from the same
cluster) R = {(ind;, arg;)}}¥, that are produced
by content selection component, a set of templates
T ={t; };Vil that are represented as parsing trees,
a transformation function F' (described below),
and a statistical ranker S for ranking the generated
abstracts, for which we defer description later in
this Section.

For each (ind;,arg;), the overgenerate-and-
rank approach fills it into each template in 1" by
applying F' to generate all possible abstracts. Then
the ranker S selects the best abstract abs;. Post-
selection is conducted on the abstracts {abs; }}¥,
to form the final summary.

3See Barzilay and Lee (2003) for a detailed discussion
about the choice of 50% according to pigeonhole principle.
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The transformation function F models the
constituent-level transformations of relation in-
stances and their mappings to the parse trees of
templates. With the intuition that people will reuse
the relation instances from the transcripts albeit
not necessarily in their original form to write the
abstracts, we consider three major types of map-
ping operations for the indicator or argument in the
source pair, namely, Full-Constituent Mapping,
Sub-Constituent Mapping, and Removal. Full-
Constituent Mapping denotes that a source con-
stituent is mapped directly to a target constituent
of the template parse tree with the same tag. Sub-
Constituent Mapping encodes more complex and
flexible transformations in that a sub-constituent
of the source is mapped to a target constituent
with the same tag. This operation applies when
the source has a tag of PP or ADJP, in which case
its sub-constituent, if any, with a tag of NP, VP or
ADJP can be mapped to the target constituent with
the same tag. For instance, an argument “with a
spinning wheel” (PP) can be mapped to an NP in a
template because it has a sub-constituent “a spin-
ning wheel” (NP). Removal means a source is not
mapped to any constituent in the template.

Formally, F' is defined as:

F((ind’ ¢, arg® °),t) =
{Gindir™" argl ™", indi®", arg")} 1y
where (ind*"¢,arg®¢) € R is a relation in-
stance (source pair); t € T is a template; ind?“”
and arg};m” is the transformed pair of ind®*"¢ and
arg®¢; indi® and arg}®" are constituents in ¢, and
they compose one farget pair for (ind*"¢, arg®"c).
We require that ¢nd®"¢ and arg®”® are not removed
at the same time. Moreover, for valid ind}*" and
arg;®™, the words subsumed by them should be all
abstracted in the template, and they do not overlap
in the parse tree.

To obtain the realized abstract, we traverse the
parse tree of the filled template in pre-order. The
words subsumed by the leaf nodes are thus col-

lected sequentially.

Learning a Statistical Ranker. We utilize a dis-
criminative ranker based on Support Vector Re-
gression (SVR) (Smola and Scholkopf, 2004) to
rank the generated abstracts. Given the train-
ing data that includes clusters of gold-standard
summary-worthy relation instances, associated ab-
stracts they support, and the parallel templates for
each abstract, training samples for the ranker are

Basic Features

number of words in ind®"¢/arg®" ¢

number of new nouns in ind*"“/arg®"¢
ind4" ™ farg!™ ™ only has stopword?

number of new nouns in ind}" " fargtro™
Structure Features

constituent tag of ind®"¢/arg®"¢

constituent tag of ind"¢ with constituent tag of ind®®”
constituent tag of arg®”¢ with constituent tag of argt®”
transformation of ind®"“/arg®" combined with constituent tag
dependency relation of ind®*”¢ and arg®"¢
dependency relation of ind*®" and arg®”

above 2 features have same value?

Template Features

template type (fine/coarse)

realized template (e.g. “the group decided to”)
number of words in template

the template has verb?

Realization Features

realization has verb?

realization starts with verb?

realization has adjacent verbs/NPs?

ind®"¢ precedes/succeeds arg®"°?

ind?®” precedes/succeeds arg‘®"?

above 2 features have same value?

Language Model Features

log pr, ps (first word in indff‘m |previous 1/2 words)
log pr, s (realization)

log pr, ps (first word in a.rgz,m” |previous 1/2 words)
log pr,as(realization) /length

log pr, pr(next word | last 1/2 words in indfv“"")

log pr, ar(next word | last 1/2 words in argi”m)

Table 2: Features for abstracts ranking. The language
model features are based on a 5-gram language model
trained on Gigaword (Graff, 2003) by SRILM (Stolcke,
2002).

constructed according to the transformation func-
tion ' mentioned above. Each sample is repre-
sented as:
((ind*"°, arg®"®), (indi™ ™, argt ™, indi®", argt®™), t, a)
where (ind*"¢,arg®¢) is the source pair,
(indi""" argt™®) is the transformed pair,
(inde" argl®”) is the target pair in template ¢,
and a is the abstract parallel to ¢.

We first find (indi""™* argl® ), which
is the corresponding constituent pair of
(indi®  argi®) in a. Then we identify
the summary-worthy words subsumed by
(ind{r*™, argi™™) that also appear in a. If those
words are all subsumed by (ind,""*** argl®*%),
then it is considered to be a positive sample, and
a negative sample otherwise. Table 2 displays the
features used in abstract ranking.

5.3 Post-Selection: Redundancy Handling.

Post-selection aims to maximize the information
coverage and minimize the redundancy of the
summary. Given the generated abstracts A =
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: relation instances R = {(ind;, arg:) }1v,,
generated abstracts A = {abs; }I~,, objective
function f , cost function C'

Output: final abstract G

G <+ ® (empty set);

U+ A;

while U # ® do

abs <+ arg maxXabs; cU f(A’Gug(b:él;f(A’G);
if f(A,GUabs) — f(A,G) > 0 then
| G+ GUabs;
end
U<« U\ abs;

Input

end

Algorithm 1: Greedy algorithm for post-
selection to generate the final summary.

{abs;}Y |, we use a greedy algorithm (Lin and
Bilmes, 2010) to select a subset A’, where A’ C A,
to form the final summary. We define w;; as
the unigram similarity between abstracts abs; and
absj, C(abs;) as the number of words in abs;. We
employ the following objective function:

FAG) =Y hseavc ZaijEG wij, G C A

Algorithm 1 sequentially finds an abstract with
the greatest ratio of objective function gain to
length, and add it to the summary if the gain is
non-negative.

6 Experimental Setup

Corpora. Two disparate corpora are used for
evaluation. The AMI meeting corpus (Mccowan
et al., 2005) contains 139 scenario-driven meet-
ings, where groups of four people participate in
a series of four meetings for a fictitious project of
designing remote control. The ICSI meeting cor-
pus (Janin et al., 2003) consists of 75 naturally oc-
curring meetings, each of them has 4 to 10 par-
ticipants. Compared to the fabricated topics in
AMI, the conversations in ICSI tend to be special-
ized and technical, e.g. discussion about speech
and language technology. We use 57 meetings in
ICSTI and 139 meetings in AMI that include a short
(usually one-sentence), manually constructed ab-
stract summarizing each important output for ev-
ery meeting. Decision and problem summaries are
annotated for both corpora. AMI has extra ac-
tion item summaries, and ICSI has progress sum-
maries. The set of dialogue acts that support each
abstract are annotated as such.

System Inputs. We consider two system input
settings. In the True Clusterings setting, we
use the annotations to create perfect partitions of
the DAs for input to the system; in the System

ROUGE-SU4 F1

ROUGE-SU4 F1

ROUGE-SU4 F1

TEE
\ i
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Content Selection for Decision (AMI) Content Selection for Decision (ICSI)

014
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D o008 SVMLTOKEN

l

s o s » 50
Number of Meetings Number of Meetings

Content Selection for Problem (AMI) Content Selection for Problem (ICSI)

-+
> SuMDA
SVM-TOKEN

\w+

ROUGE-SU4 F1

1 3s
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Number of Meetings Number of Meetings

. Content Selection for Action Item (AMI) Content Selection for Progress (ICSI)

ROUGE-SU4 F1

s

3 53 0 s z 50
Number of Meetings Number of Meetings

Figure 4: Content selection evaluation by using
ROUGE-SU4 (multiplied by 100). SVM-DA and
SVM-TOKEN denotes for supervised extract-based
methods with SVMs on utterance- and token-level.
Summaries for decision, problem, action item, and
progress are generated and evaluated for AMI and ICSI
(with names in parentheses). X-axis shows the number
of meetings used for training.

Clusterings setting, we employ a hierarchical ag-
glomerative clustering algorithm used for this task
in (Wang and Cardie, 2011). DAs are grouped ac-
cording to a classifier trained beforehand.

Baselines and Comparisons. We compare our
system with (1) two unsupervised baselines, (2)
two supervised extractive approaches, and (3) an
oracle derived from the gold standard abstracts.

Baselines. As in Riedhammer et al. (2010), the
LONGEST DA in each cluster is selected as the
summary. The second baseline picks the clus-
ter prototype (i.e. the DA with the largest TF-
IDF similarity with the cluster centroid) as the
summary according to Wang and Cardie (2011).
Although it is possible that important content is
spread over multiple DAs, both baselines allow
us to determine summary quality when summaries
are restricted to a single utterance.

Supervised Learning. We also compare our
approach to two supervised extractive sum-
marization methods — Support Vector Ma-
chines (Joachims, 1998) trained with the same fea-
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tures as our system (see Table 1) to identify the im-
portant DAs (no syntax features) (Xie et al., 2008;
Sandu et al., 2010) or tokens (Fernandez et al.,
2008) to include into the summary*.

Oracle. We compute an oracle consisting of the
words from the DA cluster that also appear in the
associated abstract to reflect the gap between the
best possible extracts and the human abstracts.

7 Results

Content Selection Evaluation. We first employ
ROUGE (Lin and Hovy, 2003) to evaluate the
content selection component with respect to the
human written abstracts. ROUGE computes the
ngram overlapping between the system summaries
with the reference summaries, and has been used
for both text and speech summarization (Dang,
2005; Xie et al., 2008). We report ROUGE-2 (R-
2) and ROUGE-SU4 (R-SU4) that are shown to
correlate with human evaluation reasonably well.

In AMLI, four meetings of different functions are
carried out in each group®. 35 meetings for “con-
ceptual design” are randomly selected for testing.
For ICSI, we reserve 12 meetings for testing.

The R-SU4 scores for each system are displayed
in Figure 4 and show that our system uniformly
outperforms the baselines and supervised systems.
The learning curve of our system is relatively flat,
which means not many training meetings are re-
quired to reach a usable performance level.

Note that the ROUGE scores are relative low
when the reference summaries are human ab-
stracts, even for evaluation among abstracts pro-
duced by different annotators (Dang, 2005). The
intrinsic difference of styles between dialogue and
human abstract further lowers the scores. But the
trend is still respected among the systems.

Abstract Generation Evaluation. To evaluate
the full abstract generation system, the BLEU
score (Papineni et al., 2002) (the precision of uni-
grams and bigrams with a brevity penalty) is com-
puted with human abstracts as reference. BLEU
has a fairly good agreement with human judge-
ment and has been used to evaluate a variety of
language generation systems (Angeli et al., 2010;
Konstas and Lapata, 2012).

“We use SVM"*9"* (Joachims, 1999) with RBF kernel by
default parameters for SVM-based classifiers and regressor.

The four types of meetings in AMI are: project kick-off
(35 meetings), functional design (35 meetings), conceptual
design (35 meetings), and detailed design (34 meetings).

Full System for Decision (AMI) Full System for Decision (ICSI)

BLEU

0 o
1 5 5 ) o 104 s 5 23 EY
Number of Meetings Number of Meetings

Full System for Problem (AMI) Full System for Problem (ICSI)

BLEU

s = a0 Y
Number of Meetings

s B
Number of Meetings

Full System for Action Item (AMI) Full System for Progress (ICSI)

BLEU

= Our System

o
1 3 a7 108 8 15 s

2 0
Number of Meetings

s ©
Number of Meetings

Figure 5: Full abstract generation system evaluation
by using BLEU (multiplied by 100). SVM-DA de-
notes for supervised extractive methods with SVMs on
utterance-level.

We are not aware of any existing work gen-
erating abstractive summaries for conversations.
Therefore, we compare our full system against
a supervised utterance-level extractive method
based on SVMs along with the baselines. The
BLEU scores in Figure 5 show that our system im-
proves the scores consistently over the baselines
and the SVM-based approach.

Domain Adaptation Evaluation. We further
examine our system in domain adaptation sce-
narios for decision and problem summarization,
where we train the system on AMI for use on ICSI,
and vice versa. Table 3 indicates that, with both
true clusterings and system clusterings, our sys-
tem trained on out-of-domain data achieves com-
parable performance with the same system trained
on in-domain data. In most experiments, it also
significantly outperforms the baselines and the
extract-based approaches (p < 0.05).

Human Evaluation. We randomly select 15 de-
cision and 15 problem DA clusters (true cluster-
ings). We evaluate fluency (is the text gram-
matical?) and semantic correctness (does the
summary convey the gist of the DAs in the clus-
ter?) for OUR SYSTEM trained on IN-domain data
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System (True Clusterings) AMI Decision ICSI Decision AMI Problem ICSI Problem
R-2 R-SU4 BLEU | R-2 R-SU4 | BLEU R-2 R-SU4 BLEU R-2 R-SU4 | BLEU
CENTROID DA 1.3 3.0 7.7 1.8 35 38 1.0 2.7 4.2 1.0 2.3 2.8
LONGEST DA 1.6 33 7.0 2.8 4.7 6.5 1.0 3.0 3.6 1.2 3.4 4.6
SVM-DA (IN) 34 4.7 9.7 34 4.5 5.7 1.4 2.4 5.0 1.6 3.4 3.4
SVM-DA (OuT) 2.7 4.2 6.6 3.1 42 4.6 1.4 22 2.5 1.3 3.0 4.6
OUR SYSTEM (IN) 4.5 6.2 11.6 4.9 7.1 10.0 3.1 4.8 7.2 4.0 5.9 6.0
OUR SYSTEM (OUT) 4.6 6.1 10.3 4.8 6.4 7.8 35 4.7 6.2 3.0 5.5 5.3
ORACLE 7.5 12.0 22.8 9.9 14.9 20.2 6.6 11.3 18.9 6.4 12.6 13.0
System (System Clusterings) MI Decision CSI Decision AMI Problem CST Problem
R-2 | R-SU4 | BLEU | R-2 | R-SU4 | BLEU | R-2 | R-SU4 | BLEU | R-2 | R-SU4 | BLEU
CENTROID DA 1.4 33 3.8 1.4 2.1 2.0 0.8 2.8 2.9 0.9 23 1.8
LONGEST DA 1.4 33 5.7 1.7 34 55 0.8 32 4.1 0.9 34 4.4
SVM-DA (IN) 2.6 4.6 10.5 35 6.5 7.1 1.8 3.7 4.9 1.8 4.0 4.6
SVM-DA (OuT) 34 5.8 10.3 2.7 4.8 6.3 2.1 3.8 43 1.5 3.8 35
OUR SYSTEM (IN) 3.5 54 11.7 44 7.4 9.1 33 4.6 9.5 2.3 4.2 74
OUR SYSTEM (OUT) 3.9 6.4 114 4.1 5.1 8.4 3.6 5.6 8.9 1.8 4.0 6.8
ORACLE 6.4 12.0 15.1 8.2 15.2 17.6 6.5 13.0 20.9 5.5 11.9 15.5

Table 3: Domain adaptation evaluation. Systems trained on out-of-domain data are denoted with “(OUT)”, oth-
erwise with “(IN)”. ROUGE and BLEU scores are multiplied by 100. Our systems that statistically significantly
outperform all the other approaches (except ORACLE) are in bold (p < 0.05, paired ¢-test). The numbers in italics
show the significant improvement over the baselines by our systems.

Table 4: Human evaluation results of Fluency and Se-
mantic correctness for the generated abstracts. The rat-
ings are on 1 (worst) to 5 (best) scale. The average
Length of the abstracts for each system is also listed.

and OUT-of-domain data, and for the utterance-
level extraction system (SVM-DA) trained on in-
domain data. Each cluster of DAs along with three
randomly ordered summaries are presented to the
judges. Five native speaking Ph.D. students (none
are authors) performed the task.

We carry out an one-way Analysis of Variance
which shows significant differences in score as a
function of system (p < 0.05, paired ¢-test). Re-
sults in Table 4 demonstrate that our system sum-
maries are significantly more compact and fluent
than the extract-based method (p < 0.05) while
semantic correctness is comparable.

The judges also rank the three summaries in
terms of the overall quality in content, concise-
ness and grammaticality. An inter-rater agreement
of Fleiss’s x = 0.45 (moderate agreement (Landis
and Koch, 1977)) was computed. Judges selected
our system as the best system in 62.3% scenarios
(IN-DOMAIN: 35.6%, OUT-OF-DOMAIN: 26.7%).
Sample summaries are exhibited in Figure 6.

8 Conclusion

We presented a domain-independent abstract gen-
eration framework for focused meeting summa-
rization. Experimental results on two disparate
meeting corpora show that our system can uni-

System Fluency Semantic Length Decision Summary:
Mean | S.D. | Mean | S.D. . .
OUR SYSTEM (IN) 367 | 085 | 327 | 103 | 2365 Human: The remote will ha.ve .push buttons outside, and
OUR SYSTEM (OUT) | 3.58 | 0.90 | 3.25 1.16 24.17 an LCD and spinning wheel inside.
SVM-DA (IN) 336 | 084 | 344 | 126 | 3883 Our System (In): The group decide to use an LCD dis-

play with a spinning wheel. There will be push-buttons on
the outside.

Our System (Out): LCD display is going to be with a
spinning wheel. It is necessary having push-buttons on
the outside.

SVM-DA: Looking at what we’ve got, we we want an
LCD display with a spinning wheel. Just spinning and not
scrolling, I would say. I think the spinning wheel is defi-
nitely very now. We’re having push-buttons on the outside

Problem Summary:

Human: How to incorporate a fruit and vegetable theme
into the remote.

Our System (In): Whether to include the shape of fruit.
The team had to thinking bright colors.

Our System (Out): It is unclear that the buttons being in
the shape of fruit.

SVM-DA: and um Im not sure about the buttons being in

the shape of fruit though.

Figure 6: Sample decision and problem sum-
maries generated by various systems for examples
in Figure 1.

formly outperform the state-of-the-art supervised
extraction-based systems in both automatic and
manual evaluation. Our system also exhibits an
ability to train on out-of-domain data to generate
abstracts for a new target domain.
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