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Abstract

In automatic summarization,centrality is
the notion that a summary should contain
the core parts of the source text. Cur-
rent systems use centrality, along with re-
dundancy avoidance and some sentence
compression, to produce mostly extrac-
tive summaries. In this paper, we investi-
gate how summarization can advance past
this paradigm towards robust abstraction
by making greater use of the domain of
the source text. We conduct a series of
studies comparing human-written model
summaries to system summaries at the se-
mantic level ofcaseframes. We show that
model summaries (1) are more abstrac-
tive and make use of more sentence aggre-
gation, (2) do not contain as many topi-
cal caseframes as system summaries, and
(3) cannot be reconstructed solely from
the source text, but can be if texts from
in-domain documents are added. These
results suggest that substantial improve-
ments are unlikely to result from better
optimizing centrality-based criteria, but
rather more domain knowledge is needed.

1 Introduction

In automatic summarization,centrality has been
one of the guiding principles for content selection
in extractive systems. We define centrality to be
the idea that a summary should contain the parts
of the source text that are most similar or repre-
sentative of the source text. This is most trans-
parently illustrated by the Maximal Marginal Rel-
evance (MMR) system of Carbonell and Goldstein
(1998), which defines the summarization objective

to be a linear combination of a centrality term and
a non-redundancy term.

Since MMR, much progress has been made on
more sophisticated methods of measuring central-
ity and integrating it with non-redundancy (See
Nenkova and McKeown (2011) for a recent sur-
vey). For example, term weighting methods such
as the signature term method of Lin and Hovy
(2000) pick out salient terms that occur more often
than would be expected in the source text based on
frequencies in a background corpus. This method
is a core component of the most successful sum-
marization methods (Conroy et al., 2006).

While extractive methods based on centrality
have thus achieved success, there has long been
recognition that abstractive methods are ultimately
more desirable. One line of work is in text simpli-
fication and sentence fusion, which focus on the
ability of abstraction to achieve a higher compres-
sion ratio (Knight and Marcu, 2000; Barzilay and
McKeown, 2005). A less examined issue is that of
aggregation and information synthesis. A key part
of the usefulness of summaries is that they provide
some synthesis or analysis of the source text and
make a more general statement that is of direct rel-
evance to the user. For example, a series of related
events can be aggregated and expressed as a trend.

The position of this paper is that centrality is
not enough to make substantial progress towards
abstractive summarization that is capable of this
type of semantic inference. Instead, summariza-
tion systems need to make more use of domain
knowledge. We provide evidence for this in a se-
ries of studies on the TAC 2010 guided summa-
rization data set that examines how the behaviour
of automatic summarizers can or cannot be dis-
tinguished from human summarizers. First, we
confirm that abstraction is a desirable goal, and
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provide a quantitative measure of the degree of
sentence aggregation in a summarization system.
Second, we show that centrality-based measures
are unlikely to lead to substantial progress towards
abstractive summarization, because current top-
performing systems already produce summaries
that are more “central” than humans do. Third, we
consider how domain knowledge may be useful as
a resource for an abstractive system, by showing
that key parts of model summaries can be recon-
structed from the source plus related in-domain
documents.

Our contributions are novel in the following re-
spects. First, our analyses are performed at the
level ofcaseframes, rather at the level of words or
syntactic dependencies as in previous work. Case-
frames are shallow approximations of semantic
roles which are well suited to characterizing a do-
main by its slots. Furthermore, we take adevel-
opmentalrather thanevaluativeperspective—our
goal is not to develop a new evaluation measure as
defined by correlation with human responsiveness
judgments. Instead, our studies reveal useful cri-
teria with which to distinguish human-written and
system summaries, helping to guide the develop-
ment of future summarization systems.

2 Related Work

Domain-dependent template-based summariza-
tion systems have been an alternative to extractive
systems which make use of rich knowledge about
a domain and information extraction techniques to
generate a summary, possibly using a natural lan-
guage generation system (Radev and McKeown,
1998; White et al., 2001; McKeown et al., 2002).
This paper can be seen as a first step towards
reconciling the advantages of domain knowledge
with the resource-lean extraction approaches pop-
ular today.

As noted above, Lin and Hovy’s (2000) sig-
nature terms have been successful in discovering
terms that are specific to the source text. These
terms are identified by a log-likelihood ratio test
based on their relative frequencies in relevant and
irrelevant documents. They were originally pro-
posed in the context of single-document summa-
rization, where they were calculated using in-
domain (relevant) vs. out-of-domain (irrelevant)
text. In multi-document summarization, the in-
domain text has been replaced by the source text
cluster (Conroy et al., 2006), thus they are now

used as a form of centrality-based features. In
this paper, we use guided summarization data as
an opportunity to reopen the investigation into the
effect of domain, because multiple document clus-
ters from the same domain are available.

Summarization evaluation is typically done by
comparing system output to human-written model
summaries, and are validated by their correlation
with user responsiveness judgments. The compar-
ison can be done at the word level, as in ROUGE
(Lin, 2004), at the syntactic level, as in Basic
Elements (Hovy et al., 2006), or at the level of
summary content units, as in the Pyramid method
(Nenkova and Passonneau, 2004). There are also
automatic measures which do not require model
summaries, but compare against the source text in-
stead (Louis and Nenkova, 2009; Saggion et al.,
2010).

Several studies complement this paper by ex-
amining the best possible extractive system us-
ing current evaluation measures, such as ROUGE
(Lin and Hovy, 2003; Conroy et al., 2006). They
find that the best possible extractive systems score
higher or as highly than human summarizers, but
it is unclear whether this means the oracle sum-
maries are actually as useful as human ones in
an extrinsic setting. Genest et al. (2009) ask hu-
mans to create extractive summaries, and find that
they score in between current automatic systems
and human-written abstracts on responsiveness,
linguistic quality, and Pyramid score. In the lec-
ture domain, He et al. (1999; 2000) find that
lecture transcripts that have been manually high-
lighted with key points improve students’ quiz
scores more than when using automated summa-
rization techniques or when providing only the
lecture transcript or slides.

Jing and McKeown (2000) manually analyzed
30 human-written summaries, and find that 19%
of sentences cannot be explained bycut-and-paste
operations from the source text. Saggion and La-
palme (2002) similarly define a list of transfor-
mations necessary to convert source text to sum-
mary text, and manually analyzed their frequen-
cies. Copeck and Szpakowicz (2004) find that
at most 55% of vocabulary items found in model
summaries occur in the source text, but they do
not investigate where the other vocabulary items
might be found.
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Sentence:
At one point, two bomb squad trucks sped to
the school after a backpack scare.

Dependencies:
num(point, one) prep at(sped, point)
num(trucks, two) nn(trucks, bomb)
nn(trucks, squad) nsubj(sped, trucks)
root(ROOT, sped) det(school, the)
prep to(sped, school) det(scare, a)
nn(scare, backpack) prep after(sped, scare)

Caseframes:
(speed, prep at) (speed, nsubj)
(speed, prep to) (speed, prep after)

Table 1: A sentence decomposed into its depen-
dency edges, and the caseframes derived from
those edges that we consider (in black).

3 Theoretical basis of our analysis

Many existing summarization evaluation methods
rely on word or N-gram overlap measures, but
these measures are not appropriate for our anal-
ysis. Word overlap can occur due to shared proper
nouns or entity mentions. Good summaries should
certainly contain the salient entities in the source
text, but when assessing the effect of the domain,
different domain instances (i.e., different docu-
ment clusters in the same domain) would be ex-
pected to contain different salient entities. Also,
the realization of entities as noun phrases depends
strongly on context, which would confound our
analysis if we do not also correctly resolve corefer-
ence, a difficult problem in its own right. We leave
such issues to other work (Nenkova and McKe-
own, 2003, e.g.).

Domains would rather be expected to shareslots
(a.k.a. aspects), which require a more semantic
level of analysis that can account for the various
ways in which a particular slot can be expressed.
Another consideration is that the structures to be
analyzed should be extracted automatically. Based
on these criteria, we selectedcaseframesto be the
appropriate unit of analysis. A caseframe is a shal-
low approximation of the semantic role structure
of a proposition-bearing unit like a verb, and are
derived from the dependency parse of a sentence1.

1Note that caseframes are distinct from (though directly

Relation Caseframe Pair Sim.
Degree (kill, dobj) (wound, dobj) 0.82
Causal (kill, dobj) (die, nsubj) 0.80
Type (rise, dobj) (drop, prep to) 0.81

Figure 1: Sample pairs of similar caseframes by
relation type, and the similarity score assigned to
them by our distributional model.

In particular, they are(gov, role) pairs, wheregov
is a proposition-bearing element, androle is an
approximation of a semantic role withgov as its
head (See Figure 1 for examples). Caseframes do
not consider the dependents of the semantic role
approximations.

The use of caseframes is well grounded in a va-
riety of NLP tasks relevant to summarization such
as coreference resolution (Bean and Riloff, 2004),
and information extraction (Chambers and Juraf-
sky, 2011), where they serve the central unit of se-
mantic analysis. Related semantic representations
are popular in Case Grammar and its derivative
formalisms such as frame semantics (Fillmore,
1982).

We use the following algorithm to extract case-
frames from dependency parses. First, we extract
those dependency edges with a relation type of
subject, direct object, indirect object, or prepo-
sitional object (with the preposition indicated),
along with their governors. The governor must be
a verb, event noun (as defined by the hyponyms
of the WordNet EVENT synset), or nominal or ad-
jectival predicate. Then, a series of deterministic
transformations are applied to the syntactic rela-
tions to account for voicing alternations, control,
raising, and copular constructions.

3.1 Caseframe Similarity

Direct caseframe matches account for some vari-
ation in the expression of slots, such as voicing
alternations, but there are other reasons different
caseframes may indicate the same slot (Figure 1).
For example,(kill, dobj) and(wound, dobj) both
indicate the victim of an attack, but differ by
the degree of injury to the victim.(kill, dobj)
and (die, nsubj) also refer to a victim, but are
linked by a causal relation. (rise, dobj) and

inspired by) the similarly namedcase framesof Case Gram-
mar (Fillmore, 1968).
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(drop, prep to) on the other hand simply share a
named entity type (in this case, numbers). To ac-
count for these issues, we measure caseframe sim-
ilarity based on their distributional similarity in a
large training corpus.

First, we construct vector representations of
each caseframe, where the dimensions of the vec-
tor correspond to the lemma of the head word that
fills the caseframe in the training corpus. For ex-
ample,kicked the ballwould result in a count of
1 added to the caseframe(kick, dobj) for the con-
text wordball. Then, we rescale the counts into
pointwise mutual information values, which has
been shown to be more effective than raw counts
at detecting semantic relatedness (Turney, 2001).
Similarity between caseframes can then be com-
pared by cosine similarity between the their vector
representations.

For training, we use the AFP portion of the
Gigaword corpus (Graff et al., 2005), which we
parsed using the Stanford parser’s typed depen-
dency tree representation with collapsed conjunc-
tions (de Marneffe et al., 2006). For reasons of
sparsity, we only considered caseframes that ap-
pear at least five times in the guided summariza-
tion corpus, and only the 3000 most common lem-
mata in Gigaword as context words.

3.2 An Example

To illustrate how caseframes indicate the slots in a
summary, we provide the following fragment of a
model summary from TAC about theUnabomber
trial :

(1) In Sacramento, Theodore Kaczynski faces a
10-count federal indictment for 4 of the 16
mail bomb attacks attributed to the
Unabomber in which two people were killed.
If found guilty, he faces a death penalty. ...
He has pleaded innocent to all charges. U.S.
District Judge Garland Burrell Jr. presides
in Sacramento.

All of the slots provided by TAC for theInves-
tigations and Trialsdomain can be identified by
one or more caseframes. The DEFENDANT can be
identified by(face, nsubj), and(plead, nsubj);
the CHARGES by (face, dobj); the REASON

by (indictment, prep for); the SENTENCE by
(face, dobj); the PLEAD by (plead, dobj); and
the INVESTIGATOR by (preside, nsubj).

4 Experiments

We conducted our experiments on the data and re-
sults of the TAC 2010 summarization workshop.
This data set contains 920 newspaper articles in
46 topics of 20 documents each. Ten are used in
an initial guided summarization task, and ten are
used in an update summarization task, in which
a summary must be produced assuming that the
original ten documents had already been read. All
summaries have a word length limit of 100 words.
We analyzed the results of the two summarization
tasks separately in our experiments.

The 46 topics belong to five different cate-
gories or domains:Accidents and natural dis-
asters, Criminal or terrorist attacks, Health and
safety, Endangered resources, and Investigations
and trials. Each domain is associated with a tem-
plate specifying the type of information that is ex-
pected in the domain, such as the participants in
the event or the time that the event occurred.

In our study, we compared the characteristics of
summaries generated by the eight human summa-
rizers with those generated by the peer summaries,
which are basically extractive systems. There
are 43 peer summarization systems, including two
baselines defined by NIST. We refer to systems
by their ID given by NIST, which are alphabetical
for the human summarizers (A to H), and numeric
for the peer summarizers (1 to 43). We removed
two peer systems (systems 29 and 43) which did
not generate any summary text in the workshop,
presumably due to software problems. For each
measure that we consider, we compare the average
among the human-written summaries to the three
individual peer systems, which we chose in order
to provide a representative sample of the average
and best performance of the automatic systems ac-
cording to current evaluation methods. These sys-
tems are all primarily extractive, like most of the
systems in the workshop:

Peer average The average of the measure
among the 41 peer summarizers.

Peer 16 This system scored the highest in re-
sponsiveness scores on the original summarization
task and in ROUGE-2, responsiveness, and Pyra-
mid score in the update task.

Peer 22 This system scored the highest in
ROUGE-2 and Pyramid score in the original sum-
marization task.
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(a) Initial guided summarization task
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(b) Update summarization task

Figure 2: Average sentence cover size: the average number ofsentences needed to generate the case-
frames in a summary sentence (Study 1). Model summaries are shown in darker bars. Peer system
numbers that we focus on are in bold.

Condition Initial Update
Model average 1.58 1.57
Peer average 1.06 1.06
Peer 1 1.00 1.00
Peer 16 1.04 1.04
Peer 22 1.08 1.09

Table 2: The average number of source text sen-
tences needed to cover a summary sentence. The
model average is statistically significantly differ-
ent from all the other conditionsp < 10−7

(Study 1).

Peer 1 The NIST-defined baseline, which is the
leading sentence baseline from the most recent
document in the source text cluster. This system
scored the highest on linguistic quality in both
tasks.

4.1 Study 1: Sentence aggregation

We first confirm that human summarizers are more
prone to sentence aggregation than system sum-
marizers, showing that abstraction is indeed a de-
sirable goal. To do so, we propose a measure to
quantify the degree of sentence aggregation exhib-
ited by a summarizer, which we callaverage sen-
tence cover size. This is defined to be the min-
imum number of sentences from the source text
needed to cover all of the caseframes found in a
summary sentence (for those caseframes that can
be found in the source text at all), averaged over all
of the summary sentences. Purely extractive sys-
tems would thus be expected to score1.0, as would
systems that perform text compression by remov-

ing constituents of a source text sentence. Human
summarizers would be expected to score higher, if
they actually aggregate information from multiple
points in the source text.

To illustrate, suppose we assign arbitrary in-
dices to caseframes, a summary sentence con-
tains caseframes{1, 2, 3, 4, 5}, and the source
text contains three sentences with caseframes,
which can be represented as a nested set
{{1, 3, 4}, {2, 5, 6}, {1, 4, 7}}. Then, the sum-
mary sentence can be covered by two sentences
from the source text, namely{{1, 3, 4}, {2, 5, 6}}.

This problem is actually an instance of the min-
imum set cover problem, in which sentences are
sets, and caseframes are set elements. Minimum
set cover is NP-hard in general, but the standard
integer programming formulation of set cover suf-
ficed for our data set; we used ILOG CPLEX
12.4’s mixed integer programming mode to solve
all the set cover problems optimally.

Results Figure 2 shows the ranking of the sum-
marizers by this measure. Most peer systems have
a low average sentence cover size of close to 1,
which reflects the fact that they are purely or al-
most purely extractive. Human model summariz-
ers show a higher degree of aggregation in their
summaries. The averages of the tested condi-
tions are shown in Table 2, and are statistically
significant. Peer 2 shows a relatively high level
of aggregation despite being an extractive system.
Upon inspection of its summaries, it appears that
Peer 2 tends to select many datelines, and without
punctuation to separate them from the rest of the
summary, our automatic analysis tools incorrectly
merged many sentences together, resulting in in-
correct parses and novel caseframes not found in
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(b) Update summarization task

Figure 3: Density of signature caseframes (Study 2).

Topic: Unabomber trial
(charge, dobj), (kill, dobj),
(trial, prep of), (bombing, prep in)

Topic: Mangrove forests
(beach, prep of), (save, dobj)
(development, prep of), (recover, nsubj)

Topic: Bird Flu
(infect, prep with), (die, nsubj)
(contact, dobj), (import, prep from)

Figure 4: Examples of signature caseframes found
in Study 2.

the source text.

4.2 Study 2: Signature caseframe density

Study 1 shows that human summarizers are more
abstractive in that they aggregate information from
multiple sentences in the source text, but how is
this aggregation performed? One possibility is
that human summary writers are able to pack a
greater number of salient caseframes into their
summaries. That is, humans are fundamentally re-
lying on centrality just as automatic summarizers
do, and are simply able to achieve higher compres-
sion ratios by being more succinct. If this is true,
then sentence fusion methods over the source text
alone might be able to solve the problem. Unfor-
tunately, we show that this is false and that system
summaries are actually more central than model
ones.

To extract topical caseframes, we use Lin and
Hovy’s (2000) method of calculating signature
terms, but extend the method to apply it at the
caseframe rather than the word level. We fol-
low Lin and Hovy (2000) in using a significance

Condition Initial Update
Model average 0.065 0.052
Peer average 0.080∗ 0.072∗

Peer 1 0.066 0.050
Peer 16 0.083∗ 0.085∗

Peer 22 0.101∗ 0.084∗

Table 3: Signature caseframe densities for differ-
ent sets of summarizers, for the initial and update
guided summarization tasks (Study 2).∗: p <
0.005.

threshold of0.001 to determine signature case-
frames2. Figure 4 shows examples of signature
caseframes for several topics. Then, we calculate
the signature caseframe density of each of the
summarization systems. This is defined to be the
number of signature caseframes in the set of sum-
maries divided by the number of words in that set
of summaries.

Results Figure 3 shows the density for all of the
summarizers, in ascending order of density. As
can be seen, the human abstractors actually tend to
use fewer signature caseframes in their summaries
than automatic systems. Only the leading baseline
is indistinguishable from the model average. Ta-
ble 3 shows the densities for the conditions that
we described earlier. The differences in density
between the human average and the non-baseline
conditions are highly statistically significant, ac-
cording to paired two-tailed Wilcoxon signed-rank
tests for the statistic calculated for each topic clus-
ter.

These results show that human abstractors do
2We tried various other thresholds, but the results were

much the same.
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Threshold 0.9 0.8
Condition Init. Up. Init. Up.
Model average 0.066 0.052 0.062 0.047
Peer average 0.080 0.071 0.071 0.063
Peer 1 0.068 0.050 0.060 0.044
Peer 16 0.083 0.086 0.072 0.077
Peer 22 0.100 0.086 0.084 0.075

Table 4: Density of signature caseframes after
merging to various threshold for the initial (Init.)
and update (Up.) summarization tasks (Study 2).

not merely repeat the caseframes that are indica-
tive of a topic cluster or use minor grammatical
alternations in their summaries. Rather, a genuine
sort of abstraction or distillation has taken place,
either through paraphrasing or semantic inference,
to transform the source text into the final informa-
tive summary.

Merging Caseframes We next investigate
whether simple paraphrasing could account for
the above results; it may be the case that human
summarizers simply replace words in the source
text with synonyms, which can be detected with
distributional similarity. Thus, we merged similar
caseframes into clusters according to the distribu-
tional semantic similarity defined in Section 3.1,
and then repeated the previous experiment. We
chose two relatively high levels of similarity (0.8
and 0.9), and used complete-link agglomerative
(i.e., bottom-up) clustering to merge similar
caseframes. That is, each caseframe begins as a
separate cluster, and the two most similar clusters
are merged at each step until the desired similarity
threshold is reached. Cluster similarity is defined
to be the minimum similarity (or equivalently,
maximum distance) between elements in the
two clusters; that is,maxc∈C1,c′∈C2

−sim(c, c′).
Complete-link agglomerative clustering tends to
form coherent clusters where the similarity be-
tween any pair within a cluster is high (Manning
et al., 2008).

Cluster Results Table 4 shows the results after
the clustering step, with similarity thresholds of
0.9 and0.8. Once again, model summaries contain
a lower density of signature caseframes. The sta-
tistical significance results are unchanged. This in-
dicates that simple paraphrasing alone cannot ac-
count for the difference in the signature caseframe

densities, and that some deeper abstraction or se-
mantic inference has occurred.

Note that we are not claiming that a lower den-
sity of signature caseframes necessarily correlates
with a more informative summary. For example,
some automatic summarizers are comparable to
the human abstractors in their relatively low den-
sity of signature caseframes, but these turn out to
be the lowest performing summarization systems
by all measures in the workshop, and they are un-
likely to rival human abstractors in any reasonable
evaluation of summary informativeness. It does,
however, appear that further optimizing centrality-
based measures alone is unlikely to produce bet-
ter informative summaries, even if we analyze the
summary at a syntactic/semantic rather than lexi-
cal level.

4.3 Study 3: Summary Reconstruction

The above studies show that the higher degree
of abstraction in model summaries cannot be ex-
plained by better compression of topically salient
caseframes alone. We now switch perspectives to
ask how model summaries might be automatically
generated at all. We will show that they cannot
be reconstructed solely from the source text, ex-
tending Copeck and Szpakowicz (2004)’s result to
caseframes. However, we also show that if articles
from the same domain are added, reconstruction
then becomes possible. Our measure of whether
a model summary can be reconstructed iscase-
frame coverage. We define this to be the propor-
tion of caseframes in a summary that is contained
by some reference set. This is thus a score be-
tween 0 and 1. Unlike in the previous study, we
use the full set of caseframes, not just signature
caseframes, because our goal now to create a hy-
pothesis space from which it is in principle possi-
ble to generate the model summaries.

Results We first calculated caseframe coverage
with respect to the source text alone (Figure 5).
As expected, automatic systems show close to per-
fect coverage, because of their basically extractive
nature, while model summaries show much lower
coverage. These statistics are summarized by Ta-
ble 5. These results present a fundamental limit
to extractive systems, and also text simplification
and sentence fusion methods based solely on the
source text.

The Impact of Domain Knowledge How might
automatic summarizers be able to acquire these
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(a) Initial guided summarization task
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(b) Update summarization task

Figure 5: Coverage of summary text caseframes in source text(Study 3).

Condition Initial Update
Model average 0.77 0.75
Peer average 0.99 0.99
Peer 1 1.00 1.00
Peer 16 1.00 1.00
Peer 22 1.00 1.00

Table 5: Coverage of caseframes in summaries
with respect to the source text. The model aver-
age is statistically significantly different from all
the other conditionsp < 10−8 (Study 3).

caseframes from other sources? Traditional sys-
tems that perform semantic inference do so from a
set of known facts about the domain in the form of
a knowledge base, but as we have seen, most ex-
tractive summarization systems do not make much
use of in-domain corpora. We examine adding
in-domain text to the source text to see how this
would affect coverage.

Recall that the 46 topics in TAC 2010 are cat-
egorized into five domains. To calculate the im-
pact of domain knowledge, we add all the docu-
ments that belong in the same domain to the source
text to calculate coverage. To ensure that coverage
does not increase simply due to increasing the size
of the reference set, we compare to the baseline of
adding the same number of documents that belong
to another domain. As shown in Table 6, the ef-
fect of adding more in-domain text on caseframe
coverage is substantial, and noticeably more than
using out-of-domain text. In fact, nearly all case-
frames can be found in the expanded set of arti-
cles. The implication of this result is that it may
be possible to generate better summaries by min-
ing in-domain text for relevant caseframes.

Reference corpus Initial Update
Source text only 0.77 0.75
+out-of-domain 0.91 0.91
+in-domain 0.98 0.97

Table 6: The effect on caseframe coverage of
adding in-domain and out-of-domain documents.
The difference between adding in-domain and out-
of-domain text is significantp < 10−3 (Study 3).

5 Conclusion

We have presented a series of studies to distin-
guish human-written informative summaries from
the summaries produced by current systems. Our
studies are performed at the level of caseframes,
which are able to characterize a domain in terms of
its slots. First, we confirm that model summaries
are more abstractive and aggregate information
from multiple source text sentences. Then, we
show that this is not simply due to summary writ-
ers packing together source text sentences contain-
ing topical caseframes to achieve a higher com-
pression ratio, even if paraphrasing is taken into
account. Indeed, model summaries cannot be re-
constructed from the source text alone. How-
ever, our results are also positive in that we find
that nearly all model summary caseframes can be
found in the source text together with some in-
domain documents.

Current summarization systems have been
heavily optimized towards centrality and lexical-
semantical reasoning, but we are nearing the bot-
tom of the barrel. Domain inference, on the other
hand, and a greater use of in-domain documents
as a knowledge source for domain inference, are
very promising indeed. Mining useful caseframes
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for a sentence fusion-based approach has the po-
tential, as our experiments have shown, to deliver
results in just the areas where current approaches
are weakest.
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