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Abstract

Stardard methods for pan-of-speech tagging
suffer from data sparseness when used on
highly inflectional languages (which require
large lexical tagset inventories). For this
resson, a number of altemative methods have
been proposed over the yeas. One of the
most success$ul methods used for this task,
called Tiered Tagging (Tufis, 1999, exploits
a reduced set of tags derived by removing
several recverabe feauresfrom the lexicon
morpho-syntactic desciptions. A seoond
phaseis aimed at recovering the full set of
morpho-syntactic feaures In this paper we
presen an altemative method to Tiered
Tagging, basedon locd optimizations with
Neual Networks and we show how, by
properly encaling the inpu sequerce in a
gereral Neural Network architecture, we
achieve reallts similar to the Tiered Tagging
methoddogy, significantly faster ard withou
requiring extensive lingustic knowledge as
implied by the previously mertioned method

1 Introduction

Pat-of-speech tagging is a key process for
various taks swch as ‘informaton extraction,
text-to-speech synthesis, word sense
disanbiguaion and mdine rangation. It isalso
known as lexical ambiguity resolution and it
represents the process of assigning a uniquely
interpretable labd to every word inside a
sentenc. The lakels are cdled POS tags andthe
enireinvenbory of PCS fags iscdledatagsd.
There are severd approachesto part-of-speech
tagging, sudh as HiddenMarkov Modds (HMM)
(Brarts, 2000, Maximum Entropy Classifiers
(Berger et al., 1996 Ratapakhi, 1996,
Bayedan Networks (Sanuelson, 1993), Neua
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Networks (Marques and Lopes, 1996) ard
Condtional RandomFields (CRF) (Lafferty et
al, 2001). All thee methods are primarly
intended for Endish, which uses a relatively
small tagsd invenibry, conpared to highly
inflediond languages For the later menioned
languags the lexicon tagsds (cdled morpho
syntadic desaiptions (Calzolari and Monachini,
19%) or MSDs) may be 10-20 times or even
larger than the beg known tagsds for Endish.
For ingane Czech MSD tagsd requres more
than 3000 labek (Collins et a., 1999, Slovere
more than2000 lakels (Erjavec andKrek, 2008)
and Romanian more than 1100 labels (Tufis,
1999) The stanchrd tagging methods usng sud
large tagsds, fae serious data sparseness
problens due to ladk of statiscal evidene,
manifeded bythe nonrobushessof the nguag
modek. Whentagging new texts that are nat in
the same domain as the training dat, the
acuracy decgesses significantly. Even tagging
in-domain texts may not be satisfadorily
accurate.

One of the most suceesgul methodsused for
this task, called Tiered Tagging (Tufis, 1999,
exploits a redwed sd of tags derived by
renoving several recoverable features from the
lexicon morpho-syntadic de<riptions
According to the MULTEXT EAST lexcd
speificaions (Erjavec and Monachini, 1997,
the Romaniantagsé congsts of a number of 614
MSD tags (by expoiting the cae and gende
regular syncretism) for wordforms and 10
puncuation tags (Tufis et al., 1997, which is
stll significanly larger than the tagé of
Endish. The MULTEX EAST version 4
(Erjavec, 2010) cortains spedficationsfor atotal
of 16 languags Bulgaran, Crodian, Czed,
Esobnian, Endish, Hungarian, Romanian
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Serbian, Slovene, the Resian dialect of Slovene,
Macedonian, Persian, Polish, Russian, Slovak,
and Ukrainian

The strategy of the Tiered Tagging
methodology is to use a reduced tagset (called
CTAG-set), where a CTAG is a generalization of
a MSD, from which recoverable context-
irrelevant features are removed. For instance, the
attribute for gender (masculine ‘m’ or feminine
‘f7) from MSDs ‘Ncfsm’ and ‘Nemsmm’ is deleted
to obtain the CTAG ‘NSRN’, because the gender
information can be deterministically recovered
based on the CTAG and the wordform itself. The
recovering of the left out attributes (Figure 1) is
based on the lexicons, linguistic rules and, in the
case of unknown words, on ML techniques
(Ceausu, 2006). When tagging with CTAGs, one
can use any statistical POS tagging method such
as HMMs, Maximum Entropy Classifiers,
Bayesian Networks, CRFs, etc., followed by the
CTAG to MSD recovery.

l Training data

Training

Converting from

J,' MSDs to CTAGS —l

Manual+automatic
rules for MSD recovery
T

T
Tagging i l

Training a POS tagger

Tnput data Labeling with CTAGS [ MSD Recovery Output data
Text Tagged text

Figure 1 - Tiered Tagging methodology

The language dependent process of manually
inferring linguistic rules for MSD recovery
requires good knowledge of the target language
and also extensive amounts of time invested in
testing and re-design. It is difficult even for a
native speaker to create such rules without in-
depth linguistic knowledge.

In this article, we propose an alternative
solution based on local optimizations with feed-
forward neural networks. Our method eliminates
the need for the two stage processing, is much
faster at run time and is comparatively accurate
with the Tiered Tagging implemented in the TTL
tagger (lon, 2007), available in the
METASHARE Platform'.

! http://ws.racai.r0:9191/

2 Large tagset part-of-speech tagging
with feed-forward neural networks

Although removing the recoverable attributes, as
proposed in the Tiered Tagging approach, helps
the goal of squeezing the lexical tagset to a
reasonable size, valuable information for
contextual disambiguation is also lost. For
example, the gender agreement rule, valid in
many languages, cannot be exploited unless the
gender attribute is present in the tags.

Our proposal to deal with large tagsets without
removing contextually useful information is
based on Feed Forward Neural Networks
(FFNN). FFENN are known for their simplicity
and robustness in finding and recombining
patterns inside data.

Several neural network architectures have
been proposed for the task of part-of-speech
tagging. Schmid (1994) proposed a FFNN
architecture for part-of-speech tagging obtaining
a 96.22% accuracy. In his paper, he argues that
neural networks are preferable to other methods,
when the training set is small. He compares his
results with a HMM tagger (94.24%) and a
trigram tagger (96.02%), both trained and tested
on the same corpora as his FFNN tagger (the
Penn-Treebank corpus). A similar approach is
presented by Marques and Lopes (1996). In their
paper, the authors come to similar conclusions as
those presented in Schmid (1994). We support
these findings with an additional argument,
namely the better fit for managing large tagsets.

In both approaches mentioned before, the
network is trained so that from the input vector,
to output a real valued vector. Each value in the
output vector is generated by a distinct neuron,
and corresponds to a unique tag in the tagset (e.g.
100 tags means the network contains 100
neurons on the output layer). The input vector for
predicting the tag of the current word encodes
the tags for the previously tagged words and the
probable tags for the current and following two
words, estimated using Maximum Likelihood
Estimation (MLE):

p _Cw,t)

(1) =505

The probability of the word w
having tag t
The total number of times, the
word w appears with tag t in the
training corpus
The total number of times, the
word w appears in the training
corpus

M

P(tlw) -

Clw,t) -

cw) -
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In the case of ou-of-vocaulary (OOV)
words, bath appoades use suffix andysis to
determine the most probable tags tha can be
assignedto thecurrert word.

To clarify how the® two methodswork, if we
want to train the nework to lakel the current
word, usng a conext window of 1 (previoustag
current possble tags, and possble tags for the
next word) andif we hawve, say 100 tags in the
tagsd, the inputis a real valued vedor of 300
subunit elements and the output is a vedor
which cortains 100 elenents, also sub-unit red
numbes. As menionedealier, each valuein the
output vedor comrespond to a distind tag from
tagsdé andthetagassignedto the currentword is
chosn to corepord to the maximum value
inddethe aitput vedor.

The previoudy proposed methods still suffer
from the same iswue of dal sparsenes when
appied to MSD tagging. Howewer, in our
appioadc, we overcome the problem through a
different enading of the input data (seesection
2.1).

The power of neual networks results mainly
from their abiity to attain adivaton fundions
over different pdatems via their leaning
algorithm. By propaly enmding the inpu
sgjuerce, the nework choo®s which inpu
fedures contibute in deemining the output
fedures for MSDs (e.g patems conposeal of
pat of speech, gende, case, type etc. contribute
indeendatly in sdeding the optimal output
sajuerce). This way, we removed the need for
explicit MSD to CTAG conwersion ard MSD
recovery from CTAGs.

2.1 TheMSD binary encoding scheme

A MSD languag independenty enmdes a patt
of speeh (POS) with the assodated lexicd
attribute valuesas a string of positional ordered
chaader codes (Eraveg 2004) The first
chaader is an upper case chaader dending the
part of speech (e.g. ‘N’ for nouns, ‘V’ for verbs,
‘A’ for adjectives, etc.) and the following
characters (lower letters or ‘-°) speify the
indartiations of the chaadergtic lexicd
atributes of the POS. For example, the MSD
‘Ncfsrn’, spedfiesa noun (the first chaader is
‘N’) the type of which is common (‘c’, the
secondchaader), femninegende (‘f*), singular
number (‘s’), in nominative/accusative case (‘r’)
andindetnite form (‘n’). If a speific attribute is
not relevant for a langiage, or for a given
combinaton of feature-values, the character ‘-’ is
usal in the comespondng postion. For a

languag which does not morphologicdly mark
the gende ard definiteress fedures the ealier
exemplified MSD will be encoded as ‘Nc-Sr-’.

In orderto derive abinary vedor for eah of
the 64 MSDs of Romanian we proceeded D:

1. List and sot al possble PCSes of
Romanian (16 PCSeg and form a binary
vedor with 16 positionsin which postion k
is equal 1 only if the repedive MSD has
the corregponding PCS (i.e the k-th PCS in
the ortedlist of PCSey;

2. Listandsort all possble valuesof al lexicd
attributes (disregarding the wildcard ‘-°) for
all POSes (94 valueg and form anoher
binary veaor with 94 positionssud that the
k-th postion of this vedor is 1 if the
regpedive MSD has an attribute with the
corregponding value

3. Concaende the vedors from steps1 and 2
andobtain the binary codficaion of a MSD
asa 1D-postion binaty vedor.

2.2 Thetraining and tagging procedure

The tagger aubmaticdly assigns four dunmy
tokens(two at the begnning andtwo at the end)
to the target utterane andthe neua nawork is
trainedto auomatically assign a MSD giventhe
conext (two previoudy assigned tags and the
possble tags for the current and following two
words) of the current word (see below for
detils).

In our framework a training example congsts
of the featuresextracted for a singe word indde
an utterance as input and it’s MSD within tha
utterarce as output The fedures are extraded
from a window of 5 words centered on the
curentword. A single word is chaaderizedby a
vedor thatencodes either its assgned MSD or its
possble MSDs. To enmde the posshle MSDs
we useequaion 2, where each possble attribute
a, hasa singe corregponding postion ingde the
enmda vedor.

c(w,
P(alw) = év("w‘)‘)

)

Note that we changed the probability
estimates to account for attributes not tags.

To be predse for every word wy, we obtain its
inpu feaures by concaenaing a number of 5
vedors. The first two vedors enmde the MSDs
assignedto the previous two words (wy.; andw.
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2).The next three vedors are usal to enmde the
possble MSDs for the curentword (wy) andthe
following two words (Wy.1 and w.»).

During training, we also compute a list of
suffixes with assodated MSDs, which is usel at
runtime to buld the possible MSDs vedor for
unknown words. When such words are fourd
within the test data, we appioximate ther
possble MSDs vedor using a variaton of the
method popaseal by Brarts (2000.

When the tagger is appliedto a new utterarce
the systemiteratively cdculatesthe output MSD
for each individud word. Once a labé hasbeen
assignedto a word, the word’s associated vector
is edited so it will have the value of 1 for each
attribute presert in its newly asignedMSD.

As acongguene of encodng each individual
atrribute separately for MSDs, the tagger can
assign newtags (that were newver asodated with
the current word in the training corpus.
Althoughthis is a nice behavior for deding with
unknown wordsit is oftenthe casetha it assigns
atribute values tha are not valid for the
wordform. To overcome thes types of errors we
useanaddtiond list of wordswith ther all owed
MSDs. ForanOOV word, thelist is conputedas
a union from all MSDs that appeaed with the
suffixes thatapgy to that word.

When the tagger hasto assgn a MSD to a
given word, it sdeds one from the possble
wordform’s MSDs in its wordform/MSDs
assodatedlistusing asimple distance function:

n
gg;;% el ®
p _ Thelist of all possible MSDs
for the gven word
The lengh of the MSD
n " enmdng (110 bts)
R _ The output of the Neurm

Network for the arrert word
e - Binaty encodingfor aMSD in P
3 Network hyperparameters

In our expeiments, we used a fully conneted
feed forward neuml nework with 3 layers (1
inpu layer, 1 hidden layer and 1 output layer)

and a sigmoid adivation funcion (equation 3).
While othe nework architedures suwch as
reaurrent neural networks may prove to be more
suitale for this ta¥, they are extrenely had to
train, thus, we tradal the advantages of sud
architedures for the robustnes andsimplicity of
thefeed-forward néworks.

f© =170= 3

f(®) - Neumon ouput
The weighted sum of all the
t - neuon ouputs from the

previouslayer

Basdonthesize of theveadors usal for MSD
enmdng, the output layer has 110 neurons ard
the input layer is conposal of 550 (5 x 110
neuors.

In order to fully characterize our system we
took into accourt the following pamneters:
accuragy, runtime speed, training speed, hidden
layer configuration and the nunber of optmal
training iteraions. Thexe pamanmeters hawe
conplex depadendesandrelationsanong eah
othe. For exanple, the accuracy, the optimal
number of training iterations, the training andthe
runtime speed are al highly depaendent on the
hidden layer corfiguration. Small hidden layer
give high training and runtime speedsbut often
underfit the daa. If the hiddenlayeristoo large,
it can easily overfit the dat and also has a
negtive impad on the training and runtime
speed. The number of optimal training iterations
changeswith the size of the hiddenlayer (larger
layers wsudly require more training iterations).

To obtain the trade-offs between the abowe
mentioned parameters we devised a series of
expeaiment, in al of which we usel the “1984”
MSD annotated corpus, which is conmposel of
118025 words. We randonty kept out
appoximately 1/10 (11,960 words) of the
training corpus for building a crossvalidaion
sd. The badineaacuracy on thecrossvalidaion
sd (i.e. returning the most probable tag is
93.29%. We dso used anaddtional inflediond
wordform/MSD lexicon conposeal of
appioximately 1 milli on hand-validaied entries.
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Figure 2 - 130hiddenlayer network test and train settagging accuracy as a function of the number of iterations

The first expeiment was desgned to
deermine the trade-off between the run-time
speed ard the size of the hiddenlayer. We made
a saies of expeiment disregarding the tagging

Detemining the optimal size of the hidden
layer is a very delicae subjed andther are no
peifed sdutions, most of them being based on
trial and error: small-sized hiddenlayers lea to

accuragy.

underfitting, while large hidden layers usualy
causeoverfitting. Also, becauseof the tradeoff

Hiddensize  Time(ms)  Words/sec betwween runtime speed and the size of hidden
50 1530 7816 layers, and if runtime speed is an importart
70 1888 6334 fador in a particular NLP applcation, then
90 2345 5100 hiddenlayers with snaller number of neuonsare
iég g;ié ‘3‘288 preferable, as they surely do nat over-fit the data
150 5052 5367 and ofer a ndiceable speed boog.

170 5466 2188 C
190 6734 1776 hidden  Train set I.éof.s
210 7096 1685 layer  accuracy ‘f(‘x':u‘;‘;g;
230 8332 1435 50 99.18 97.95
250 9576 1248
70 99.20 98.02
270 10350 1155
90 99.27 98.03
290 11080 1079
310 12364 967 110 99.29 98.05
130 99.35 9812
Tabe 1 - Exeadtion time vs. number of neurons on 150 99.35 9809
the hidden layer 170 9941 98.07
190 99.40 98.10
210 99.40 9821

Becaus, for a given number of neuronsin the
hidden ayer, the agging speedisindependert on
the tagging accuracy, we pattialy trained (using
one iteration and only 1000 training senteney
several ngwork configurations. The first network
only had 50 neurons in the hiddenlayer andfor
the next networks, we incremented the hidden
layer size by 20 neurons untl we reached 310
neuons. The total number of tested networks is
14. After this, we measured the time it took to
tagthe 1984test corpus (11,960 words) for each
individual network, as an average of 3 tagging
runs in order to redue the impad of the
opesting system load on the tagger (Tade 1
shows he figureg.

Table 2 - Trainard testaccuracy rates or different
hiddenlayer configurations

As shownin Table 1, the runtime spe=d of our
systemshowsa condart decay whenwe increase
the hidden layer size. The sane deay can be
seenin the training speed, only this time by an
order of magnitude larger. Becaug training a
singe network takes a lot of time, this
expeiment was designedto edimate the size of
the hidden layer which offers good performance
in tagging. To do this, we individually traineda
number of netwvorks in 30 iterations, using
various hidden layer configurations (50, 70, 90,
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110,130,150,170, 190and 210 neuong and5
initial randominitializations of the weights. For
eah corfiguration, we stored the accuracy of
repiodudng the leaning data (the tagging of the
training corpug andthe aacuracy on the unsen
data (test sds). Theresults are shownin Table 2.
Althoudh a hidden layer of 210 neuonsdid not
seem to overfit the daa, we stoppal the
expeiment asthe training time got significanty
longer.

The next expeiimentwasdesgnedto seehow
the number of training iterations influerces the
tagging performane of neworks with differert
hidden layer configuratons. Intuitively, the
training process must be stopped when the
network begnsto overfit the data (i.e. the train
sd accuracy increases but the test se¢ aaccuracy
dropg. Our expeiment indicae that this is nat
always the case, as in sone situdions the
coninudion of the training process leals to
beter reailts on the crossvalidaion data (as
shownin Figure 2). So, the problem conmes to
deermining which is the most sale
configuraton of the neud network (i.e. which
hidden unit size will be most likely to retumn
good reallts on the teg set) and edaHish the
nunber of iterationsit takes for the systemto be
trained To do this, we ran thetraining procedue
for 100iteraonsandfor each training iteration,
we computed the acauragy rate of ewety
individual nework on the crossvalidaion set
(see Table 3 for the averaged valueg. As shown
the network configuration using 130 neuonson
the hidden layer is mostlikely to produe beter
reailts on the crossvalidaion set regardless of
the nunier of iterations.

Althoudh, sone other configurations provided
beter figuresfor the maximum accuracy, ther
average accuracy is lower thantha of the 130
hiddenunit network. Othe good candidates are
the 90 and 110 hiddenunit netwvorks, but nat the
larger valued ones which disday a lower
average acuracy and also significantly slower
tagging speeds

The most sutable network configuration for a
given tak depeds on the languag, MSD
enmding size, speed and accuracy regurenent.
In our own daily apgicaions we use the 130
hidden unit nework. After obseving the
behavior of the various networks on the cross
validaion sd we determinedtha a good choice
is to stop the training procedure after 40
iterations

H|dFJen Avg. acc. Max. acc. St. dev.
units

50 97.94 9831 0.127002
70 98.03 9831 0.12197

50 97.94 98.37 0.139762
70 98.03 9843 0.124996
90 98.07 98.39 0.134487
110 98.08 98.45 0.127109
130 98.14 98.44 0.136072
150 9801 98.36 0.143324
170 97.94 98.36 0.122834

Table 3 - Average and maximum accuracy for various
hiddenlayer configuration cdculatedover 100
training iterations onthe ted set

To obtain the accuracy of the system in our
lag experiment we useal the 130 hidden unit
nework and we peiformed the trainingteding
procedure on the 1984 corpus, using 10-fold
validaion and 30 randon initializations. The
find accuracy was conputed as an average
between dl the accuracy figuresmeasured at the
end of the training process (after 40 iterations).
The first 1/10 of the 1984 cormpus on which we
tuned the hypemparameters was not included in
thetestdat, but was used for training. The mean
accuragy of the system (98.41%9 was measured
asanawerace of 270 \alues

4 Comparison to other methods

In his work, Ceausu (2006) preents a
different appoach to MSD tagging using the
Maximum Entropy framework He preens his
reglts on the same corpus we usal for training
and teging (the 1984 compus) ard he compares
his method (98.4%% accuracy) with the Tiered
Tagging methodobgy (97.50% (Tufis and
Dragomirescu, 20@1).

Our Neurd Network appoach obtained
similar (dightly lower) realts (98.4%%),
although it is arguade tha our sqit/train
procedure is nat idertical to the one usd in his
work (no detail s were given as how the /10 of
thetraining corpus was sdeded). Also, our POS
tagger deeded caseswhere the annotation in the
Gold Standard wasemroneaus. One suich exanple
is in “lame de ras’ (English “razor blades”)
where “lame” (Endish “blades™) is a noun, “de”
(“for”) is a preposition and “ras” (“shaving”) isa
supne verb (with a pag participle form) which
wasincoredly anndatedas anoun
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5 Network pattern analysis

Using feedforward neua networks gives the
abiity to outinewhat inputfedurescontribute to
the sdedion of various MSD atribute valuesin
the output layer which might hdp in reduéng the
tagsd and thus, redesigning the nework
topdogy with bendicia effeds bath on the
speedand @curagy.

To degermine whatinput featurescortribute to
the €ledion of catain MSD attribute values one
can aralyze the weights indde the neur
nework andextract the input = output links tha
are formed during training. We used the network
with 130 units on the hidden layer, which was
previoudy trained for 100 iterations. Basd on
the npu enmding, we dvided he featuresinto 5
groups(onegroupfor each MSD inddethelocd
conext — two previous MSDs, current ard
following two possble MSDs). For a target
atiribute value (noun, gerder feminine, gender
masuline, etc.) ard for each inpu group, we
sdected the top 3 input valueswhich supprt the
dedsion of assigning the target value to the
atrribute (feaures tha increasethe output value)
and the top 3 features which discouage this
dedsion (fedurestha decreasetheoutputvalue)
For clarty, we will usethe following notatons
for thegroups:

e G, group one - the assigned MSD for
the wad & postioni-2
o Gy grouptwo — the assgned MSD for
the wad & postioni-1
e Gy groupthree- the possble MSDs for
the wad & postioni
e Gy group four— the posgble MSDs for
the wad & postioni+1
e Gy group five — the posgble MSDs for
the wad & postioni+2
where i corregondsto the postion of the word
which is curertly being tagged. Also we
classify the attribute values into two caegories
(C): (P) want to see (support the dedsion) ard
(N) don’t want to see (dismurage the deision).

Tale 4 shows pattia (G.; Gy G;) examples of
two target attribute values (ca=Noun and gende

particle, conjunctive patticle,

N awiliary (of averb),

deronstrative (of a pronour)

noun, common/proper (of a
noun)

Go adverb, pronoun numeral,

N interrogative/relative (of a

pronoun

genitive/dative (of a

P noun/adj ective), particle,

purctuation

G, conjunctive patrticle, strong (of

apronour), nondefinite (of a

nourfadedive), exclamation
mark

main (of averb), preposition,
P feminine (of a
G, noun/adjective)
awiliary (of avem), patticle,
denonstrative (of a pronoun
feminine (of a
noun/adj ective),
P nominative/acasative (of a
nounadedive), past(of a
Go Vel'b)
masalline (of a
nouriadedive), awiliary (of a
vem), interogative/relaive (of
apronour), adverb
dative/cenitive (of a
nourfadedive), indicative (of
averb), feminine (of a
G, noun/adjective)
conjunctive particle, future
N |particle, nominative/acaisative
(of anounadedive)

Fem.

=Feninine) and their comregponding inpu
feauresused for discriminaton.

Target Group| C Attribute values
value

main (of averb), article,
masalli ne (gender of a
nounadedive

Noun G, P

Talde4 — P/Nfeauresfor various atribute
values

Forinstanee, whendedding onwheterto give a
noun (N) lakel to current postion (Gp), we can
see that the neural nework has leamed sone
interesting dependercies: at position G; we find
an article (which frequeitly deerminesa noun
andatthe arrert postion it is very importart for
the word beng tagged to adually be a common
or proper noun (either by lexicon lookup or by
suffix guesing) and not be an adwerb, pronaun
or nuneral (POSestha cannot be found in the
typicd ambiguity class of a noun) At the next
postion of thetarget (G,) we alsofind a nounin
genttive or daive, comegonding to a frequent
condrudion in Romanian e.g. ‘“masina
baiatului” being a sequence of two nours, the
secondat gentive/daive.

If the neud network outputs the feninine
gende to its curent MSD, one may see that it
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hasactually leanedthe ageamentrules (at leag
locdly): the feminine gender is preent both
before (G.;) the target word as well as after it
(G).

6 Conclusionsand futurework

We presned a new appgoad for large tagsd
patt-of-speech tagging using neusl networks. An
adwantage of udng this methodobgy is tha it
doesnat requre extensve knowledge aboutthe
grammar of thetargetlanguag. When building a
new MSD tagger for a newlanguag oneis only
requred to provide the training daa and crede
an appopriate MSD encoding system and as
shown the MSD enmding algorithm is fairly
simple and our propo®d version works for any
other MSD conpaible encoding, regardless of
thelanguag.

Obsaving which feaures do not paticipae in
any dedsion hdps desgn cugom topologies for
the Neural Network, and provides enhaicements
in both speed and accuracy. The configuralde
nature of our systemallows uses to provide their
own MSD encodngs, which pemits them to
mask certain fedures that are nat useful for a
given NLP appication.

If onewants to processa large amount of text
andis interested only in asggning grammaticd
caegoriesto words, he canusea MSD enmding
in which he strips off all unneessary fedures
Thus, the number of necessary neuons would
deaease, which assures faster training amnd
tagging. This is of couse possble in any other
tagging appoades but our framework suppaots
this by masking attributes indde the MSD
enmding configuraton file, without havng to
change anything else in the training corpus.
During teding the system only verifies if the
MSD enadings are iderticd and the displayed
accuragy diredly refleds the peformane of the
systemonthe smplifiedtagging schens.

We also proposel a methodology for sdecting
a network corfigurations (i.e. nunber of hidden
units), which bes suites the apgicaion
requrenens. In our dailly appicaionswe use a
network with 130 hidden units, asit providesan
optimal spealaccuracy trade-off (appiox. 3400
words per second with very good awerage
accuracy).

The tagger is implemented as patt of a larger
applcation that is primaiily intendel for text-to-
speech (TTS) synthess. The system is free for
norrcommercial use and we provide both web
and dektop use-inteffaces It is pat of the

METASHARE platform and availade online®.
Our primary goal was to keg the system
languag independent, thusall our desgn chotces
are basd on the neessity to awid using
languag edfic knowedg, when posible. The
applcation suppats various NLP related taks
sich aslexicd stress predction, syllakification,
leter-to-sound  conwersion, lemmatizaton,
diaaitic redoration, prosod/ prediction from text
andthe geech syntheszer uses unit-sdedion.

Fromthetagging perspective, our future plars
indude teding the system on other highly
inflediond languags such as Czech ard
Slovene and invedigating different methods for
aubmaticdly deermining a more suitable
cusom nework topology, sudr as gendic
algorithms.
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