
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 752–760,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Punctuation Prediction with Transition-based Parsing

Dongdong Zhang1, Shuangzhi Wu2, Nan Yang3, Mu Li1

1Microsoft Research Asia, Beijing, China
2Harbin Institute of Technology, Harbin, China

3University of Science and Technology of China, Hefei, China

{dozhang,v-shuawu,v-nayang,muli}@microsoft.com

Abstract

Punctuations are not available in automatic

speech recognition outputs, which could cre-

ate barriers to many subsequent text pro-

cessing tasks. This paper proposes a novel

method to predict punctuation symbols for the

stream of words in transcribed speech texts.

Our method jointly performs parsing and

punctuation prediction by integrating a rich set

of syntactic features when processing words

from left to right. It can exploit a global view

to capture long-range dependencies for punc-

tuation prediction with linear complexity. The

experimental results on the test data sets of

IWSLT and TDT4 show that our method can

achieve high-level performance in punctuation

prediction over the stream of words in tran-

scribed speech text.

1 Introduction

Standard automatic speech recognizers output un-

structured streams of words. They neither perform

a proper segmentation of the output into sentences,

nor predict punctuation symbols. The unavailable

punctuations and sentence boundaries in tran-

scribed speech texts create barriers to many sub-

sequent processing tasks, such as summarization,

information extraction, question answering and

machine translation. Thus, the segmentation of

long texts is necessary in many real applications.

For example, in speech-to-speech translation,

continuously transcribed speech texts need to be

segmented before being fed into subsequent ma-

chine translation systems (Takezawa et al., 1998;

Nakamura, 2009). This is because current ma-

chine translation (MT) systems perform the trans-

lation at the sentence level, where various models

used in MT are trained over segmented sentences

and many algorithms inside MT have an exponen-

tial complexity with regard to the length of inputs.

The punctuation prediction problem has at-

tracted research interest in both the speech pro-

cessing community and the natural language pro-

cessing community. Most previous work primar-

ily exploits local features in their statistical mod-

els such as lexicons, prosodic cues and hidden

event language model (HELM) (Liu et al., 2005;

Matusov et al., 2006; Huang and Zweig, 2002;

Stolcke and Shriberg, 1996). The word-level mod-

els integrating local features have narrow views

about the input and could not achieve satisfied

performance due to the limited context infor-

mation access (Favre et al., 2008). Naturally,

global contexts are required to model the punctu-

ation prediction, especially for long-range de-

pendencies. For instance, in English question sen-

tences, the ending question mark is long-range de-

pendent on the initial phrases (Lu and Ng, 2010),

such as “could you” in Figure 1. There has been

some work trying to incorporate syntactic features

to broaden the view of hypotheses in the punctua-

tion prediction models (Roark et al., 2006; Favre

et al., 2008). In their methods, the punctuation

prediction is treated as a separated post-procedure

of parsing, which may suffer from the problem of

error propagation. In addition, these approaches

are not able to incrementally process inputs and

are not efficient for very long inputs, especially in

the cases of long transcribed speech texts from

presentations where the number of streaming

words could be larger than hundreds or thousands.

In this paper, we propose jointly performing

punctuation prediction and transition-based de-

pendency parsing over transcribed speech text.

When the transition-based parsing consumes the

stream of words left to right with the shift-reduce

decoding algorithm, punctuation symbols are pre-

dicted for each word based on the contexts of the

parsing tree. Two models are proposed to cause

the punctuation prediction to interact with the

transition actions in parsing. One is to conduct

transition actions of parsing followed by punctua-

tion predictions in a cascaded way. The other is to

associate the conventional transition actions of

parsing with punctuation perditions, so that pre-

dicted punctuations are directly inferred from the

752

(a). The transcribed speech text without punctuations

(b). Transition-based parsing trees and predicted punctuations over transcribed text

(c). Two segmentations are formed when inserting the predicted punctuation symbols into the transcribed text

Figure 1. An example of punctuation prediction.

parsing tree. Our models have linear complexity

and are capable of handling streams of words with

any length. In addition, the computation of models

use a rich set of syntactic features, which can im-

prove the complicated punctuation predictions

from a global view, especially for the long range

dependencies.

Figure 1 shows an example of how parsing

helps punctuation prediction over the transcribed

speech text. As illustrated in Figure 1(b), two

commas are predicted when their preceding words

act as the adverbial modifiers (advmod) during

parsing. The period after the word “menu” is pre-

dicted when the parsing of an adverbial clause

modifier (advcl) is completed. The question mark

at the end of the input is determined when a direct

object modifier (dobj) is identified, together with

the long range clue that the auxiliary word occurs

before the nominal subject (nsubj). Eventually,

two segmentations are formed according to the

punctuation prediction results, shown in Figure

1(c).

The training data used for our models is adapted

from Treebank data by excluding all punctuations

but keeping the punctuation contexts, so that it can

simulate the unavailable annotated transcribed

speech texts. In decoding, beam search is used to

get optimal punctuation prediction results. We

conduct experiments on both IWSLT data and

TDT4 test data sets. The experimental results

show that our method can achieve higher perfor-

mance than the CRF-based baseline method.

The paper is structured as follows: Section 2

conducts a survey of related work. The transition-

based dependency parsing is introduced in Section

3. We explain our approach to predicting punctu-

ations for transcribed speech texts in Section 4.

Section 5 gives the results of our experiment. The

conclusion and future work are given in Section 6.

2 Related Work

Sentence boundary detection and punctuation pre-

diction have been extensively studied in the

speech processing field and have attracted re-

search interest in the natural language processing

field as well. Most previous work exploits local

features for the task. Kim and Woodland (2001),

Huang and Zweig (2002), Christensen et al.

(2001), and Liu et al. (2005) integrate both pro-

sodic features (pitch, pause duration, etc.) and lex-

ical features (words, n-grams, etc.) to predict

punctuation symbols during speech recognition,

where Huang and Zweig (2002) uses a maximum

entropy model, Christensen et al. (2001) focus on

finite state and multi-layer perceptron methods,

and Liu et al. (2005) uses conditional random

fields. However, in some scenarios the prosodic

cues are not available due to inaccessible original

raw speech waveforms. Matusov et al. (2006) in-

tegrate segmentation features into the log-linear

model in the statistical machine translation (SMT)

framework to improve the translation perfor-

mance when translating transcribed speech texts.

Lu and Ng (2010) uses dynamic conditional ran-

dom fields to perform both sentence boundary and

sentence type prediction. They achieved promis-

ing results on both English and Chinese tran-

scribed speech texts. The above work only ex-

anyway you may find your favorite if you go through the menu so could you tell me your choice

 anyway you may find your favorite if you go through the menu so could you tell me your choice

, N N N N N N N N N N . , N N N N N ?

anyway, you may find your favorite if you go through the menu. so, could you tell me your choice?

nsubj nsubj poss
aux

mark pobj

iobj

advmod

advcl

nsubj dobj

det poss aux prep

advmod dobj

753

ploits local features, so they were limited to cap-

turing long range dependencies for punctuation

prediction.

It is natural to incorporate global knowledge,

such as syntactic information, to improve punctu-

ation prediction performance. Roark et al. (2006)

use a rich set of non-local features including par-

ser scores to re-rank full segmentations. Favre et

al. (2008) integrate syntactic information from a

PCFG parser into a log-linear and combine it with

local features for sentence segmentation. The

punctuation prediction in these works is per-

formed as a post-procedure step of parsing, where

a parse tree needs to be built in advance. As their

parsing over the stream of words in transcribed

speech text is exponentially complex, their ap-

proaches are only feasible for short input pro-

cessing. Unlike these works, we incorporate punc-

tuation prediction into the parsing which process

left to right input without length limitations.

Numerous dependency parsing algorithms

have been proposed in the natural language pro-

cessing community, including transition-based

and graph-based dependency parsing. Compared

to graph-based parsing, transition-based parsing

can offer linear time complexity and easily lever-

age non-local features in the models (Yamada and

Matsumoto, 2003; Nivre et al., 2006b; Zhang and

Clark, 2008; Huang and Sagae, 2010). Starting

with the work from (Zhang and Nivre, 2011), in

this paper we extend transition-based dependency

parsing from the sentence-level to the stream of

words and integrate the parsing with punctuation

prediction.

Joint POS tagging and transition-based de-

pendency parsing are studied in (Hatori et al.,

2011; Bohnet and Nivre, 2012). The improve-

ments are reported with the joint model compared

to the pipeline model for Chinese and other richly

inflected languages, which shows that it also

makes sense to jointly perform punctuation pre-

diction and parsing, although these two tasks of

POS tagging and punctuation prediction are dif-

ferent in two ways: 1). The former usually works

on a well-formed single sentence while the latter

needs to process multiple sentences that are very

lengthy. 2). POS tags are must-have features to

parsing while punctuations are not. The parsing

quality in the former is more sensitive to the per-

formance of the entire task than in the latter.

3 Transition-based dependency parsing

In a typical transition-based dependency parsing

process, the shift-reduce decoding algorithm is

applied and a queue and stack are maintained

(Zhang and Nivre, 2011). The queue stores the

stream of transcribed speech words, the front of

which is indexed as the current word. The stack

stores the unfinished words which may be linked

with the current word or a future word in the

queue. When words in the queue are consumed

from left to right, a set of transition actions is ap-

plied to build a parse tree. There are four kinds of

transition actions conducted in the parsing process

(Zhang and Nivre, 2011), as described in Table 1.

Action Description

Shift Fetches the current word from the

queue and pushes it to the stack

Reduce Pops the stack

LeftArc Adds a dependency link from the cur-

rent word to the stack top, and pops the

stack

RightArc Adds a dependency link from the stack

top to the current word, takes away the

current word from the queue and

pushes it to the stack

Table 1. Action types in transition-based parsing

The choice of each transition action during the

parsing is scored by a linear model that can be

trained over a rich set of non-local features ex-

tracted from the contexts of the stack, the queue

and the set of dependency labels. As described in

(Zhang and Nivre, 2011), the feature templates

could be defined over the lexicons, POS-tags and

the combinations with syntactic information.

In parsing, beam search is performed to search

the optimal sequence of transition actions, from

which a parse tree is formed (Zhang and Clark,

2008). As each word must be pushed to the stack

once and popped off once, the number of actions

needed to parse a sentence is always 2n, where n

is the length of the sentence. Thus, transition-

based parsing has a linear complexity with the

length of input and naturally it can be extended to

process the stream of words.

4 Our method

4.1 Model

In the task of punctuation prediction, we are given

a stream of words from an automatic transcription

of speech text, denoted by 𝑤1
𝑛: = 𝑤1, 𝑤2, … , 𝑤𝑛 .

We are asked to output a sequence of punctuation

symbols 𝑆1
𝑛: = 𝑠1, 𝑠2, … , 𝑠𝑛 where 𝑠𝑖 is attached

to 𝑤𝑖 to form a sentence like Figure 1(c). If there

are no ambiguities, 𝑆1
𝑛 is also abbreviated as 𝑆,

754

similarly for 𝑤1
𝑛 as 𝑤. We model the search of the

best sequence of predicted punctuation symbols

𝑆∗ as:

 𝑆∗ = argmaxS𝑃(𝑆1
𝑛|𝑤1

𝑛) (1)

We introduce the transition-based parsing tree

𝑇 to guide the punctuation prediction in Model (2),

where parsing trees are constructed over the tran-

scribed text while containing no punctuations.

𝑆∗ = argmax𝑆 ∑ 𝑃(𝑇|𝑤1
𝑛) × 𝑃(𝑆1

𝑛|𝑇, 𝑤1
𝑛)𝑇 (2)

Rather than enumerate all possible parsing trees,

we jointly optimize the punctuation prediction

model and the transition-based parsing model

with the form:

(𝑆∗, 𝑇∗) = argmax(𝑆,𝑇)𝑃(𝑇|𝑤1
𝑛) ×

 𝑃(𝑆1
𝑛|𝑇, 𝑤1

𝑛) (3)

Let 𝑇1
𝑖 be the constructed partial tree when 𝑤1

𝑖

is consumed from the queue. We decompose the

Model (3) into:

(𝑆∗, 𝑇∗) =

argmax(𝑆,𝑇) ∏ 𝑃(𝑇1
𝑖|𝑇1

𝑖−1, 𝑤1
𝑖) × 𝑃(𝑠𝑖|𝑇1

𝑖, 𝑤1
𝑖)𝑛

𝑖=1

(4)

It is noted that a partial parsing tree uniquely

corresponds to a sequence of transition actions,

and vice versa. Suppose 𝑇1
𝑖 corresponds to the ac-

tion sequence 𝐴1
𝑖 and let 𝑎𝑖 denote the last action

in 𝐴1
𝑖 . As the current word 𝑤𝑖 can only be con-

sumed from the queue by either Shift or RightArc

according to Table 1, we have 𝑎𝑖 ∈
{𝑆ℎ𝑖𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡𝐴𝑟𝑐} . Thus, we synchronize the

punctuation prediction with the application of

Shift and RightArc during the parsing, which is ex-

plained by Model (5).

(𝑆∗, 𝑇∗) = argmax(𝑆,𝑇) ∏ 𝑃(𝑇1
𝑖 , 𝐴1

𝑖 |𝑇1
𝑖−1, 𝑤1

𝑖)
𝑛

𝑖=1

× 𝑃(𝑠𝑖|𝑎𝑖 , 𝑇1
𝑖 , 𝑤1

𝑖)

 (5)

The model is further refined by reducing the

computation scope. When a full-stop punctuation

is determined (i.e., a segmentation is formed), we

discard the previous contexts and restart a new

1 Specially, 𝑏𝑖 is equal to 1 if there are no previous full-stop

punctuations.

procedure for both parsing and punctuation pre-

diction over the rest of words in the stream. In this

way we are theoretically able to handle the unlim-

ited stream of words without needing to always

keep the entire context history of streaming words.

Let 𝑏𝑖 be the position index of last full-stop punc-

tuation1 before 𝑖, 𝑇𝑏𝑖

𝑖 and 𝐴𝑏𝑖

𝑖 the partial tree and

corresponding action sequence over the words

𝑤𝑏𝑖

𝑖 , Model (5) can be rewritten by:

(𝑆∗, 𝑇∗) =
argmax(𝑆,𝑇) ∏ 𝑃(𝑇𝑏𝑖

𝑖 , 𝐴𝑏𝑖

𝑖 |𝑇𝑏𝑖

𝑖−1, 𝑤𝑏𝑖

𝑖) ×𝑛
𝑖=1

 𝑃(𝑠𝑖|𝑎𝑖 , 𝑇𝑏𝑖

𝑖 , 𝑤𝑏𝑖

𝑖) (6)

With different computation of Model (6), we

induce two joint models for punctuation predic-

tion: the cascaded punctuation prediction model

and the unified punctuation prediction model.

4.2 Cascaded punctuation prediction model

(CPP)

In Model (6), the computation of two sub-models

is independent. The first sub-model is computed

based on the context of words and partial trees

without any punctuation knowledge, while the

computation of the second sub-model is condi-

tional on the context from the partially built pars-

ing tree 𝑇𝑏𝑖

𝑖 and the transition action. As the words

in the stream are consumed, each computation of

transition actions is followed by a computation of

punctuation prediction. Thus, the two sub-models

are computed in a cascaded way, until the optimal

parsing tree and optimal punctuation symbols are

generated. We call this model the cascaded punc-

tuation prediction model (CPP).

4.3 Unified punctuation prediction model

(UPP)

In Model (6), if the punctuation symbols can be

deterministically inferred from the partial tree,

𝑃(𝑠𝑖|𝑎𝑖, 𝑇𝑏𝑖

𝑖 , 𝑤𝑏𝑖

𝑖) can be omitted because it is al-

ways 1. Similar to the idea of joint POS tagging

and parsing (Hatori et al., 2011; Bohnet and Nivre,

2012), we propose attaching the punctuation pre-

diction onto the parsing tree by embedding 𝑠𝑖 into

𝑎𝑖 . Thus, we extend the conventional transition

actions illustrated in Table 1 to a new set of tran-

sition actions for the parsing, denoted by �̂�:

755

�̂� = {𝐿𝑒𝑓𝑡𝐴𝑟𝑐, 𝑅𝑒𝑑𝑢𝑐𝑒} ∪ {𝑆ℎ𝑖𝑓𝑡(𝑠)|𝑠 ∈ 𝑄}
∪ {𝑅𝑖𝑔ℎ𝑡𝐴𝑟𝑐(𝑠)|𝑠 ∈ 𝑄}

where Q is the set of punctuation symbols to be

predicted, 𝑠 is a punctuation symbol belonging to

Q, Shift(s) is an action that attaches s to the current

word on the basis of original Shift action in pars-

ing, RightArc(s) attaches 𝑠 to the current word on

the basis of original RightArc action.

With the redefined transition action set �̂�, the

computation of Model (6) is reformulated as:

(𝑆∗, 𝑇∗) =

argmax(𝑆,𝑇) ∏ 𝑃 (𝑇𝑏𝑖

𝑖 , �̂�
𝑏𝑖

𝑖
|𝑇𝑏𝑖

𝑖−1, �̂�𝑏𝑖

𝑖−1
, 𝑤𝑏𝑖

𝑖)𝑛
𝑖=1 (7)

Here, the computation of parsing tree and punc-

tuation prediction is unified into one model where

the sequence of transition action outputs uniquely

determines the punctuations attached to the words.

We refer to it as the unified punctuation predic-

tion model (UPP).

(a). Parsing tree and attached punctuation symbols

Shift(,), Shift(N), Shift(N), LeftArc, LeftArc, LeftArc,

Shift(N), RightArc(?), Reduce, Reduce

(b). The corresponding sequence of transition actions

Figure 2. An example of punctuation prediction

using the UPP model, where N is a null type punc-

tuation symbol denoting no need to attach any

punctuation to the word.

Figure 2 illustrates an example how the UPP

model works. Given an input “so could you tell

me”, the optimal sequence of transition actions in

Figure 2(b) is calculated based on the UPP model

to produce the parsing tree in Figure 2(a). Accord-

ing to the sequence of actions, we can determine

the sequence of predicted punctuation symbols

like “,NNN?” that have been attached to the words

shown in Figure 2(a). The final segmentation with

the predicted punctuation insertion could be “so,

could you tell me?”.

4.4 Model training and decoding

In practice, the sub-models in Model (6) and (7)

with the form of 𝑃(𝑌|𝑋) is computed with a linear

model 𝑆𝑐𝑜𝑟𝑒(𝑌, 𝑋) as

𝑆𝑐𝑜𝑟𝑒(𝑌, 𝑋) = 𝛷(𝑌, 𝑋) ∙ 𝜆

where 𝛷(𝑌, 𝑋) is the feature vector extracted

from the output 𝑌 and the context 𝑋, and 𝜆 is the

weight vector. For the features of the models, we

incorporate the bag of words and POS tags as well

as tree-based features shown in Table 2, which are

the same as those defined in (Zhang and Nivre,

2011).

(a) ws; w0; w1; w2; ps; p0; p1; p2; wsps; w0p0; w1p1;

w2p2; wspsw0p0; wspsw0; wspsp0; wsw0p0;

psw0p0; wsw0; psp0; p0p1; psp0p1; p0p1p2;

(b) pshpsp0; pspslp0; pspsrp0; psp0p0l; wsd; psd; w0d;

p0d; wsw0d; psp0d; wsvl; psvl; wsvr; psvr; w0vl;

p0vl; wsh; psh; ts; w0l; p0l; t0l; w0r; p0r; t0r; w1l;

p1l; t1l; wsh2; psh2; tsh; wsl2; psl2; tsl2; wsr2; psr2;

tsr2; w0l2; p0l2; t0l2; pspslpsl2; pspsrpsr2; pspshpsh2;

p0p0lp0l2; wsTl; psTl; wsTr; psTr; w0Tl; p0Tl;

Table 2. (a) Features of the bag of words and POS

tags. (b). Tree-based features. wword; pPOS

tag; ddistance between ws and w0; vnumber of

modifiers; tdependency label; Tset of depend-

ency labels; s, 0, 1 and 2 index the stack top and

three front items in the queue respectively; hhead;

lleft/leftmost; rright/rightmost; h2head of a

head; l2second leftmost; r2second rightmost.

The training data for both the CPP and UPP

models need to contain parsing trees and punctu-

ation information. Due to the absence of annota-

tion over transcribed speech data, we adapt the

Treebank data for the purpose of model training.

To do this, we remove all types of syntactic infor-

mation related to punctuation symbols from the

raw Treebank data, but record what punctuation

symbols are attached to the words. We normalize

various punctuation symbols into two types: Mid-

dle-paused punctuation (M) and Full-stop punctu-

ation (F). Plus null type (N), there are three kinds

of punctuation symbols attached to the words. Ta-

ble 3 illustrates the normalizations of punctuation

symbols. In the experiments, we did not further

distinguish the type among full-stop punctuation

because the question mark and the exclamation

mark have very low frequency in Treebank data.

so could you tell me

, N N N ?

nsubj iobj
aux

advmod

756

But our CPP and UPP models are both independ-

ent regarding the number of punctuation types to

be predicted.

Punctuations Normalization

Period, question mark,

exclamation mark

Full-stop punctuation

(F)

Comma, Colon, semi-

colon

Middle-paused punctu-

ation (M)

Multiple Punctuations

(e.g., !!!!?)

Full-stop punctuation

(F)

Quotations, brackets,

etc.

Null (N)

Table 3. Punctuation normalization in training

data

As the feature templates are the same for the

model training of both CPP and UPP, the training

instances of CPP and UPP have the same contexts

but with different outputs. Similar to work in

(Zhang and Clark, 2008; Zhang and Nivre, 2011),

we train CPP and UPP by generalized perceptron

(Collins, 2002).

In decoding, beam search is performed to get

the optimal sequence of transition actions in CPP

and UPP, and the optimal punctuation symbols in

CPP. To ensure each segment decided by a full-

stop punctuation corresponds to a single parsing

tree, two constraints are applied in decoding for

the pruning of deficient search paths.

(1) Proceeding-constraint: If the partial pars-

ing result is not a single tree, the full-stop

punctuation prediction in CPP cannot be

performed. In UPP, if Shift(F) or

RightArc(F) fail to result in a single parsing

tree, they cannot be performed as well.

(2) Succeeding-constraint: If the full-stop

punctuation is predicted in CPP, or Shift(F)

and RightArc(F) are performed in UPP, the

following transition actions must be a se-

quence of Reduce actions until the stack

becomes empty.

5 Experiments

5.1 Experimental setup

Our training data of transition-based dependency

trees are converted from phrasal structure trees in

English Web Treebank (LDC2012T13) and the

English portion of OntoNotes 4.0 (LDC2011T03)

by the Stanford Conversion toolkit (Marneffe et

al., 2006). It contains around 1.5M words in total

and consist of various genres including weblogs,

web texts, newsgroups, email, reviews, question-

answer sessions, newswires, broadcast news and

broadcast conversations. To simulate the tran-

scribed speech text, all words in dependency trees

are lowercased and punctuations are excluded be-

fore model training. In addition, every ten depend-

ency trees are concatenated sequentially to simu-

late a parsing result of a stream of words in the

model training.

There are two test data sets used in our experi-

ments. One is the English corpus of the IWSLT09

evaluation campaign (Paul, 2009) that is the con-

versional speech text. The other is a subset of the

TDT4 English data (LDC2005T16) which con-

sists of 200 hours of closed-captioned broadcast

news.

In the decoding, the beam size of both the tran-

sition-based parsing and punctuation prediction is

set to 5. The part-of-speech tagger is our re-imple-

mentation of the work in (Collins, 2002).

The evaluation metrics of our experiments are

precision (prec.), recall (rec.) and F1-measure

(F1).

For the comparison, we also implement a base-

line method based on the CRF model. It incorpo-

rates the features of bag of words and POS tags

shown in Table 2(a), which are commonly used in

previous related work.

5.2 Experimental results

We test the performance of our method on both

the correctly recognized texts and automatically

recognized texts. The former data is used to eval-

uate the capability of punctuation prediction of

our algorithm regardless of the noises from speech

data, as our model training data come from formal

text instead of transcribed speech data. The usage

of the latter test data set aims to evaluate the ef-

fectiveness of our method in real applications

where lots of substantial recognition errors could

be contained. In addition, we also evaluate the

quality of our transition-based parsing, as its per-

formance could have a big influence on the quality

of punctuation prediction.

5.2.1 Performance on correctly recognized

text

The evaluation of our method on correctly recog-

nized text uses 10% of IWSLT09 training set,

which consists of 19,972 sentences from BTEC

(Basic Travel Expression Corpus) and 10,061 sen-

tences from CT (Challenge Task). The average in-

put length is about 10 words and each input con-

tains 1.3 sentences on average. The evaluation re-

sults are presented in Table 4.

757

 Measure Middle-

Paused

Full-stop Mixed

Baseline

(CRF)

prec. 33.2% 81.5% 78.8%

rec. 25.9% 83.8% 80.7%

F1 29.1% 82.6% 79.8%

CPP

prec. 51% 89% 89.6%

rec. 50.3% 93.1% 92.7%

F1 50.6% 91% 91.1%

UPP

prec. 52.6% 93.2% 92%

rec. 59.7% 91.3% 92.3%

F1 55.9% 92.2% 92.2%

Table 4. Punctuation prediction performance on

correctly recognized text

 We achieved good performance on full-stop

punctuation compared to the baseline, which

shows our method can efficiently process sen-

tence segmentation because each segment is de-

cided by the structure of a single parsing tree. In

addition, the global syntactic knowledge used in

our work help capture long range dependencies of

punctuations. The performance of middle-paused

punctuation prediction is fairly low between all

methods, which shows predicting middle-paused

punctuations is a difficult task. This is because the

usage of middle-paused punctuations is very flex-

ible, especially in conversional data. The last col-

umn in Table 4 presents the performance of the

pure segmentation task where the middle-paused

and full-stop punctuations are mixed and not dis-

tinguished. The performance of our method is

much higher than that of the baseline, which

shows our method is good at segmentation. We

also note that UPP yields slightly better perfor-

mance than CPP on full-stop and mixed punctua-

tion prediction, and much better performance on

middle-paused punctuation prediction. This could

be because the interaction of parsing and punctu-

ation prediction is closer together in UPP than in

CPP.

5.2.2 Performance on automatically recog-

nized text

Table 5 shows the experimental results of punctu-

ation prediction on automatically recognized text

from TDT4 data that is recognized using SRI’s

English broadcast news ASR system where the

word error rate is estimated to be 18%. As the an-

notation of middle-paused punctuations in TDT4

is not available, we can only evaluate the perfor-

mance of full-stop punctuation prediction (i.e., de-

tecting sentence boundaries). Thus, we merge

every three sentences into one single input before

performing full-stop prediction. The average input

length is about 43 words.

 Measure Full-stop

Baseline

(CRF)

prec. 37.7%

rec. 60.7%

F1 46.5%

CPP

prec. 63%

rec. 58.6%

F1 60.2%

UPP

prec. 73.9%

rec. 51.6%

F1 60.7%

Table 5. Punctuation prediction performance on

automatically recognized text

Generally, the performance shown in Table 5 is

not as high as that in Table 4. This is because the

speech recognition error from ASR systems de-

grades the capability of model prediction. Another

reason might be that the domain and style of our

training data mismatch those of TDT4 data. The

baseline gets a little higher recall than our method,

which shows the baseline method tends to make

aggressive segmentation decisions. However,

both precision and F1 score of our method are

much higher than the baseline. CPP has higher re-

call than UPP, but with lower precision and F1

score. This is in line with Table 4, which consist-

ently illustrates CPP can get higher recall on full-

stop punctuation prediction for both correctly rec-

ognized and automatically recognized texts.

5.2.3 Performance of transition-based pars-

ing

Performance of parsing affects the quality of

punctuation prediction in our work. In this section,

we separately evaluate the performance of our

transition-based parser over various domains in-

cluding the Wall Street Journal (WSJ), weblogs,

newsgroups, answers, email messages and re-

views. We divided annotated Treebank data into

three data sets: 90% for model training, 5% for the

development set and 5% for the test set. The accu-

racy of our POS-tagger achieves 96.71%. The

beam size in the decoding of both our POS-tag-

ging and parsing is set to 5. Table 6 presents the

results of our experiments on the measures of

UAS and LAS, where the overall accuracy is ob-

tained from a general model which is trained over

the combination of the training data from all do-

mains.

758

We first evaluate the performance of our transi-

tion-based parsing over texts containing punctua-

tions (TCP). The evaluation results show that our

transition-based parser achieves state-of-the-art

performance levels, referring to the best depend-

ency parsing results reported in the shared task of

SANCL 2012 workshop2, although they cannot be

compared directly due to the different training

data and test data sets used in the experiments.

Secondly, we evaluate our parsing model in CPP

over the texts without punctuations (TOP). Sur-

prisingly, the performance over TOP is better than

that over TCP. The reason could be that we

cleaned out data noises caused by punctuations

when preparing TOP data. These results illustrate

that the performance of transition-based parsing in

our method does not degrade after being inte-

grated with punctuation prediction. As a by-prod-

uct of the punctuation prediction task, the outputs

of parsing trees can benefit the subsequent text

processing tasks.

 Data sets UAS LAS

Texts con-

taining punc-

tuations

(TCP)

WSJ 92.6% 90.3%

Weblogs 90.7% 88.2%

Answers 89.4% 85.7%

Newsgroups 90.1% 87.6%

Reviews 90.9% 88.4%

Email Messages 89.6% 87.1%

Overall 90.5% 88%

Texts with-

out punctua-

tions (TOP)

WSJ 92.6% 91.1%

Weblogs 92.5% 91.1%

Answers 95% 94%

Newsgroups 92.6% 91.2%

Reviews 92.6% 91.2%

Email Messages 92.9% 91.7%

Overall 92.6% 91.2%

Table 6. The performance of our transition-based

parser on written texts. UAS=unlabeled attach-

ment score; LAS=labeled attachment score

6 Conclusion and Future Work

In this paper, we proposed a novel method for

punctuation prediction of transcribed speech texts.

Our approach jointly performs parsing and punc-

tuation prediction by integrating a rich set of syn-

tactic features. It can not only yield parse trees, but

also determine sentence boundaries and predict

punctuation symbols from a global view of the in-

2 https://sites.google.com/site/sancl2012/home/shared-

task/results

puts. The proposed algorithm has linear complex-

ity in the size of input, which can efficiently pro-

cess the stream of words from a purely text pro-

cessing perspective without the dependences on

either the ASR systems or subsequent tasks. The

experimental results show that our approach out-

performs the CRF-based method on both the cor-

rectly recognized and automatically recognized

texts. In addition, the performance of the parsing

over the stream of transcribed words is state-of-

the-art, which can benefit many subsequent text

processing tasks.

 In future work, we will try our method on other

languages such as Chinese and Japanese, where

Treebank data is available. We would also like to

test the MT performance over transcribed speech

texts with punctuation symbols inserted based on

our method proposed in this paper.

References

B. Bohnet and J. Nivre. 2012. A transition-based sys-

tem for joint part-of-speech tagging and labeled

non-projective dependency parsing. In Proc.

EMNLP-CoNLL 2012.

H. Christensen, Y. Gotoh, and S. Renals. 2001. Punc-

tuation annotation using statistical prosody models.

In Proc. of ISCA Workshop on Prosody in Speech

Recognition and Understanding.

M. Collins. 2002. Discriminative training methods for

hidden Markov models: Theory and experiments

with perceptron algorithms. In Proc. EMNLP’02,

pages 1-8.

B. Favre, R. Grishman, D. Hillard, H. Ji, D. Hakkani-

Tur, and M. Ostendorf. 2008. Punctuating speech

for information extraction. In Proc. of ICASSP’08.

B. Favre, D. HakkaniTur, S. Petrov and D. Klein. 2008.

Efficient sentence segmentation using syntactic fea-

tures. In Spoken Language Technologies (SLT).

A. Gravano, M. Jansche, and M. Bacchiani. 2009. Re-

storing punctuation and capitalization in transcribed

speech. In Proc. of ICASSP’09.

J. Hatori, T. Matsuzaki, Y. Miyao and J. Tsujii. 2011.

Incremental joint POS tagging and dependency

parsing in Chinese. In Proc. Of IJCNLP’11.

J. Huang and G. Zweig. 2002. Maximum entropy

model for punctuation annotation from speech. In

Proc. Of ICSLP’02.

759

J.H. Kim and P.C. Woodland. 2001. The use of pros-

ody in a combined system for punctuation genera-

tion and speech recognition. In Proc. of Eu-

roSpeech’01.

Y. Liu, A. Stolcke, E. Shriberg, and M. Harper. 2005.

Using conditional random fields for sentence

boundary detection in speech. In Proc. of ACL’05.

W. Lu and H.T. Ng. 2010. Better Punctuation Predic-

tion with Dynamic Conditional Random Fields. In

Proc. Of EMNLP’10. Pages 177-186.

M. Marneffe, B. MacCartney, C.D. Maning. 2006.

Generating Typed Dependency Parses from Phrase

Structure Parses. In Proc. LREC’06.

E. Matusov, A. Mauser, and H. Ney. 2006. Automatic

sentence segmentation and punctuation prediction

for spoken language translation. In Proc. of

IWSLT’06.

S. Nakamura. 2009. Overcoming the language barrier

with speech translation technology. In Science &

Technology Trends - Quarterly Review. No. 31.

April 2009.

J. Nivre. 2003. An efficient algorithm for projective de-

pendency parsing. In Proceedings of IWPT, pages

149–160, Nancy, France.

J. Nivre and M. Scholz. 2004. Deterministic depend-

ency parsing of English text. In Proc. COLING’04.

M. Paul. 2009. Overview of the IWSLT 2009 Evalua-

tion Campaign. In Proceedings of IWSLT’09.

B. Roark, Y. Liu, M. Harper, R. Stewart, M. Lease, M.

Snover, I. Shafran, B. Dorr, J. Hale, A. Krasnyan-

skaya, and L. Yung. 2006. Reranking for sentence

boundary detection in conversational speech. In

Proc. ICASSP, 2006.

A. Stolcke and E. Shriberg, “Automatic linguistic seg-

mentation of conversational speech,” Proc. ICSLP,

vol. 2, 1996.

A. Stolcke, E. Shriberg, R. Bates, M. Ostendorf, D.

Hakkani, M. Plauche, G. Tur, and Y. Lu. 1998. Au-

tomatic detection of sentence boundaries and disflu-

encies based on recognized words. In Proc. of

ICSLP’ 98.

Takezawa, T. Morimoto, T. Sagisaka, Y. Campbell, N.

Iida, H. Sugaya, F. Yokoo, A. Yamamoto, Seiichi.

1998. A Japanese-to-English speech translation sys-

tem: ATR-MATRIX. In Proc. ICSLP’98.

Y. Zhang and J. Nivre. 2011. Transition-based De-

pendency Parsing with Rich Non-local Features. In

Proc. of ACL’11, pages 188-193.

Y. Zhang and S. Clark. A Tale of Two Parsers: inves-

tigating and combing graph-based and transition-

based dependency parsing using beam-search. 2008.

In Proc. of EMNLP’08, pages 562-571.

760

