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Abstract

We present the first unsupervised ap-
proach for semantic parsing that rivals
the accuracy of supervised approaches
in translating natural-language questions
to database queries. Our GUSP system
produces a semantic parse by annotat-
ing the dependency-tree nodes and edges
with latent states, and learns a proba-
bilistic grammar using EM. To compen-
sate for the lack of example annotations
or question-answer pairs, GUSP adopts
a novel grounded-learning approach to
leverage database for indirect supervision.
On the challenging ATIS dataset, GUSP
attained an accuracy of 84%, effectively
tying with the best published results by su-
pervised approaches.

1 Introduction

Semantic parsing maps text to a formal mean-
ing representation such as logical forms or struc-
tured queries. Recently, there has been a bur-
geoning interest in developing machine-learning
approaches for semantic parsing (Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007;
Mooney, 2007; Kwiatkowski et al., 2011), but
the predominant paradigm uses supervised learn-
ing, which requires example annotations that are
costly to obtain. More recently, several grounded-
learning approaches have been proposed to alle-
viate the annotation burden (Chen and Mooney,
2008; Kim and Mooney, 2010; Börschinger et al.,
2011; Clarke et al., 2010; Liang et al., 2011). In
particular, Clarke et al. (2010) and Liang et al.
(2011) proposed methods to learn from question-
answer pairs alone, which represents a significant
advance. However, although these methods exon-
erate annotators from mastering specialized logi-
cal forms, finding the answers for complex ques-

tions still requires non-trivial effort. 1

Poon & Domingos (2009, 2010) proposed the
USP system for unsupervised semantic parsing,
which learns a parser by recursively clustering
and composing synonymous expressions. While
their approach completely obviates the need for di-
rect supervision, their target logic forms are self-
induced clusters, which do not align with existing
database or ontology. As a result, USP can not be
used directly to answer complex questions against
an existing database. More importantly, it misses
the opportunity to leverage database for indirect
supervision.

In this paper, we present the GUSP system,
which combines unsupervised semantic parsing
with grounded learning from a database. GUSP
starts with the dependency tree of a sentence and
produces a semantic parse by annotating the nodes
and edges with latent semantic states derived from
the database. Given a set of natural-language
questions and a database, GUSP learns a prob-
abilistic semantic grammar using EM. To com-
pensate for the lack of direct supervision, GUSP
constrains the search space using the database
schema, and bootstraps learning using lexical
scores computed from the names and values of
database elements.

Unlike previous grounded-learning approaches,
GUSP does not require ambiguous annotations
or oracle answers, but rather focuses on lever-
aging database contents that are readily avail-
able. Unlike USP, GUSP predetermines the tar-
get logical forms based on the database schema,
which alleviates the difficulty in learning and en-
sures that the output semantic parses can be di-
rectly used in querying the database. To handle
syntax-semantics mismatch, GUSP introduces a
novel dependency-based meaning representation

1Clarke et al. (2010) and Liang et al. (2011) used the
annotated logical forms to compute answers for their experi-
ments.
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by augmenting the state space to represent seman-
tic relations beyond immediate dependency neigh-
borhood. This representation also factorizes over
nodes and edges, enabling linear-time exact infer-
ence in GUSP.

We evaluated GUSP on end-to-end question
answering using the ATIS dataset for semantic
parsing (Zettlemoyer and Collins, 2007). Com-
pared to other standard datasets such as GEO and
JOBS, ATIS features a database that is an order
of magnitude larger in the numbers of relations
and instances, as well as a more irregular lan-
guage (ATIS questions were derived from spo-
ken dialogs). Despite these challenges, GUSP
attains an accuracy of 84% in end-to-end ques-
tion answering, effectively tying with the state-
of-the-art supervised approaches (85% by Zettle-
moyer & Collins (2007), 83% by Kwiatkowski et
al. (2011)).

2 Background

2.1 Semantic Parsing

The goal of semantic parsing is to map text to
a complete and detailed meaning representation
(Mooney, 2007). This is in contrast with semantic
role labeling (Carreras and Marquez, 2004) and in-
formation extraction (Banko et al., 2007; Poon and
Domingos, 2007), which have a more restricted
goal of identifying local semantic roles or extract-
ing selected information slots.

The standard language for meaning representa-
tion is first-order logic or a sublanguage, such as
FunQL (Kate et al., 2005; Clarke et al., 2010) and
lambda calculus (Zettlemoyer and Collins, 2005;
Zettlemoyer and Collins, 2007). Poon & Domin-
gos (2009, 2010) induce a meaning representa-
tion by clustering synonymous lambda-calculus
forms stemming from partitions of dependency
trees. More recently, Liang et al. (2011) proposed
DCS for dependency-based compositional seman-
tics, which represents a semantic parse as a tree
with nodes representing database elements and op-
erations, and edges representing relational joins.

In this paper, we focus on semantic parsing
for natural-language interface to database (Grosz
et al., 1987). In this problem setting, a natural-
language question is first translated into a mean-
ing representation by semantic parsing, and then
converted into a structured query such as SQL to
obtain answer from the database.

2.2 Unsupervised Semantic Parsing

Unsupervised semantic parsing was first proposed
by Poon & Domingos (2009, 2010) with their
USP system. USP defines a probabilistic model
over the dependency tree and semantic parse us-
ing Markov logic (Domingos and Lowd, 2009),
and recursively clusters and composes synony-
mous dependency treelets using a hard EM-like
procedure. Since USP uses nonlocal features (e.g.,
the argument-number feature) and operates over
partitions, exact inference is intractable, and USP
resorts to a greedy approach to find the MAP parse
by searching over partitions. Titov & Klementiev
(2011) proposed a Bayesian version of USP and
Titov & Klementiev (2012) adapted it for seman-
tic role induction. In USP, the meaning is repre-
sented by self-induced clusters. Therefore, to an-
swer complex questions against a database, it re-
quires an additional ontology matching step to re-
solve USP clusters with database elements.

Popescu et al. (2003, 2004) proposed the PRE-
CISE system, which does not require labeled ex-
amples and can be directly applied to question
answering with a database. The PRECISE sys-
tem, however, requires substantial amount of engi-
neering, including a domain-specific lexicon that
specifies the synonyms for names and values of
database elements, a restricted set of potential in-
terpretations for domain verbs and prepositions, as
well as a set of domain questions with manually la-
beled POS tags for retraining the tagger and parser.
It also focuses on the subset of easy questions (“se-
mantically tractable” questions), and sidesteps the
problem of dealing with complex and nested struc-
tures, as well as ambiguous interpretations. Re-
markably, while PRECISE can be very accurate
on easy questions, it does not try to learn from
these interpretations. In contrast, Goldwasser et
al. (2011) proposed a self-supervised approach,
which iteratively chose high-confidence parses to
retrain the parser. Their system, however, still
required a lexicon manually constructed for the
given domain. Moreover, it was only applied to
a small domain (a subset of GEO), and the result
still trailed supervised systems by a wide margin.

2.3 Grounded Learning for Semantic Parsing

Grounded learning is motivated by alleviating the
burden of direct supervision via interaction with
the world, where the indirect supervision may
take the form as ambiguous annotations (Chen
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Figure 1: End-to-end question answering by
GUSP for sentence get flight from toronto to san
diego stopping in dtw. Top: the dependency tree
of the sentence is annotated with latent semantic
states by GUSP. For brevity, we omit the edge
states. Raising occurs from flight to get and sink-
ing occurs from get to diego. Bottom: the seman-
tic tree is deterministically converted into SQL to
obtain answer from the database.

and Mooney, 2008; Kim and Mooney, 2010;
Börschinger et al., 2011) or example question-
answer pairs (Clarke et al., 2010; Liang et al.,
2011). In general, however, such supervision is
not always available or easy to obtain. In con-
trast, databases are often abundantly available, es-
pecially for important domains.

The database community has considerable
amount of work on leveraging databases in various
tasks such as entity resolution, schema matching,
and others. To the best of our knowledge, this ap-
proach is still underexplored in the NLP commu-
nity. One notable exception is distant supervision
(Mintz et al., 2009; Riedel et al., 2010; Hoffmann
et al., 2011; Krishnamurthy and Mitchell, 2012;
Heck et al., 2013), which used database instances
to derive training examples for relation extraction.
This approach, however, still has considerable lim-
itations. For example, it only handles binary rela-
tions, and the quality of the training examples is
inherently noisy and hard to control. Moreover,
this approach is not applicable to the question-
answering setting considered in this paper, since
entity pairs in questions need not correspond to
valid relational instances in the database.

3 Grounded Unsupervised Semantic
Parsing

In this section, we present the GUSP system for
grounded unsupervised semantic parsing. GUSP
is unsupervised and does not require example log-
ical forms or question-answer pairs. Figure 1
shows an example of end-to-end question answer-
ing using GUSP. GUSP produces a semantic parse
of the question by annotating its dependency tree
with latent semantic states. The semantic tree
can then be deterministically converted into SQL
to obtain answer from the database. Given a
set of natural-language questions and a database,
GUSP learns a probabilistic semantic grammar us-
ing EM.

To compensate for the lack of annotated ex-
amples, GUSP derives indirect supervision from
a novel combination of three key sources. First,
GUSP leverages the target database to constrain
the search space. Specifically, it defines the se-
mantic states based on the database schema, and
derives lexical-trigger scores from database ele-
ments to bootstrap learning.

Second, in contrast to most existing approaches
for semantic parsing, GUSP starts directly from
dependency trees and focuses on translating them
into semantic parses. While syntax may not al-
ways align perfectly with semantics, it is still
highly informative about the latter. In particular,
dependency edges are often indicative of semantic
relations. On the other hand, syntax and semantic
often diverge, and synactic parsing errors abound.
To combat this problem, GUSP introduces a novel
dependency-based meaning representation with an
augmented state space to account for semantic re-
lations that are nonlocal in the dependency tree.

GUSP’s approach of starting directly from de-
pendency tree is inspired by USP. However, GUSP
uses a different meaning representation defined
over individual nodes and edges, rather than par-
titions, which enables linear-time exact inference.
GUSP also handles complex linguistic phenomena
and syntax-semantics mismatch by explicitly aug-
menting the state space, whereas USP’s capability
in handling such phenomena is indirect and more
limited.

GUSP represents meaning by a semantic tree,
which is similar to DCS (Liang et al., 2011). Their
approach to semantic parsing, however, differs
from GUSP in that it induced the semantic tree di-
rectly from a sentence, rather than starting from
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a dependency tree and annotating it. Their ap-
proach alleviates some complexity in the mean-
ing representation for handling syntax-semantics
mismatch, but it has to search over a much larger
search space involving exponentially many candi-
date trees. This might partially explain why it has
not yet been scaled up to the ATIS dataset.

Finally, GUSP recognizes that certain aspects
in semantic parsing may not be worth learn-
ing using precious annotated examples. These
are domain-independent and closed-class expres-
sions, such as times and dates (e.g., before 5pm
and July seventeenth), logical connectives (e.g.,
and, or, not), and numerics (e.g., 200 dol-
lars). GUSP preprocesses the text to detect such
expressions and restricts their interpretation to
database elements of compatible types (e.g., be-
fore 5pm vs. flight.departure time or
flight.arrival time). Short of training ex-
amples, GUSP also resolves quantifier scoping
ambiguities deterministically by a fixed ordering.
For example, in the phrase cheapest flight to Seat-
tle, the scope of cheapest can be either flight or
flight to seattle. GUSP always chooses to apply
the superlative at last, amounting to choosing the
most restricted scope (flight to seattle), which is
usually the correct interpretation.

In the remainder of this section, we first formal-
ize the problem setting and introduce the GUSP
meaning representation. We then present the
GUSP model and learning and inference algo-
rithms. Finally, we describe how to convert a
GUSP semantic parse into SQL.

3.1 Problem Formulation
Let d be a dependency tree, N(d) and E(d) be
its nodes and edges. In GUSP, a semantic parse
of d is an assignment z : N(d) ∪ E(d) → S
that maps its nodes and edges to semantic states
in S. For example, in the example in Figure 1,
z(flight) = E : flight. At the core of GUSP
is a joint probability distribution Pθ(d, z) over the
dependency tree and the semantic parse. Seman-
tic parsing in GUSP amounts to finding the most
probable parse z∗ = argmaxz Pθ(d, z). Given
a set of sentences and their dependency trees D,
learning in GUSP maximizes the log-likelihood of
D while summing out the latent parses z:

θ∗ = argmax logPθ(D)

= argmax
∑

d∈D
log

∑

z

Pθ(d, z)

3.2 Simple Semantic States
Node states GUSP creates a state E:X (E short
for entity) for each database entity X (i.e., a
database table), a state P:Y (P short for prop-
erty) and V:Y (V short for value) for each database
attribute Y (i.e., a database column). Node
states are assigned to dependency nodes. Intu-
itively, they represent database entities, proper-
ties, and values. For example, the ATIS do-
main contains entities such as flight and fare,
which may contain properties such as the depar-
ture time flight.departure time or ticket
price fare.one direction cost. The men-
tions of entities and properties are represented
by entity and property states, whereas constants
such as 9:25am or 120 dollars are repre-
sented by value states. In the semantic parse in
Figure 1, for example, flight is assigned to en-
tity state E:flight, where toronto is assigned
to value state V:city.name. There is a special
node state NULL, which signifies that the subtree
headed by the word contributes no meaning to the
semantic parse (e.g., an auxilliary verb).

Edge states GUSP creates an edge state for
each valid relational join paths connecting two
node states. Edge states are assigned to de-
pendency edges. GUSP enforces the constraints
that the node states of the dependency par-
ent and child must agree with the node states
in the edge state. For example, E:flight-
-V:flight.departure time represents a
natural join between the flight entity and the prop-
erty value departure time. For a dependency edge
e : a → b, the assignment to E:flight-
-V:flight.departure time signifies that
a represents a flight entity, and b represents the
value of its departure time. An edge state may
also represent a relational path consisting of a
serial of joins. For example, Zettlemoyer and
Collins (2007) used a predicate from(f,c) to
signify that flight f starts from city c. In the ATIS
database, however, this amounts to a path of three
joins:

flight.from airport-airport

airport-airport service

airport service-city

In GUSP, this is represented by the edge
state flight-flight.from airport-
-airport-airport service-city.
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GUSP only creates edge states for relational join
paths up to length four, as longer paths rarely
correspond to meaningful semantic relations.

Composition To handle compositions such as
American Airlines and New York City, it helps
to distinguish the head words (Airlines and City)
from the rest. In GUSP, this is handled by intro-
ducing, for each node state such as E:airline,
a new node state such as E:airline:C, where
C signifies composition. For example, in Figure
1, diego is assigned to V:city.name, whereas
san is assigned to V:city.name:C, since san
diego forms a single meaning unit, and should be
translated into SQL as a whole.

3.3 Domain-Independent States

These are for handling special linguistic phenom-
ena that are not domain-specific, such as negation,
superlatives, and quantifiers.

Operator states GUSP create node states for
the logical and comparison operators (OR, AND,
NOT, MORE, LESS, EQ). Additionally, to han-
dle the cases when prepositions and logical
connectives are collapsed into the label of a
dependency edge, as in Stanford dependency,
GUSP introduces an edge state for each triple
of an operator and two node states, such as
E:flight-AND-E:fare.

Quantifier states GUSP creates a node state for
each of the standard SQL functions: argmin,
argmax, count, sum. Additionally, it cre-
ates a node state for each pair of compatible func-
tion and property. For example, argmin can
be applied to any numeric property, in particular
flight.departure time, and so the node
state P:flight.departure time:argmin
is created and can be assigned to superlatives such
as earliest.

3.4 Complex Semantic States

For sentences with a correct dependency tree and
well-aligned syntax and semantics, the simple se-
mantic states suffice for annotating the correct se-
mantic parse. However, in complex sentences,
syntax and semantic often diverge, either due to
their differing goals or simply stemming from syn-
tactic parsing errors. In Figure 1, the dependency
tree contains multiple errors: from toronto and to
san diego are mistakenly attached to get, which
has no literal meaning here; stopping in dtw is also

wrongly attached to diego rather than flight. An-
notating such a tree with only simple states will
lead to incorrect semantic parses, e.g., by joining
V:city:san diego with V:airport:dtw
via E:airport service, rather than join-
ing E:flight with V:airport:dtw via
E:flight stop.

To overcome these challenges, GUSP intro-
duces three types of complex states to handle
syntax-semantics divergence. Figure 1 shows the
correct semantic parse for the above sentence us-
ing the complex states.

Raising For each simple node state N, GUSP
creates a “raised” state N:R (R short for raised). A
raised state signifies a word that has little or none
of its own meaning, but effectively takes one of its
child states to be its own (“raises”). Correspond-
ingly, GUSP creates a “raising” edge state N-R-N,
which signifies that the parent is a raised state and
its meaning is derived from the dependency child
of state N. For all other children, the parent be-
haves just as state N. For example, in Figure 1, get
is assigned to the raised state E:flight:R, and
the edge between get and flight is assigned to the
raising edge state E:flight-R-E:flight.

Sinking For simple node states A, B and an
edge state E connecting the two, GUSP creates
a “sinking” node state A+E+B:S (S for sinking).
When a node n is assigned to such a sinking state,
n can behave as either A or B for its children
(i.e., the edge states can connect to either one),
and n’s parent must be of state B. In Figure 1,
for example, diego is assigned to a sinking state
V:city.name + E:flight (the edge state is
omitted for brevity). E:flight comes from its
parent get. For child san, diego behaves as in state
V:city.name, and their edge state is a simple
compositional join. For the other child stopping,
diego behaves as in state E:flight, and their
edge state is a relational join connecting flight
with flight stop. Effectively, this connects
stopping with get and eventually with flight (due to
raising), virtually correcting the syntax-semantics
mismatch stemming from attachment errors.

Implicit For simple node states A, B and an
edge state E connecting the two, GUSP also cre-
ates a node state A+E+B:I (I for implicit) with
the “implicit” state B. In natural languages, an en-
tity is often introduced implicitly, which the reader
infers from shared world knowledge. For example,
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to obtain the correct semantic parse for Give me
the fare from Seattle to Boston, one needs to infer
the existence of a flight entity, as in Give me the
fare (of a flight) from Seattle to Boston. Implicit
states offer candidates for addressing such needs.
As in sinking, child nodes have access to either of
the two simple states, but the implicit state is not
visible to the parent node.

3.5 Lexical-Trigger Scores
GUSP uses the database elements to automatically
derive a simple scoring scheme for lexical triggers.
If a database element has a name of k words, each
word is assigned score 1/k for the corresponding
node state. Similarly for property values and value
node states. In a sentence, if a word w triggers a
node state with score s, its dependency children
and left and right neighbors all get a trigger score
of 0.1·s for the same state. To score relevant words
not appearing in the database (due to incomplete-
ness of the database or lexical variations), GUSP
uses DASH (Pantel et al., 2009) to provide addi-
tional word-pair scoring based on lexical distribu-
tional similarity computed over general text cor-
pora (Wikipedia in this case). In the case of multi-
ple score assignments for the same word, the max-
imum score is used.

For multi-word values of property Y , and for
a dependency edge connecting two collocated
words, GUSP assigns a score 1.0 to the edge state
joining the value node state V:Y to its composi-
tion state V:Y:C, as well as the edge state joining
two composition states V:Y:C.

GUSP also uses a domain-independent list of
superlatives with the corresponding data types and
polarity (e.g., first, last, earliest, latest, cheapest)
and assigns a trigger score of 1.0 for each prop-
erty of a compatible data type (e.g., cheapest for
properties of type MONEY).

3.6 The GUSP Model
In a nutshell, the GUSP model resembles a tree-
HMM, which models the emission of words and
dependencies by node and edge states, as well as
transition between an edge state and the parent
and child node states. In preliminary experiments
on the development set, we found that the naı̈ve
model (with multinomials as conditional probabil-
ities) did not perform well in EM. We thus chose
to apply feature-rich EM (Berg-Kirkpatrick et al.,
2010) in GUSP, which enabled the use of more
generalizable features. Specifically, GUSP defines

a probability distribution over dependency tree d
and semantic parse z by

Pθ(d, z) =
1

Z
exp

∑

i

fi(d, z) · wi(d, z)

where fi andwi are features and their weights, and
Z is the normalization constant that sums over all
possible d, z (over the same unlabeled tree). The
features of GUSP are as follows:

Lexical-trigger scores These are implemented
as emission features with fixed weights. For ex-
ample, given a token t that triggers node state
N with score s, there is a corresponding features
1(lemma = t, state = N) with weight α·s, where
α is a parameter.

Emission features for node states GUSP uses
two templates for emission of node states: for
raised states, 1(token = ·), i.e., the emission
weights for all raised states are tied; for non-raised
states, 1(lemma = ·, state = N).

Emission features for edge states GUSP uses
the following templates for emission of edge
states:

Child node state is NULL, dependency= ·;
Edge state is RAISING, dependency= ·;
Parent node state is same as the child node state,

dependency= ·;
Otherwise, parent node state= ·, child node

state= ·, edge state type= ·, dependency= ·.

Transition features GUSP uses the following
templates for transition features, which are similar
to the edge emission features except for the depen-
dency label:

Child node state is NULL;
Edge state is RAISING;
Parent node state is same as the child node state;
Otherwise, parent node state= ·, child node

state= ·, edge state type= ·.

Complexity Prior To favor simple semantic
parses, GUSP imposes an exponential prior with
weight β on nodes states that are not null or raised,
and on each relational join in an edge state.

3.7 Learning and Inference

Since the GUSP model factors over nodes and
edges, learning and inference can be done ef-
ficiently using EM and dynamic programming.
Specifically, the MAP parse and expectations can
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be computed by tree-Viterbi and inside-outside
(Petrov and Klein, 2008). The parameters can be
estimated by feature-rich EM (Berg-Kirkpatrick et
al., 2010).

Because the Viterbi and inside-outside are ap-
plied to a fixed tree (i.e., the input dependency
tree), their running times are only linear in the sen-
tence length in GUSP.

3.8 Query Generation

Given a semantic parse, GUSP generates the SQL
by a depth-first traversal that recursively computes
the denotation of a node from the denotations of its
children and its node state and edge states. Each
denotation is a structured query that contains: a
list of entities for projection (corresponding to
the FROM statement in SQL); a computation tree
where the leaves are simple joins or value compar-
isons, and the internal nodes are logical or quan-
tifier operators (the WHERE statement); the salient
database elements (the SELECT statement). Be-
low, we illustrate this procedure using the seman-
tic parse in Figure 1 as a running example.

Value node state GUSP creates a semantic ob-
ject of the given type with a unique index and
the word constant. For example, the denotation
for node toronto is a city.name object with a
unique index and constant “toronto”. The unique
index is necessary in case the SQL involves mul-
tiple instances of the same entity. For example,
the SQL in Figure 1 involves two instances of the
entity city, corresponding to the departure and
arrival cities, respectively. By default, such a se-
mantic object will be translated into an equality
constraint, such as city.name = toronto.

Entity or property node state GUSP creates a
semantic object of the given type with a unique re-
lation index. For example, the denotation for node
flight is simply a flight object with a unique in-
dex. By default, such an object will contribute to
the list of entities in SQL projection (the FROM
statement), but not any constraints.

NULL state GUSP returns an empty denotation.

Simple edge state GUSP appends the child de-
notation to that of the parent, and appends equal-
ity constraints corresponding to the relational join
path. In the case of composition, such as the join
between diego and san, GUSP simply keeps the
parent object, while adding to it the words from

the child. In the case of a more complex join,
such as that between stopping and dtw, GUSP adds
the relational constraints that join flight stop
with airport:
flight stop.stop airport = airport.airport id.

Raising edge state GUSP simply takes the child
denotation and sets that to the parent.

Implicit and sinking states GUSP maintains
two separate denotations for the two simple states
in the complex state, and processes their respec-
tive edge states accordingly. For example, the
node diego contains two denotations, one for
V:city.name, and one for E:flight, with
the corresponding child being san and stopping,
respectively.

Domain-independent states For comparator
states such as MORE or LESS, GUSP changes the
default equality constraints to an inequality one,
such as flight.depart time < 600 for before
6am. For logical connectives, GUSP combines the
projection and constraints accordingly. For quan-
tifier states, GUSP applies the given function to
the query.

Resolve scoping ambiguities GUSP delays ap-
plying quantifiers until the child semantic object
differs from the parent one or when reaching the
root. GUSP employs the following fixed ordering
in evaluating quantifiers and operators: superla-
tives and other quantifiers are evaluated at last
(i.e., after evaluating all other joins or operators
for the given object), whereas negation is evalu-
ated first, conjunctions and disjunctions are evalu-
ated in their order of appearance.

4 Experiments

4.1 Task

We evaluated GUSP on the ATIS travel planning
domain, which has been studied in He & Young
(2005, 2006) and adapted for evaluating semantic
parsing by Zettlemoyer & Collins (2007) (hence-
forth ZC07). The ZC07 dataset contains annotated
logical forms for each sentence, which we do not
use. Since our goal is not to produce a specific log-
ical form, we directly evaluate on the end-to-end
task of translating questions into database queries
and measure question-answering accuracy. The
ATIS distrbution contains the original SQL anno-
tations, which we used to compute gold answers
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for evaluation only. The dataset is split into train-
ing, development, and test, containing 4500, 478,
and 449 sentences, respectively. We used the de-
velopment set for initial development and tuning
hyperparameters. At test time, we ran GUSP over
the test set to learn a semantic parser and output
the MAP parses.2

4.2 Preprocessing

The ATIS sentences were originally derived from
spoken dialog and were therefore in lower cases.
Since case information is important for parsers
and taggers, we first truecased the sentences us-
ing DASH (Pantel et al., 2009), which stores the
case for each phrase in Wikipedia.

We then ran the sentences through SPLAT, a
state-of-the-art NLP toolkit (Quirk et al., 2012), to
conduct tokenization, part-of-speech tagging, and
constituency parsing. Since SPLAT does not out-
put dependency trees, we ran the Stanford parser
over SPLAT parses to generate the dependency
trees in Stanford dependency (de Marneffe et al.,
2006).

4.3 Systems

For the GUSP system, we set the hyperparame-
ters from initial experiments on the development
set, and used them in all subsequent experiments.
Specifically, we set α = 50 and β = −0.1, and
ran three iterations of feature-rich EM with an L2

prior of 10 over the feature weights.
To evaluate the importance of complex states,

we considered two versions of GUSP : GUSP-
SIMPLE and GUSP-FULL, where GUSP-
SIMPLE only admits simple states, whereas
GUSP-FULL admits all states.

During development, we found that some
questions are inherently ambiguous that can-
not be solved except with some domain
knowledge or labeled examples. In Sec-
tion 3.2, we discuss an edge state that joins
a flight with its starting city: flight-
-flight.from airport-airport-
-airport service-city. The ATIS
database also contains another path of the same
length: flight-flight.from airport-
-airport-ground service-city. The
only difference is that air service is replaced
by ground service. In some occasions, the

2This doesn’t lead to overfitting since we did not use any
labeled information in the test set.

Table 1: Comparison of semantic parsing accu-
racy on the ATIS test dataset. Both ZC07 and
FUBL used annotated logical forms in training,
whereas GUSP-FULL and GUSP++ did not. The
numbers for GUSP-FULL and GUSP++ are end-
to-end question answering accuracy, whereas the
numbers for ZC07 and FUBL are recall on exact
match in logical forms.

Accuracy
ZC07 84.6
FUBL 82.8
GUSP-FULL 74.8
GUSP++ 83.5

answers are identical whereas in others they are
different. Without other information, neither the
complexity prior nor EM can properly discrimi-
nate one against another. (Note that this ambiguity
is not present in the ZC07 logical forms, which
use a single predicate from(f,c) for the entire
relation paths. In other words, to translate ZC07
logical forms into SQL, one also needs to decide
on which path to use.)

Another type of domain-specific ambigui-
ties involves sentences such as give me in-
formation on flights after 4pm on wednesday.
There is no obvious information to disam-
biguate between flight.departure time
and flight.arrival time for 4pm.

Such ambiguities suggest opportunities for in-
teractive learning,3 but this is clearly out of
the scope of this paper. Instead, we incor-
porated a simple disambiguation feature with a
small weight of 0.01 that fires over the sim-
ple states of flight.departure time and
airport service. We named the resulting
system GUSP++.

To gauge the difficulty of the task and the qual-
ity of lexical-trigger scores, we also considered
a deterministic baseline LEXICAL, which com-
puted semantic parses using lexical-trigger scores
alone.

3For example, after eliminating other much less likely
alternatives, the system can present to the user with both
choices and let the user to choose the correct one. The im-
plicit feedback signal can then be used to train the system for
future disambiguation.
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Table 2: Comparison of question answering accu-
racy in ablation experiments.

Accuracy
LEXICAL 33.9
GUSP-SIMPLE 66.5
GUSP-FULL 74.8
GUSP++ 83.5
− RAISING 75.7
− SINKING 77.5
− IMPLICIT 76.2

4.4 Results

We first compared the results of GUSP-FULL and
GUSP++ with ZC07 and FUBL (Kwiatkowski et
al., 2011).4 Note that ZC07 and FUBL were eval-
uated on exact match in logical forms. We used
their recall numbers which are the percentages of
sentences with fully correct logical forms. Given
that the questions are quite specific and generally
admit nonzero number of answers, the question-
answer accuracy should be quite comparable with
these numbers.

Table 1 shows the comparison. Surprisingly,
even without the additional disambiguation fea-
ture, GUSP-FULL already attained an accuracy
broadly in range with supervised results. With the
feature, GUSP++ effectively tied with the best
supervised approach.

To evaluate the importance of various compo-
nents in GUSP, we conducted ablation test to com-
pare the variants of GUSP. Table 2 shows the re-
sults. LEXICAL can parse more than one third
of the sentences correctly, which is quite remark-
able in itself, considering that it only used the lex-
ical scores. On the other hand, roughly two-third
of the sentences cannot be correctly parsed in this
way, suggesting that the lexical scores are noisy
and ambiguous. In comparison, all GUSP variants
achieved significant gains over LEXICAL. Addi-
tionally, GUSP-FULL substantially outperformed
GUSP-SIMPLE, highlighting the challenges of
syntax-semantics mismatch in ATIS, and demon-
strating the importance and effectiveness of com-
plex states for handling such mismatch. All three
types of complex states produced significant con-
tributions. For example, compared to GUSP++,

4We should note that while the more recent system of
FUBL slightly trails ZC07, it is language-independent and
can parse questions in multiple languages.

removing RAISING dropped accuracy by almost
8 points.

4.5 Discussion

Upon manual inspection, many of the remaining
errors are due to syntactic parsing errors that are
too severe to fix. This is partly due to the fact that
ATIS sentences are out of domain compared to
the newswired text on which the syntactic parsers
were trained. For example, show, list were regu-
larly parsed as nouns, whereas round (as in round
trip) were often parsed as a verb and northwest
were parsed as an auxilliary verb. Another reason
is that ATIS sentences are typically less formal or
grammatical, which exacerbates the difficulty in
parsing. In this paper, we used the 1-best depen-
dency tree to produce semantic parse. An interest-
ing future direction is to consider joint syntactic-
semantic parsing, using k-best trees or even the
parse forest as input and reranking the top parse
using semantic information.5

5 Conclusion

This paper introduces grounded unsupervised
semantic parsing, which leverages available
database for indirect supervision and uses a
grounded meaning representation to account for
syntax-semantics mismatch in dependency-based
semantic parsing. The resulting GUSP system is
the first unsupervised approach to attain an accu-
racy comparable to the best supervised systems in
translating complex natural-language questions to
database queries.

Directions for future work include: joint
syntactic-semantic parsing, developing better fea-
tures for learning; interactive learning in a dialog
setting; generalizing distant supervision; applica-
tion to knowledge extraction from database-rich
domains such as biomedical sciences.

Acknowledgments

We would like to thank Kristina Toutanova, Chris
Quirk, Luke Zettlemoyer, and Yoav Artzi for use-
ful discussions, and Patrick Pantel and Michael
Gammon for help with the datasets.

5Note that this is still different from the currently predom-
inant approaches in semantic parsing, which learn to parse
both syntax and semantics by training from the semantic
parsing datasets alone, which are considerably smaller com-
pared to resources available for syntactic parsing.

941



References
Michele Banko, Michael J. Cafarella, Stephen Soder-

land, Matt Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In Pro-
ceedings of the Twentieth International Joint Con-
ference on Artificial Intelligence, pages 2670–2676,
Hyderabad, India. AAAI Press.

Taylor Berg-Kirkpatrick, John DeNero, and Dan Klein.
2010. Painless unsupervised learning with features.
In Proceedings of Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics.
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