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Abstract

This paper describes a novel strategy for
automatic induction of a monolingual de-
pendency grammar under the guidance
of bilingually-projected dependency. By
moderately leveraging the dependency in-
formation projected from the parsed coun-
terpart language, and simultaneously min-
ing the underlying syntactic structure of
the language considered, it effectively in-
tegrates the advantages of bilingual pro-
jection and unsupervised induction, so as
to induce a monolingual grammar much
better than previous models only using
bilingual projection or unsupervised in-
duction. We induced dependency gram-
mar for five different languages under the
guidance of dependency information pro-
jected from the parsed English translation,
experiments show that the bilingually-
guided method achieves a significant
improvement 0f28.5% over the unsuper-
vised baseline andl0% over the best pro-
jection baseline on average.

Introduction

ods which use only raw texts (Klein and Man-
ning, 2004; Smith and Eisner, 2005; William et
al., 2009), and semi-supervised methods (Koo et
al., 2008) which use both raw texts and annotat-
ed corpus. And there are a lot of efforts have also
been devoted to bilingual projection (Chen et al.,
2010), which resorts to bilingual text with one lan-
guage parsed, and projects the syntactic informa-
tion from the parsed language to the unparsed one
(Hwa et al., 2005; Ganchev et al., 2009).

In dependency grammar induction, unsuper-
vised methods achieve continuous improvements
in recent years (Klein and Manning, 2004; Smith
and Eisner, 2005; Bod, 2006; William et al., 2009;
Spitkovsky et al., 2010). Relying on a predefined
distributional assumption and iteratively maximiz-
ing an approximate indicator (entropy, likelihood,
etc.), an unsupervised model usually suffers from
two drawbacks, i.e., lower performance and high-
er computational cost. On the contrary, bilin-
gual projection (Hwa et al., 2005; Smith and Eis-
ner, 2009; Jiang and Liu, 2010) seems a promis-
ing substitute for languages with a
large amount of bilingual sentences and an exist-
ing parser of the counterpart language. By project-
ing syntactic structures directly (Hwa et al., 2005;
Smith and Eisner, 2009; Jiang and Liu, 2010)

In past decades supervised methods achieved ti@ross bilingual texts or indirectly across muilti-
state-of-the-art in constituency parsing (Collins,lingual texts (Snyder et al., 2009; McDonald et
2003; Charniak and Johnson, 2005; Petrov et al@l, 2011; Naseem et al., 2012), a better depen-
2006) and dependency parsing (McDonald et al.gency grammar can be easily induced, if syntactic
2005a; McDonald et al., 2006; Nivre et al., 2006;isomorphism is largely maintained between target
Nivre et al., 2007; Koo and Collins, 2010). For and source languages.

supervised models, the human-annotated corpora Unsupervised induction and bilingual projec-
on which models are trained, however, are expention run according to totally different principles,
sive and difficult to build. As alternative strate- the former mines the underlying structure of the
gies, methods which utilize raw texts have been inmonolingual language, while the latter leverages
vestigated recently, including unsupervised meththe syntactic knowledge of the parsed counter-
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Figure 1: Training the bilingually-guided parsing modelitgration.

part language. Considering this, we propose a In the rest of the paper, we first describe the un-
novel strategy for automatically inducing a mono-supervised dependency grammar induction frame-
lingual dependency grammar under the guidancevork in section 2 (where the unsupervised op-
of bilingually-projected dependency information, timization objective is given), and introduce the
which integrates the advantage of bilingual pro-bilingual projection method for dependency pars-
jection into the unsupervised framework. Aing in section 3 (where the projected optimiza-
randomly-initialized  monolingual  treebank tion objective is given); Then in section 4 we
evolves in a self-training iterative procedure, andoresent the bilingually-guided induction strategy
the grammar parameters are tuned to simultander dependency grammar (where the two objec-
ously maximize both the monolingual likelihood tives above are jointly optimized, as shown in Fig-
and bilingually-projected likelihood of the evolv- ure 1). After giving a brief introduction of previ-
ing treebank. The monolingual likelihood is sim- ous work in section 5, we finally give the experi-
ilar to the optimization objectives of convention- mental results in section 6 and conclude our work
al unsupervised models, while the bilingually- in section 7.

projected likelihood is the product of the projected

probabilities of dependency trees. By moderately _
leveraging the dependency information projecteo2 Unsuperwsed Dependency Grammar
from the parsed counterpart language, and simul- Induction

taneously mining the underlying syntactic struc-

ture of the |anguage considered, we can automath this section, we introduce the unsupervised ob-
ically induce a monolingual dependency grammai€ctive and the unsupervised training algorithm
which is much better than previous models onlywhich is used as the framework of our bilingually-
using bilingual projection or unsupervised induc-guided method. Unlike previous unsupervised
tion. In addition, since both likelihoods are fun- work (Klein and Manning, 2004; Smith and Eis-
damentally factorized into dependency edges (oRer, 2005; Bod, 2006), we select a self-training
the hypothesis tree), the computational complexiapproach (similar to hard EM method) to train
ty approaches to unsupervised models, while witihe unsupervised model. And the framework of
much faster convergence. We evaluate the fing®ur unsupervised model builds a random treebank
automatica"y-induced dependency parsing modon the monolingual corpus firstly for initialization
el on 5 languages. Experimental results showand trains a discriminative parsing model on it.
that our method significantly outperforms previ- Then we use the parser to build an evolved tree-
ous work based on unsupervised method or indibank with the 1-best result for the next iteration
rect/direct dependency projection, where we se&un. In this way, the parser and treebank evolve in
an average improvement of 28.5% over unsuperan iterative way until convergence. Let's introduce
vised baseline on all languages, and the improvethe parsing objective firstly:

ments are 3.9%/3.0% over indirect/direct base- Definee; as thei word in monolingual sen-
lines. And our model achieves the most signif-tenceF; d,, denotes the word pair dependency re-
icant gains on Chinese, where the improvementtationship ¢; — e;). Based on the features around
are 12.0%, 4.5% over indirect and direct projec-deij, we can calculate the probabilitl,?r(y|dej].)
tion baselines respectively. that the word paitl,,, can form a dependency arc
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as: Algorithm 1 Training unsupervised model

1. build random D
Pr(y|deij) exp Z An fn €ij y (1) 2.\ — train(DE, Df)
3. repeat .
wherey is the category of the relationship éf ;: & for %”‘Ehf;aig& N > E step
o . oy E )
y = + means it is the probability that the word ., train(Dy, Do) > M step
pair d.,. can form a dependency arc apd= — 7: until convergence

means the contrary,, denotes the weight for fea-
ture functionf, (d.,;,y), and the features we used /\/\
are presented in Table 1 (Section &)(d.,,) is a bushi yu  shalong juxing huitan

normallzmg constant: B
Bush  held a talk with Sharon

Z(deij) = Zexp(z An fn(deijay)) (2) TS T
Yy n

Figure 2. Projecting a Chinese dependency tree
to English side according to DPA. Solid arrows
are projected dependency arcs; dashed arrows are
missing dependency arcs.

Given a sentenc&, parsing a dependency tree
is to find a dependency treRr with maximum
probability Pg:

Pr = arg max H Pr(+|de,;;)
De dp” €Dg

3)
2.2 Unsupervised Training Algorithm

2.1 Unsupervised Objective Algorithm 1 outlines the unsupervised training in
We select a simple classifier objective function adts entirety, where the treebanRs and unsuper-
the unsupervised objective function which is in-Vvised parsing model with are updated iteratively.
stinctively in accordance with the parsing objec- In line 1 we build a random treebank; on
tive: the monolingual corpus, and then train the parsing
model with it (line 2) through a training procedure
II Previd) JT Pr(-ide) (4) train(-,-) which needsD; and D as classifica-
de€Dy de€Dyg tion instances. From line 3-7, we train the unsu-
pervised model in self training iterative procedure,
where line 4-5 are similar to the E-step in EM al-
gorithm where calculates objective instead of ex-
‘pectation of 1-best tree (line 5) which is parsed
according to the parsing objective (Formula 3) by
parsing procesgarse(-,-), and update the tree
bank with the tree. Similar to M-step in EM, the
01(\) = Z log Pr(+|d.) algorithm maximizes the whole treebank’s unsu-
decDy pervised objective (Formula 6) through the train-

5 ing procedure (line 6).
+ ) log Pr(—|d,) ©) nap (ine©)

de€Dg 3 Bilingual Projection of Dependency
Grammar

whereE is the monolingual corpus anfl € E,
D is the treebank that contains &l in the cor-
pus, andD— denotes all other possible dependen
cy arcs WhICh do not exist in the treebank.

Maximizing the Formula (4) is equivalent to
maximizing the following formula:

Since the size of edges betweéh; and EE is
disproportionate, we use an empirical value to rein this section, we introduce our projection objec-
duce the impact of the huge number of negativdive and training algorithm which trains the model

instances: with arc instances.
Because of the heterogeneity between dif-
02(2) = Z log Pr(+]de) ferent languages and word alignment errors, pro-

de€Dy ©6) jection methods may contain a lot of noises. Take

+ Uz_ﬁ Z log Pr(—|d.) Figure 2 as an example, following the Direct

| D% Projection  Algorithm (DPA) (Hwa et al., 2005)
(Section 5), the dependency relationships between
where|z| is the size ofr. words can be directly projected from the source

El 4.eDy
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Algorithm 2 Training projection model

: Dp,Dn eproj(F, DF,A,E)
repeat
V¢ < grad(Dp, Dy, ¢(N))
A climb(p, Vo, \)
until maximization

parsed counterpart, but it possibly contains a lot
of noises (e.g. Figure 2). We believe that unsu-
pervised model and projection model can comple-
ment each other and a joint model which takes bet-
ter use of both unsupervised parse trees and pro-
jected dependency arcs can give us a better parser.
Based on the idea, we propose a nov-
gl strategy for training monolingual grammar in-
Huction model with the guidance of unsuper-

> train(Dp, DN)

arwnhE

can hardly obtain a treebank with complete tree 3

through direct projection. So we extract projecte

discrete dependency arc instances instead of tre
bank as training set for the projected grammar in

duction model.

3.1 Projection Objective

dvised and bilingually-projected dependency infor-

Fhation. Figure 1 outlines our bilingual-guided

grammar induction process in its entirety. In our
method, we select compatible objectives for unsu-
pervised and projection models, in order to they

. o . can share the same grammar parameters. Then
Correspondingly, we select an objective which has g P

: . we incorporate projection model into our iterative
the same form with the unsupervised one: . o o
unsupervised framework, and jointly optimize un-

supervised and projection objectives with evolv-
ing treebank and constant projection information

o) = Z log Pr(+|d.)

de€lp (7)  respectively. In this way, our bilingually-guided
+ Z log Pr(—|d.) model’'s parameters are tuned to simultaneous-
de€Dn ly maximizing both monolingual likelihood and

whereDp is the positive dependency arc instanceb'“ngua”y'proJeCteOI likelihood by 4 steps:

set, which is obtained by direct projection methods
(Hwa et al., 2005; Jiang and Liu, 2010) abd is
the negative one.

1. Randomly build treebank on target sentences
for initialization, and get the projected arc in-
stances through projection from bitext.

3.2 Projection Algorithm

Basically, the training procedure in line 2,7 of Al- 2. '!'raln the b|||ngually.gw§1ed. grammar mduc
. - . . . tion model by multi-objective optimization
gorithm 1 can be divided into smaller iterative . . L
. . - method with unsupervised objective and pro-
steps, and Algorithm 2 outlines the training step _— I .
" o — . jection objective on treebank and projected
of projection model with instancesF in Algo- . .
: : L arc instances respectively.
rithm 2 is source sentences in bilingual corpus,
and 4 is the alignments. Functioprad(.,-,-) 3. Use the parsing model to build new treebank

gives the gradientY{¢) and the objective is op-
timized with a generic optimization step (such as
an LBFGS iteration (Zhu et al., 1997)) in the sub-
routineclimb(-, -, -).

on target language for next iteration.

4. Repeat steps 1, 2 and 3 until convergence.

The unsupervised objective is optimized by the
loop—"tree bank-optimized model>new tree
bank”. The treebank is evolved for runs. The
This section presents our bilingually-guided gram-unsupervised model gets projection constraint im-
mar induction model, which incorporates unsuper-plicitly from those parse trees which contain in-
vised framework and bilingual projection model formation from projection part. The projection ob-
through a joint approach. jective is optimized by the circulation—"projected

According to following observation: unsuper- instances»optimized model”, these projected in-
vised induction model mines underlying syntacticstances will not change once we get them.
structure of the monolingual language, however, it The iterative procedure proposed here is not a
is hard to find good grammar induction in the ex-co-training algorithm (Sarkar, 2001; Hwa et al.,
ponential parsing space; bilingual projection ob-2003), because the input of the projection objec-
tains relatively reliable syntactic knowledge of thetive is static.

4 Bilingually-Guided Dependency
Grammar Induction
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4.1 Joint Objective Algorithm 3 Training joint model

For multi-objective optimization method, we em- 1: Dr, Dx < proj(F, Dy, A, E)
lov the cl ical ighted h which . build random D¢
ploy the classical weighted-sum approach whichg: ). .4in(Dp, Dy)
just calculates the weighted linear sum of the ob-4: repeat _
At . foreach £ € E do > E step
jectives: 6 Dy « parse(E,\)
7 Ve(A) + grad(Dg, Dz, Dp, Dn,£(N))
8: X <=climb(£(X), VL(N), A) > M step
9: until convergence

OBJ = Z weight, objm, 8)

We combine the unsupervised objective (For- 4 proiecti biecti diti
mula (6)) and projection objective (Formula (7)) and projection objective. And it incorporates un-

together through the weighted-sum approach ir§upervised framework and projection model algo-
Formula (8): rithm together. It is grounded on the work which

uses features in the unsupervised model (Berg-
I\ = afs(\) + (1 — a)d(N) (9) Kirkpatrick et al., 2010).

In line 1, 2 we get projected dependency in-
where/()\) is our weight-sum objective. And ~ stances from source side according to projec-
is a mixing coefficient which reflects the relative tion methods and build a random treebank (step
confidence between the unsupervised and projed). Then we train an initial model with projection
tion objectives. Equallyy and(1—«) can be seen instances in line 3. From line 4-9, the objective is
as the weights in Formula (8). In that case, we ca®ptimized with a generic optimization step in the

for different objective functions. When = 1it  parse its dependency tree, and update the tree into

is the unsupervised objective function in Formulathe treebank (step 3). Then we calculate the gra-

(6). Contrary, ifa. = 0, it is the projection objec- dient and optimize the joint objective according to

tive function (Formula (7)) for projected instances.the evolved treebank and projected instances (step
With this approach, we can optimize the mixed2). Lines 5-6 are equivalent to the E-step of the

parsing model by maximizing the objective in For- EM algorithm, and lines 7-8 are equivalent to the

mula (9). Though the function (Formula (9)) is M-step.

an interpolation function, we use it for training

instead of parsing. In the parsing procedure, oup Related work

method calculates the probability of a dependencyﬁ_he DMV (Klein and Manning, 2004) is a single
[ ing, [ [ -

arc according to the Formula (2), while the inter- , ,
polating method calculates it by: _state head automata model (Alshawi, 1996) which
is based on POS tags. And DMV learns the gram-
mar via inside-outside re-estimation (Baker, 1979)
Pr(ylde,;) =aPri(ylde,;) (10) without any smoothing, while Spitkovsky et al.
+ (1 — a)Pra(y|de,,) (2010) utilizes smoothing and learning strategy
during grammar learning and William et al. (2009)
wherePr (y|de,;) and Pra(y|d.,;) are the proba- improves DMV with richer context.
bilities provided by different models. The dependency projection method DPA (H_
wa et al., 2005) based on Direct Correspondence
o o ~Assumption (Hwa et al., 2002) can be described
We optimize the objective (Formula (9)) via a as: if there is a pair of source words with a de-
gradient-based search algorithm. And the grad'pendency relationship, the corresponding aligned

4.2 Training Algorithm

ent with respect td, takes the form: words in target sentence can be considered as hav-
902(\) 96(\) ing the same dependency relationship equivalent-
Vi) = a— =+ (1- Q)W (11) 'y (e.g. Figure 2). The Word Pair Classification
k k

(WPC) method (Jiang and Liu, 2010) modifies the
Algorithm 3 outlines our joint training proce- DPA method and makes it more robust. Smith
dure, which tunes the grammar parameteimul-  and Eisner (2009) propose an adaptation method
taneously maximize both unsupervised objectivdounded on quasi-synchronous grammar features
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Type

Feature Template

Unigram word; POS; word; o pos;
word; pOS; word; o pos;
Bigram word; o pos; word; o pos; DPOS; O POS;

word; o word;
word; o Pos; © pos;
word; o pos; o word; o pos;

word; o pos; o word;
pos; o word; o pos;

word; o word; o pos;

Surrounding

POS;—1 © poOS; © poS;
POS; © POS; © POS;j41
POS;—1 ©POS;—1 © POS;
POS; O POS;41 O POS;—1

POS; © POS;+1 O POS;

POSi—1 © pOS; © pOS;—1
POSi+1 ©POS; O POSj+1
POSi—1 0 pOS;j O POS;41

POS; © POS;—1 © POS;

POS; © POS;+1 O POSj+1
POSi—1 © pOS; © POSj+1
POSi+1 ©POSj—1 0 PoOS;

DPOS;i—1 O POS; © POS;—1 © POS;
DOS; O POSi41 O POSj—1 O POS;

POS; © pOS;41 © POS; O POSj41
POS;—1 O POS; O POS; O POS;41

Table 1: Feature templates for dependency parsing. For&gdgevord; is the parent word andord;
is the child word, similar to pos”. "+1” denotes the preceding token of the sentence, sinddrl”.

for dependency projection and annotation, whichSwedish(sv) (da, nl, pt and sv are free data sets
requires a small set of dependency annotated codistributed for the 2006 CoNLL Shared Tasks
pus of target language. (Buchholz and Marsi, 2006)). For all languages,
Similarly, using indirect information from mul- we only use English-target parallel data: we take
tilingual (Cohen et al., 2011; Tackstrom et al.,the FBIS English-Chinese bitext as bilingual cor-
2012) is an effective way to improve unsupervisedpus for English-Chinese dependency projection
parsing. (Zeman and Resnik, 2008; McDonald etwhich contains 239K sentence pairs with about
al., 2011; Sggaard, 2011) employ non-lexicalized.9M/6.9M words in English/Chinese, and for
parser trained on other languages to process ather languages we use the readily available data
target language. McDonald et al. (2011) adaptén the Europarl corpus. Then we run tests on the
their multi-source parser according to DCA, while Penn Chinese Treebank (CTB) and CoNLL-X test
Naseem et al. (2012) selects a selective sharingets.
model to make better use of grammar information English sentences are tagged by the implemen-
in multi-sources. tations of the POS tagger of Collins (2002), which
Due to similar reasons, many works are devoteds trained on WSJ. The source sentences are then
to POS projection (Yarowsky et al., 2001; Shen eparsed by an implementation of 2nd-ordered MST
al., 2007; Naseem et al., 2009), and they also sufmodel of McDonald and Pereira (2006), which is
fer from similar problems. Some seek for unsu-trained on dependency trees extracted from Penn
pervised methods, e.g. Naseem et al. (2009), antireebank.
some further improve the projection by a graph- As the evaluation metric, we use parsing accu-
based projection (Das and Petrov, 2011). racy which is the percentage of the words which
Our model differs from the approaches abovehave found their correct parents. We evaluate on
in its emphasis on utilizing information from both sentences with all length for our method.
sides of bilingual corpus in an unsupervised train- Training Regime In experiments, we use the
ing framework, while most of the work above only projection method proposed by Jiang and Liu
utilize the information from a single side. (2010) to provide the projection instances. And
we train the projection part = 0 first for initial-
ization, on which the whole model will be trained.
In this section, we evaluate the performance of thévailing of the initialization method, the model
MST dependency parser (McDonald et al., 2005bfan converge very fast (about 3 iterations is suffi-
which is trained by our bilingually-guided model cient) and the results are more stable than the ones
on 5 languages. And the features used in our extrained on random initialization.
periments are summarized in Table 1. Baselines We compare our method against
three kinds of different approaches: unsupervised
method (Klein and Manning, 2004); single-
Datasets and EvaluationOur experiments are source direct projection methods (Hwa et al.,
run on five different languages: Chinese(ch),2005; Jiang and Liu, 2010); multi-source in-
Danish(da), Dutch(nl), Portuguese(pt) anddirect projection methods with multi-sources (M-

6 Experiments

6.1 Experiment Setup
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0,
65— Accuracy%

Model ch da nl pt Y avg
DMV 425 | 334]|385(20.1| 440 ——
oo bL—— . . . DPA 539 | —— | —= | —= | —— || —~
512 WPC 56.8 | 50.1 | 58.4 | 70.5| 60.8 || 59.3

M Transfer | 49.3 | 49.5 | 53.9 | 75.8 | 63.6 || 58.4
; Selective | 51.2 | —— | 55.9| 73.5 | 61.5 || ——
a

50.3 unsuper | 22.6 | 41.6] 15.2] 45.7] 424 335
05— avg 61.0 | 50.7] 59.9[ 72.0] 631 61.3

e max 61.3 | 51.1| 60.1 | 74.2 | 64.6 || 62.3

nl ——

accuracy %

59.5

"5 —— : Table 2: The directed dependency accuracy with
M different parameter of our model and the base-
R lines.

705 The first section of the table (row 3-7)

650 —r——— shows the results of the baselines: a unsupervised
method baseline (Klein and Manning, 2004)(D-
elsLr— . . . T . N MV); a single-source projection method baseline
01 02 03 04 05 06 07 08 09 1 (Hwa et al., 2005) (DPA) and its improve-
alpha ment (Jiang and Liu, 2010)(WPC); two multi-

source baselines (McDonald et al., 2011)(Trans-
fer) and (Naseem et al., 2012)(Selective). The
second section of the table (row 8) presents the
result of our unsupervised framework (unsuper).

Figure 3: The performance of our model with re-
spect to a series of ratio

cDonald et al., 2011; Naseem et al., 2012). The third section gives the mean value (avg) and
maximum value (max) of our model with different
6.2 Results ain Figure 3.

We test our method on CTB and CoNLL-X free *: The result is based on sentences with 10

test data sets respectively, and the performance Words or less after the removal of punctuation, it

summarized in Table 2. Figure 3 presents the peiris an incomparable result.

formance with differentv on different languages.
Compare against Unsupervised BaselinEx- .

perimental results show that our unsuperviseémes' o

framework’s performance approaches to the DMy _ | "€ results in Figure 3 prove that our unsuper-

method. And the bilingually-guided model can vised frameworlo: = 1 can promote the grammar

promote the unsupervised method Consisteni_nduction if it has a good start (well initialization),

cy over all languages. On the best results’ aver-and it will be better once we incorporate the infor-

age of four comparable languages (da, nl, pt, SV)r,nation from the projection sidex(= 0.9). And

the promotion gained by our model is 28.5% overtné maximum points are not im = 1, which im-

the baseline method (DMV) (Klein and Manning, plies that projec_tion information is st?ll available
2004). for the unsupervised framework even if we employ

Compare against Projection Baselines For the projection model as the |n|t|al!zat|on. So we
suggest that a greater parameter is a better choice

all languages, the  model consistent-f del. And th dom fact
y  outperforms on direct projection baseline, fO" 0ur model. And there are some random factors

On the average of each language’s best result, olff OUr model WhiCh make pe_rfo_rmanc_e curves with
model outperforms all kinds of baselines, yieldingmore quctuatl_on. And th_ere Isjusta I'tﬂ? Improve-
3.0% gain over the single-source direct-projectionmbem sh((j)vt\;n |r,\r/|lab|n Wlhdldl trl]e 258£n1e situation Is
method (Jiang and Liu, 2010) and 3.9% gain ovePPSENve y (McDonald etal., )-

the multi-source indirect-projection method (Mc- . -

Donald et al., 2011). On the average of all resultsa'3 Effects of the Size of Training Corpus
with different parameters, our method also gain-To investigate how the size of the training corpus
s more than 2.0% improvements on all baselinesnfluences the result, we train the model on ex-
Particularly, our model achieves the most signif-tracted bilingual corpus with varying sizes: 10K,
icant gains on Chinese, where the improvement§0K, 100K, 150K and 200K sentences pairs.

are 4.5%/12.0% on direct/indirect projection base- As shown in Figure 4, our approach continu-
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Figure 4: Performance on varying sizes (averagé&igure 6: The performance curve of our model

of 5 languagesy = 0.9) (random initialization) on Chinese, with respect to
a series of ratiox. The baseline is the result of
D e WPC model.
D e " 1
61 f \\‘2 1
28 o e S increases with the growth of the noise rate. The re-
T oS8t e \ sult suggests that our method can solve some prob-
=l YO\ lems which are caused by projection noise.
8 Vo
55 [ \\ ] -y - -
a0 Yo 6.5 Performance on Random Initialization
e e Y] We test our model with random initialization on
0 005 01 o015 02 025 03 o035 differenta. The curve in Figure 6 shows the per-
noise rate formance of our model on Chinese.

The results seem supporting our unsupervised
Figure 5: Performance on different projection optimization method whem: is in the range of
quality (average of 5 languages, = 0.9). The (g 0.1). It implies that the unsupervised structure
noise rate is the percentage of the projected inmformation is useful, but it seems creating a nega-
stances being messed up. tive effect on the model whemis greater than 0.1.
Because the unsupervised part can gain constraints

ously outperforms the baseline with the increasindfom the projection part. Butwith the increase of
size of training corpus. It is especially noteworthy @ the strength of constraint dwindles, and the
that the more training data is utilized the more su{nsupervised part will gradually lose control. And
periority our model enjoys. That is, because ouad unsupervised part pulls the full model down.
method not only utilizes the projection informa-
tion but also avails itself of the monolingual cor-
pus. This paper presents a bilingually-guided strate-
gy for automatic dependency grammar induction,
which adopts an unsupervised skeleton and lever-
The projection quality can be influenced by theages the bilingually-projected dependency infor-
quality of the source parsing, alignments, projec-mation during optimization. By simultaneous-
tion methods, corpus quality and many other facly maximizing the monolingual likelihood and
tors. In order to detect the effects of varying pro-bilingually-projected likelihood in the EM proce-
jection qualities on our approach, we simulate thedure, it effectively integrates the advantages of
complex projection procedure by messing up theilingual projection and unsupervised induction.
projected instances randomly with different noiseExperiments on 5 languages show that the novel
rates. The curves in Figure 5 show the perforstrategy significantly outperforms previous unsu-
mance of WPC baseline and our bilingual-guidedpervised or bilingually-projected  models.
method. For different noise rates, our model’'s re-Since its computational complexity approaches to
sults consistently outperform the baselines. Whetthe skeleton unsupervised model (with much few-
the noise rate is greater than 0.2, our improvemergr iterations), and the bilingual text aligned to

7 Conclusion and Future Work

6.4 Effect of Projection Quality

1070



resource-rich languages is easy to obtain, such Michael Collins. 2002. Discriminative training meth-
hybrid method seems to be a better choice for au- 0ds for hidden markov models: Theory and exper-

tomatic grammar induction. It also indicates that

the combination of bilingual constraint and unsu-

iments with perceptron algorithms. Rroc. of the
2002 Conference on EMNL Pages 1-8, July.

pervised methodology has a promising prospeciMichael Collins. 2003. Head-driven statistical mod-

for grammar induction. In the future work we will

investigate such kind of strategies, such as bilin-
D. Das and S. Petrov. 2011. Unsupervised part-of-

gually unsupervised induction.
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