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Abstract

Empty categories (EC) are artificial ele-
ments in Penn Treebanks motivated by the
government-binding (GB) theory to ex-
plain certain language phenomena such as
pro-drop. ECs are ubiquitous in languages
like Chinese, but they are tacitly ignored
in most machine translation (MT) work
because of their elusive nature. In this
paper we present a comprehensive treat-
ment of ECs by first recovering them with
a structured MaxEnt model with a rich
set of syntactic and lexical features, and
then incorporating the predicted ECs into
a Chinese-to-English machine translation
task through multiple approaches, includ-
ing the extraction of EC-specific sparse
features. We show that the recovered
empty categories not only improve the
word alignment quality, but also lead to
significant improvements in a large-scale
state-of-the-art syntactic MT system.

1 Introduction

One of the key challenges in statistical machine
translation (SMT) is to effectively model inher-
ent differences between the source and the target
language. Take the Chinese-English SMT as an
example: it is non-trivial to produce correct pro-
nouns on the target side when the source-side pro-
noun is missing. In addition, the pro-drop prob-
lem can also degrade the word alignment qual-
ity in the training data. A sentence pair observed
in the real data is shown in Figure 1 along with
the word alignment obtained from an automatic
word aligner, where the English subject pronoun

* This work was done when the author was with IBM.

“that” is missing on the Chinese side. Conse-
quently, “that” is incorrectly aligned to the second
to the last Chinese word “De”, due to their high
co-occurrence frequency in the training data. If
the dropped pronoun were recovered, “that” would
have been aligned with the dropped-pro (cf. Fig-
ure 3), which is a much more sensible alignment.

Figure 1: Example of incorrect word alignment
due to missing pronouns on the Chinese side.

In order to account for certain language phe-
nomena such as pro-drop and wh-movement, a set
of special tokens, called empty categories (EC),
are used in Penn Treebanks (Marcus et al., 1993;
Bies and Maamouri, 2003; Xue et al., 2005). Since
empty categories do not exist in the surface form
of a language, they are often deemed elusive and
recovering ECs is even figuratively called “chas-
ing the ghost” (Yang and Xue, 2010).

In this work we demonstrate that, with the avail-
ability of large-scale EC annotations, it is feasi-
ble to predict and recover ECs with high accu-
racy. More importantly, with various approaches
of modeling the recovered ECs in SMT, we are
able to achieve significant improvements1.

The contributions of this paper include the fol-
lowing:

• Propose a novel structured approach to EC
prediction, including the exact word-level lo-

1Hence “Enlisting the ghost” in the title of this paper.
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cation and EC labels. Our results are sig-
nificantly higher in accuracy than that of the
state-of-the-art;

• Measure the effect of ECs on automatic word
alignment for machine translation after inte-
grating recovered ECs into the MT data;

• Design EC-specific features for phrases and
syntactic tree-to-string rules in translation
grammar;

• Show significant improvement on top of the
state-of-the-art large-scale hierarchical and
syntactic machine translation systems.

The rest of the paper is organized as follows. In
Section 2, we present a structured approach to EC
prediction. In Section 3, we describe the integra-
tion of Chinese ECs in MT. The experimental re-
sults for both EC prediction and SMT are reported
in Section 4. A survey on the related work is con-
ducted in Section 5, and Section 6 summarizes the
work and introduces some future work.

2 Chinese Empty Category Prediction

The empty categories in the Chinese Treebank
(CTB) include trace markers for A’- and A-
movement, dropped pronoun, big PRO etc. A
complete list of categories used in CTB is shown
in Table 1 along with their intended usages. Read-
ers are referred to the documentation (Xue et al.,
2005) of CTB for detailed discussions about the
characterization of empty categories.

EC Meaning
*T* trace of A’-movement
* trace of A-movement
*PRO* big PRO in control structures
*pro* pro-drop
*OP* operator in relative clauses
*RNR* for right node raising

Table 1: List of empty categories in the CTB.

In this section, we tackle the problem of recov-
ering Chinese ECs. The problem has been studied
before in the literature. For instance, Yang and
Xue (2010) attempted to predict the existence of
an EC before a word; Luo and Zhao (2011) pre-
dicted ECs on parse trees, but the position infor-
mation of some ECs is partially lost in their repre-
sentation. Furthermore, Luo and Zhao (2011) con-
ducted experiments on gold parse trees only. In

our opinion, recovering ECs from machine parse
trees is more meaningful since that is what one
would encounter when developing a downstream
application such as machine translation. In this
paper, we aim to have a more comprehensive treat-
ment of the problem: all EC types along with
their locations are predicted, and we will report the
results on both human parse trees and machine-
generated parse trees.

2.1 Representation of Empty Categories

Our effort of recovering ECs is a two-step process:
first, at training time, ECs in the Chinese Treebank
are moved and preserved in the portion of the tree
structures pertaining to surface words only. Origi-
nal ECs and their subtrees are then deleted without
loss of information; second, a model is trained on
transformed trees to predict and recover ECs.

Empty categories heavily depend on syntac-
tic tree structure. For this reason, we choose to
project them onto a parse tree node. To facili-
tate presentation, we first distinguish asolid vs.
anempty non-terminal node. A non-terminal node
is solid if and only if it contains at least one child
node that spans one or more surface words (as op-
posed to an EC); accordingly, anempty node is a
non-terminal node that spans only ECs. In the left
half of Figure 2, theNP node that is the immediate
child of IP has only one child node spanning an
EC –(-NONE- *pro*), and is thus anempty
node; while all other non-terminal nodes have at
least one surface word as their child and are thus
all solid nodes.

We decide to attach an EC to its lowestsolid
ancestor node. That is, the EC is moved up to the
first solid node in the syntactic tree. After ECs
are attached, all empty nodes and ECs are deleted
from the tree. In order to uniquely recover ECs,
we also need to encode the position information.
To this end, the relative child index of an EC is
affixed to the EC tag. Take theNP node spanning
the*pro* in Figure 2 as an example, the*pro*
is moved to the lowest solid ancestor,IP node,
and its position is encoded by@1 since the deleted
NP is the second child of theIP node (we use 0-
based indices). With this transformation, we are
able to recover not only the position of an EC, but
its type as well. A special tagNULL is attached
to non-terminal nodes without EC. Since an EC is
introduced to express the structure of a sentence,
it is a good practice to associate it with the syn-
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Figure 2: Example of tree transformation on training data toencode an empty category and its position
information.

tactic tree, as opposed to simply attaching it to a
neighboring word, as was done in (Yang and Xue,
2010). We believe this is one of the reasons why
our model has better accuracy than that of (Yang
and Xue, 2010) (cf. Table 7).

In summary, a projected tag consists of an EC
type (such as*pro*) and the EC’s position in-
formation. The problem of predicting ECs is then
cast into predicting an EC tag at each non-terminal
node. Notice that the input to such a predictor is
a syntactic tree without ECs, e.g., the parse tree
on the right hand of Figure 2 without the EC tag

*pro*@1 is such an example.

2.2 A Structured Empty Category Model

We propose a structured MaxEnt model for pre-
dicting ECs. Specially, given a syntactic tree,T ,
whose ECs have been projected onto solid nodes
with the procedure described in Section 2.1, we
traverse it in post-order (i.e., child nodes are vis-
ited recursively first before the current node is vis-
ited). Let T = t1t2 · · · tn be the sequence of
nodes produced by the post-order traversal, and
ei(i = 1, 2, · · · , n) be the EC tag associated with
ti. The probabilistic model is then:

P (en1 |T ) =
n∏

i=1

P (ei|T, ei−1
1 )

=
n∏

i=1

exp
(∑

k λkfk(e
i−1
1 , T, ei)

)

Z(ei−1
1 , T )

(1)

Eq. (1) is the familiar log linear (or MaxEnt)
model, wherefk(e

i−1
1 , T, ei) is the feature func-

tion and
Z(ei−1

1 , T ) =
∑

e∈E exp
(∑

k λkfk(e
i−1
1 , T, e)

)

is the normalization factor.E is the set of ECs to be
predicted. In the CTB 7.0 processed by the proce-
dure in Section 2.1, the set consists of 32 EC tags

plus a specialNULL symbol, obtained by modulat-
ing the list of ECs in Table 1 with their positions
(e.g.,*pro*@1 in Figure 2).

Once the model is chosen, the next step is to de-
cide a set of features{fk(ei−1

1 , T, ei)} to be used
in the model. One advantage of having the rep-
resentation in Section 2.1 is that it is very easy to
compute features from tree structures. Indeed, all
features used in our system are computed from the
syntactic trees, including lexical features.

There are 3 categories of features used in the
model: (1) tree label features; (2) lexical features;
(3) EC features, and we list them in Table 2. In
the feature description column, all node positions
(e.g., “left”, “right”) are relative to the current
node being predicted.

Feature 1 to 10 are computed directly from
parse trees, and are straightforward. We include
up to 2 siblings when computing feature 9 and 10.
Feature 11 to 17 are lexical features. Note that we
use words at the edge of the current node: fea-
ture 11 and 12 are words at the internal boundary
of the current node, while feature 13 and 14 are
the immediately neighboring word external to the
current node. Feature 15 and 17 are from head
word information of the current node and the par-
ent node. Feature 18 and 19 are computed from
predicted ECs in the past – that’s why the model
in Eq. (1) conditions onei−1

1 .

Besides the features presented in Table 2, we
also use conjunction features between the current
node label with the parent node label; the cur-
rent node label with features computed from child
nodes; the current node label with features from
left and sibling nodes; the current node label with
lexical features.
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No. Tree Label Features
1 current node label
2 parent node label
3 grand-parent node label
4 left-most child label or POS tag
5 right-most child label or POS tag
6 label or POS tag of the head child
7 the number of child nodes
8 one level CFG rule
9 left-sibling label or POS tag
10 right-sibling label or POS tag

Lexical Features
11 left-most word under the current node
12 right-most word under the current node
13 word immediately left to the span of the

current node
14 word immediately right to the span of the

current node
15 head word of the current node
16 head word of the parent node
17 is the current node head child of its parent?

EC Features
18 predicted EC of the left sibling
19 the set of predicted ECs of child nodes

Table 2: List of features.

3 Integrating Empty Categories in
Machine Translation

In this section, we explore multiple approaches of
utilizing recovered ECs in machine translation.

3.1 Explicit Recovery of ECs in MT

We conducted some initial error analysis on our
MT system output and found that most of the er-
rors that are related to ECs are due to the missing

*pro* and*PRO*. This is also consistent with
the findings in (Chung and Gildea, 2010). One of
the other frequent ECs,*OP*, appears in the Chi-
nese relative clauses, which usually have a Chi-
nese word “De” aligned to the target side “that”
or “which”. And the trace,*T*, exists in both
Chinese and English sides. For MT we want to fo-
cus on the places where there exist mismatches be-
tween the source and target languages. A straight-
forward way of utilizing the recovered*pro* and

*PRO* is to pre-process the MT training and test
data by inserting ECs into the original source text
(i.e. Chinese in this case). As mentioned in the
previous section, the output of our EC predictor
is a new parse tree with the labels and positions

encoded in the tags. Based on the positional in-
formation in the tags, we can move the predicted
ECs down to the surface level and insert them be-
tween original source words. The same prediction
and “pull-down” procedure can be conducted con-
sistently cross the MT training and test data.

3.2 Grammar Extraction on Augmented
Data

With the pre-processed MT training corpus, an un-
supervised word aligner, such as GIZA++, can be
used to generate automatic word alignment, as the
first step of a system training pipeline. The ef-
fect of inserting ECs is two-fold: first, it can im-
pact the automatic word alignment since now it al-
lows the target-side words, especially the function
words, to align to the inserted ECs and fix some
errors in the original word alignment; second, new
phrases and rules can be extracted from the pre-
processed training data. For example, for a hier-
archical MT system, some phrase pairs and Hiero
(Chiang, 2005) rules can be extracted with recov-
ered*pro* and*PRO* at the Chinese side.

In this work we also take advantages of the aug-
mented Chinese parse trees (with ECs projected
to the surface) and extract tree-to-string grammar
(Liu et al., 2006) for a tree-to-string MT system.
Due to the recovered ECs in the source parse
trees, the tree-to-string grammar extracted from
such trees can be more discriminative, with an in-
creased capability of distinguishing different con-
text. An example of an augmented Chinese parse
tree aligned to an English string is shown in Figure
3, in which the incorrect alignment in Figure 1 is
fixed. A few examples of the extracted Hiero rules
and tree-to-string rules are also listed, which we
would not have been able to extract from the orig-
inal incorrect word alignment when the*pro*
was missing.

3.3 Soft Recovery: EC-Specific Sparse
Features

Recovered ECs are often good indicators of what
hypothesis should be chosen during decoding. In
addition to the augmented syntax-based grammar,
we propose sparse features as a soft constraint to
boost the performance. For each phrase pair, Hi-
ero rule or tree-to-string rule in the MT system,
a binary featurefk fires if there exists a*pro*
on the source side and it aligns to one of its most
frequently aligned target words found in the train-
ing corpus. We also fire another feature if*pro*
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Figure 3: Fixed word alignment and examples of
extracted Hiero rules and tree-to-string rules.

aligns to any other target words so the model can
choose to penalize them based on a tuning set.
Similar features can fire for*PRO*. The feature
weights can be tuned on a tuning set in a log-linear
model along with other usual features/costs, in-
cluding language model scores, bi-direction trans-
lation probabilities, etc. The motivation for such
sparse features is to reward those phrase pairs
and rules that have highly confident lexical pairs
specifically related to ECs, and penalize those who
don’t have such lexical pairs.

Table 3 listed some of the most frequent English
words aligned to*pro* or *PRO* in a Chinese-
English parallel corpus with 2M sentence pairs.
Their co-occurrence counts and the lexical trans-
lation probabilities are also shown in the table. In
total we use 15 sparse features for frequent lexical
pairs, including 13 for*pro* and 2 for*PRO*,
and two more features for any other target words
that align to*pro* or *PRO*.

Source Target Counts P (t|s)
*pro* the 93100 0.11
*pro* to 86965 0.10
*pro* it 45423 0.05
*pro* in 36129 0.04
*pro* we 24509 0.03
*pro* which 17259 0.02
*PRO* to 195464 0.32
*PRO* for 31200 0.05

Table 3: Example of frequent word pairs used for
sparse features.

4 Experimental Results

4.1 Empty Category Prediction

We use Chinese Treebank (CTB) v7.0 to train and
test the EC prediction model. We partition the
data into training, development and test sets. The
training set includes 32925 sentences from CTB
files 0001-0325, 0400-0454, 0500-0542, 0600-
0840, 0590-0596, 1001-1120, 2000-3000, cctv,
cnn, msnbc, and phoenix 00-06. The development
set has 3033 sentences, from files 0549-0554,
0900-0931, 1136-1151, 3076-3145, and phoenix
10-11. The test set contains 3297 sentences, from
files 0543-0548, 0841-0885, 1121-1135, 3001-
3075, and phoenix 07-09.

To measure the accuracy of EC prediction, we
project the predicted tags from the upper level
nodes in the parse trees down to the surface level
based on the position information encoded in the
tags. The position index for each inserted EC,
counted at the surface level, is attached for scor-
ing purpose. The same operation is applied on
both the reference and the system output trees.
Such projection is necessary, especially when the
two trees differ in structure (e.g. gold trees vs.
machine-generated trees). We compute the pre-
cision, recall and F1 scores for each EC on the
test set, and collect their counts in the reference
and system output. The results are shown in Ta-
ble 4, where the LDC gold parse trees are used to
extract syntactic features for the model. The first
row in the table shows the accuracy for the places
where no EC should be inserted. The predictor
achieves 99.5% F1 score for this category, with
limited number of missing or false positives. The
F1 scores for majority of the ECs are above 70%,
except for “*”, which is relatively rare in the data.
For the two categories that are interesting to MT,

*pro* and*PRO*, the predictor achieves 74.3%
and 81.5% in F1 scores, respectively.

The results reported above are based on the
LDC gold parse trees. To apply the EC predic-
tion to NLP applications, such as MT, it is impos-
sible to always rely on the gold trees due to its
limited availability. We parse our test set with a
maximum entropy based statistical parser (Ratna-
parkhi, 1997) first. The parser accuracy is around
84% on the test set. Then we extract features based
on the system-generated parse trees, and decode
with the previously trained model. The results are
shown in Table 5. Compared to those in Table 4,
the F1 scores dropped by different degrees for dif-
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Tag Ref Sys P R F1
NULL 75159 75508 99.3 99.7 99.5
*pro* 1692 1442 80.8 68.9 74.3

*PRO* 1410 1282 85.6 77.8 81.5
*T* 1851 1845 82.8 82.5 82.7

*OP* 1721 1853 90.9 97.9 94.2
*RNR* 51 39 87.2 66.7 75.6

* 156 96 63.5 39.1 48.4

Table 4: Prediction accuracy with gold parse trees,
whereNULL represents the cases where no ECs
should be produced.

ferent types. Such performance drop is expected
since the system relies heavily on syntactic struc-
ture, and parsing errors create an inherent mis-
matching condition between the training and test-
ing time. The smallest drop among all types is on
NULL, at about 1.6%. The largest drop occurs for

*OP*, at 27.1%, largely due to the parsing errors
on theCP nodes. The F1 scores for*pro* and

*PRO* when using system-generated parse trees
are between 50% to 60%.

Tag Precision Recall F1
NULL 97.6 98.2 97.9
*pro* 51.1 50.1 50.6

*PRO* 66.4 50.5 57.3
*T* 68.2 59.9 63.8

*OP* 66.8 67.3 67.1
*RNR* 70.0 54.9 61.5

* 60.9 35.9 45.2

Table 5: Prediction accuracy with system-
generated parse trees.

To show the effect of ECs other than*pro*
and*PRO*, we remove all ECs in the training data
except*pro* and *PRO*. So the model only
predictsNULL, *pro* or *PRO*. The results on
the test set are listed in Table 6. There is 0.8% and
0.5% increase onNULL and*pro*, respectively.
The F1 score for*PRO* drops by 0.2% slightly.

As mentioned earlier, for MT we focus on re-
covering*pro* and *PRO* only. The model
generating the results in Table 6 is the one we ap-
plied in our MT experiments reported later.

In order to compare to the state-of-the-art mod-
els to see where our model stands, we switch our
training, development and test data to those used
in the work of (Yang and Xue, 2010) and (Cai et

Tag Precision Recall F1
NULL 98.5 98.9 98.7
*pro* 51.0 51.1 51.1

*PRO* 66.0 50.4 57.1

Table 6: Prediction accuracy with system-
generated parse trees, modeling*pro* and

*PRO* only.

al., 2011), for the purpose of a direct comparison.
The training set includes CTB files 0081 through
0900. The development set includes files 0041 to
0080, and the test set contains files 0001-0040 and
0901-0931. We merge all empty categories into
a single type in the training data before training
our EC prediction model. To compare the perfor-
mance on system-generated parse trees, we also
train a Berkeley parser on the same training data
and parse the test set. The prediction accuracy
for such single type on the test set with gold or
system-generated parse trees is shown in Table 7,
compared to the numbers reported in (Yang and
Xue, 2010) and (Cai et al., 2011). The model we
proposed achieves 6% higher F1 score than that in
(Yang and Xue, 2010) and 2.6% higher than that in
(Cai et al., 2011), which is significant. This shows
the effectiveness of our structured approach.

Model T P R F1
(Yang and Xue, 2010) G 95.9 83.0 89.0
Structured (this work) G 96.5 93.6 95.0
(Yang and Xue, 2010) S 80.3 52.1 63.2

(Cai et al., 2011) S 74.0 61.3 67.0
Structured (this work) S 74.9 65.1 69.6

Table 7: Comparison with the previous results, us-
ing the same training and test data. T: parse trees.
G: gold parse trees. S: system-generated parse
trees. P: precision. R: recall.

4.2 MT Results

In the Chinese-to-English MT experiments, we
test two state-of-the-art MT systems. One is an re-
implementation of Hiero (Chiang, 2005), and the
other is a hybrid syntax-based tree-to-string sys-
tem (Zhao and Al-onaizan, 2008), where normal
phrase pairs and Hiero rules are used as a backoff
for tree-to-string rules.

The MT training data includes 2 million sen-
tence pairs from the parallel corpora released by
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LDC over the years, with the data from United
Nations and Hong Kong excluded2. The Chi-
nese text is segmented with a segmenter trained
on the CTB data using conditional random field
(CRF), followed by the longest-substring match
segmentation in a second pass. Our language
model (LM) training data consists of about 10 bil-
lion English words, which includes Gigaword and
other newswire and web data released by LDC,
as well as the English side of the parallel train-
ing corpus. We train a 6-gram LM with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998). Our tuning set for MT contains 1275 sen-
tences from LDC2010E30. We test our system
on the NIST MT08 Newswire (691 sentences)
and Weblog (666 sentences) sets. Both tuning
and test sets have 4 sets of references for each
sentence. The MT systems are optimized with
pairwise ranking optimization (Hopkins and May,
2011) to maximize BLEU (Papineni et al., 2002).

We first predict*pro* and*PRO* with our
annotation model for all Chinese sentences in the
parallel training data, with*pro* and*PRO* in-
serted between the original Chinese words. Then
we run GIZA++ (Och and Ney, 2000) to generate
the word alignment for each direction and apply
grow-diagonal-final (Koehn et al., 2003), same as
in the baseline. We want to measure the impact on
the word alignment, which is an important step for
the system building. We append a 300-sentence
set, which we have human hand alignment avail-
able as reference, to the 2M training sentence pairs
before running GIZA++. The alignment accuracy
measured on this alignment test set, with or with-
out *pro* and *PRO* inserted before running
GIZA++, is shown in Table 8. To make a fair
comparison with the baseline alignment, any tar-
get words aligned to ECs are deemed as unaligned
during scoring. We observe 1.2% improvement on
function word related links, and almost the same
accuracy on content words. This is understand-
able since*pro* and*PRO* are mostly aligned
to the function words at the target side. The pre-
cision and recall for function words are shown in
Table 9. We can see higher accuracy in both pre-
cision and recall when ECs (*pro* and*PRO*)
are recovered in the Chinese side. Especially, the
precision is improved by 2% absolute.

2The training corpora include LDC2003E07,
LDC2003E08, LDC2005T10, LDC2006E26, LDC2006G05,
LDC2007E103, LDC2008G05, LDC2009G01, and
LDC2009G02.

System Function Content All
Baseline 51.7 69.7 65.4
+EC 52.9 69.6 65.7

Table 8: Word alignment F1 scores with or without

*pro* and*PRO*.

System Precision Recall F1
Baseline 54.1 49.5 51.7
+EC 56.0 50.1 52.9

Table 9: Word alignment accuracy for function
words only.

Next we extract phrase pairs, Hiero rules and
tree-to-string rules from the original word align-
ment and the improved word alignment, and tune
all the feature weights on the tuning set. The
weights include those for usual costs and also the
sparse features proposed in this work specifically
for ECs. We test all the systems on the MT08
Newswire and Weblog sets.

The BLEU scores from different systems are
shown in Table 10 and Table 11, respectively. We
measure the incremental effect of prediction (in-
serting*pro* and*PRO*) and sparse features.
Pre-processing of the data with ECs inserted im-
proves the BLEU scores by about 0.6 for newswire
and 0.2 to 0.3 for the weblog data, compared to
each baseline separately. On top of that, adding
sparse features helps by another 0.3 on newswire
and 0.2 to 0.4 on weblog. Overall, the Hiero
and tree-to-string systems are improved by about 1
point for newswire and 0.4 to 0.7 for weblog. The
smaller gain on the weblog data could be due to
the more difficult data to parse, which affects the
accuracy of EC prediction. All the results in Table
10 and 11 marked with “*” are statistically signif-
icant withp < 0.05 using the sign test described
in (Collins et al., 2005), compared to the baseline
results in each table. Two MT examples are given
in Table 12, which show the effectiveness of the
recovered ECs in MT.

System MT08-nw MT08-wb
Hiero 33.99 25.40

+prediction 34.62* 25.63
+prediction+sparse 34.95* 25.80*

Table 10: BLEU scores in the Hiero system.
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System MT08-nw MT08-wb
T2S+Hiero 34.53 25.80
+prediction 35.17* 26.08

+prediction+sparse 35.51* 26.53*

Table 11: BLEU scores in the tree-to-string system
with Hiero rules as backoff.

5 Related Work

Empty categories have been studied in recent
years for several languages, mostly in the con-
text of reference resolution and syntactic process-
ing for English, such as in (Johnson, 2002; Di-
enes and Dubey, 2003; Gabbard et al., 2006).
More recently, EC recovery for Chinese started
emerging in literature. In (Guo et al., 2007),
non-local dependencies are migrated from En-
glish to Chinese for generating proper predicate-
argument-modifier structures from surface context
free phrase structure trees. In (Zhao and Ng,
2007), a decision tree learning algorithm is pre-
sented to identify and resolve Chinese anaphoric
zero pronouns. and achieves a performance com-
parable to a heuristic rule-based approach. Similar
to the work in (Dienes and Dubey, 2003), empty
detection is formulated as a tagging problem in
(Yang and Xue, 2010), where each word in the
sentence receives a tag indicating whether there is
an EC before it. A maximum entropy model is
utilized to predict the tags, but different types of
ECs are not distinguished. In (Cai et al., 2011),
a language-independent method was proposed to
integrate the recovery of empty elements into syn-
tactic parsing. As shown in the previous section,
our model outperforms the model in (Yang and
Xue, 2010) and (Cai et al., 2011) significantly us-
ing the same training and test data. (Luo and Zhao,
2011) also tries to predict the existence of an EC

in Chinese sentences, but the ECs in the middle of
a tree constituent are lumped into a single position
and are not uniquely recoverable.

There exists only a handful of previous work on
applying ECs explicitly to machine translation so
far. One of them is the work reported in (Chung
and Gildea, 2010), where three approaches are
compared, based on either pattern matching, CRF,
or parsing. However, there is no comparison be-
tween using gold trees and automatic trees. There
also exist a few major differences on the MT
part between our work and theirs. First, in ad-
dition to the pre-processing of training data and
inserting recovered empty categories, we imple-
ment sparse features to further boost the perfor-
mance, and tune the feature weights directly to-
wards maximizing the machine translation met-
ric. Second, there is no discussion on the quality
of word alignment in (Chung and Gildea, 2010),
while we show the alignment improvement on a
hand-aligned set. Last, they use a phase-based
system trained on only 60K sentences, while we
conduct experiments on more advanced Hiero and
tree-to-string systems, trained on 2M sentences in
a much larger corpus. We directly take advantage
of the augmented parse trees in the tree-to-string
grammar, which could have larger impact on the
MT system performance.

6 Conclusions and Future Work

In this paper, we presented a novel structured ap-
proach to EC prediction, which utilizes a max-
imum entropy model with various syntactic fea-
tures and shows significantly higher accuracy than
the state-of-the-art approaches. We also applied
the predicted ECs to a large-scale Chinese-to-
English machine translation task and achieved sig-
nificant improvement over two strong MT base-
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lines, i.e. a hierarchical phase-based system and
a tree-to-string syntax-based system. More work
remain to be done next to further take advantages
of ECs. For example, the recovered ECs can be
encoded in a forest as the input to the MT decoder
and allow the decoder to pick the best MT output
based on various features in addition to the sparse
features we proposed in this work. Many promis-
ing approaches can be explored in the future.
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2005. Clause restructuring for statistical machine
translation. InProceedings of the 43rd Annual
Meeting of the Association for Computational Lin-
guistics, pages 531–540.

Peter Dienes and Amit Dubey. 2003. Deep syntactic
processing by combining shallow methods. InPro-
ceedings of the 41st Annual Meeting of the Associa-
tion for Computational Linguistics.

Ryan Gabbard, Seth Kulick, and Mitchell Marcus.
2006. Fully parsing the penn treebank. InPro-
ceedings of the Human Language Technology Con-
ference of the North American Chapter of the ACL.

Yuqing Guo, Haifeng Wang, and Josef van Genabith.
2007. Recovering non-local dependencies for Chi-
nese. InProceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL).

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. InProceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1352–1362.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. InProceedings of the 40th Annual Meet-
ing of the Association for Computational Linguis-
tics.

Philipp Koehn, Franz Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. InProceedings
of HLT-NAACL, pages 48–54.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment template for statistical machine
translation. InProceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 609–616.

Xiaoqiang Luo and Bing Zhao. 2011. A statistical
tree annotator and its applications. InProceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1230–1238.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. InCompu-
tational Linguistics, volume 19(2), pages 313–330.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. InProceedings of the
38th Annual Meeting of the Association for Com-
putational Linguistics, pages 440–447, Hong Kong,
China, October.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. InProceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
PA.

Adwait Ratnaparkhi. 1997. A linear observed time sta-
tistical parser based on maximum entropy models.
In Proceedings of Second Conference on Empirical

830



Methods in Natural Language Processing, pages 1–
10.

Nianwen Xue, Fei Xia, Fu dong Chiou, and Martha
Palmer. 2005. The Penn Chinese Treebank: Phrase
structure annotation of a large corpus. InNatural
Language Engineering, volume 11(2), pages 207–
238.

Yaqin Yang and Nianwen Xue. 2010. Chasing the
ghost: Recovering empty categories in the Chi-
nese Treebank. InProceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 1382–1390, Beijing, China, August.

Bing Zhao and Yaser Al-onaizan. 2008. Generaliz-
ing local and non-local word-reordering patterns for
syntax-based machine translation. InProceedings of
the 2008 Conference on Empirical Methods in Nat-
ural Language Processing, pages 572–581.

Shanheng Zhao and Hwee Tou Ng. 2007. Identifica-
tion and resolution of Chinese zero pronouns: A ma-
chine learning approach. InProceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL).

831


