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Abstract

Crowdsourcing, which offers new ways
of cheaply and quickly gathering large
amounts of information contributed by
volunteers online, has revolutionised the
collection of labelled data. Yet, to create
annotated linguistic resources from this
data, we face the challenge of having to
combine the judgements of a potentially
large group of annotators. In this paper
we investigate how to aggregate individual
annotations into a single collective anno-
tation, taking inspiration from the field of
social choice theory. We formulate a gen-
eral formal model for collective annotation
and propose several aggregation methods
that go beyond the commonly used major-
ity rule. We test some of our methods on
data from a crowdsourcing experiment on
textual entailment annotation.

1 Introduction

In recent years, the possibility to undertake large-
scale annotation projects with hundreds or thou-
sands of annotators has become a reality thanks to
online crowdsourcing methods such as Amazon’s
Mechanical Turk and Games with a Purpose. Al-
though these techniques open the door to a true
revolution for the creation of annotated corpora,
within the computational linguistics community
there so far is no clear understanding of how the
so-called “wisdom of the crowds” could or should
be used to develop useful annotated linguistic re-
sources. Those who have looked into this increas-
ingly important issue have mostly concentrated on
validating the quality of multiple non-expert an-
notations in terms of how they compare to ex-
pert gold standards; but they have only used sim-
ple aggregation methods based on majority voting
to combine the judgments of individual annotators
(Snow et al., 2008; Venhuizen et al., 2013).
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In this paper, we take a different perspective and
instead focus on investigating different aggrega-
tion methods for deriving a single collective an-
notation from a diverse set of judgments. For this
we draw inspiration from the field of social choice
theory, a theoretical framework for combining the
preferences or choices of several individuals into
a collective decision (Arrow et al., 2002). Our aim
is to explore the parallels between the task of ag-
gregating the preferences of the citizens participat-
ing in an election and the task of combining the
expertise of speakers taking part in an annotation
project. Our contribution consists in the formula-
tion of a general formal model for collective an-
notation and, in particular, the introduction of sev-
eral families of aggregation methods that go be-
yond the commonly used majority rule.

The remainder of this paper is organised as fol-
lows. In Section 2 we introduce some basic termi-
nology and argue that there are four natural forms
of collective annotation. We then focus on one of
them and present a formal model for it in Sec-
tion 3. We also formulate some basic principles
of aggregation within this model in the same sec-
tion. Section 4 introduces three families of ag-
gregation methods: bias-correcting majority rules,
greedy methods for identifying (near-)consensual
coalitions of annotators, and distance-based aggre-
gators. We test the former two families of aggrega-
tors, as well as the simple majority rule commonly
used in similar studies, in a case study on data ex-
tracted from a crowdsourcing experiment on tex-
tual entailment in Section 5. Section 6 discusses
related work and Section 7 concludes.

2 Four Types of Collective Annotation

An annotation task consists of a set of items, each
of which is associated with a set of possible cate-
gories (Artstein and Poesio, 2008). The categories
may be the same for all items or they may be item-
specific. For instance, dialogue act annotation
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(Allen and Core, 1997; Carletta et al., 1997) and
word similarity rating (Miller and Charles, 1991;
Finkelstein et al., 2002) involve choosing from
amongst a set of categories—acts in a dialogue
act taxonomy or values on a scale, respectively—
which remains fixed for all items in the annotation
task. In contrast, in tasks such as word sense la-
belling (Kilgarriff and Palmer, 2000; Palmer et al.,
2007; Venhuizen et al., 2013) and PP-attachment
annotation (Rosenthal et al., 2010; Jha et al., 2010)
coders need to choose a category amongst a set of
options specific to each item—the possible senses
of each word or the possible attachment points in
each sentence with a prepositional phrase.

In either case (one set of categories for all items
vs. item-specific sets of categories), annotators are
typically asked to identify, for each item, the cat-
egory they consider the best match. In addition,
they may be given the opportunity to indicate that
they cannot judge (the “don’t know” or “unclear”
category). For large-scale annotation projects run
over the Internet it is furthermore very likely that
an annotator will not be confronted with every sin-
gle item, and it makes sense to distinguish items
not seen by the annotator from items labelled as
“don’t know”. We refer to this form of annotation,
i.e., an annotation task where coders have the op-
tion to (7) label items with one of the available cat-
egories, to (47) choose “don’t know”, or to (#i7) not
label an item at all, as plain annotation.

Plain annotation is the most common form of
annotation and it is the one we shall focus on in
this paper. However, other, more complex, forms
of annotation are also possible and of interest. For
instance, we may ask coders to rank the avail-
able categories (resulting in, say, a weak or par-
tial order over the categories); we may ask them to
provide a qualitative ratings of the available cat-
egories for each item (e.g., excellent match, good
match, etc.); or we may ask for quantitative rat-
ings (e.g., numbers from 1 to 100).! We refer to
these forms of annotation as complex annotation.

We want to investigate how to aggregate the
information available for each item once annota-
tions by multiple annotators have been collected.
In line with the terminology used in social choice
theory and particularly judgment aggregation (Ar-

'Some authors have combined qualitative and quantitative
ratings; e.g., for the Graded Word Sense dataset of Erk et al.
(2009) coders were asked to classify each relevant WordNet
sense for a given item on a 5-point scale: 1 completely differ-
ent, 2 mostly different, 3 similar, 4 very similar, 5 identical.
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row, 1963; List and Pettit, 2002), let us call an ag-
gregation method independent if the outcome re-
garding a given item j only depends on the cate-
gories provided by the annotators regarding j it-
self (but not on, say, the categories assigned to a
different item j'). Independent aggregation meth-
ods are attractive due to their simplicity. They also
have some conceptual appeal: when deciding on
j maybe we should only concern ourselves with
what people have to say regarding j? On the other
hand, insisting on independence prevents us from
exploiting potentially useful information that cuts
across items. For instance, if a particular anno-
tator almost always chooses category c, then we
should maybe give less weight to her selecting ¢
for the item j at hand than when some other anno-
tator chooses c for j. This would call for methods
that do not respect independence, which we shall
refer to as general aggregation. Note that when
studying independent aggregation methods, with-
out loss of generality, we may assume that each
annotation task consists of just a single item.

In view of our discussion above, there are four
classes of approaches to collective annotation:

(1) Independent aggregation of plain annota-
tions. This is the simplest case, resulting in a
fairly limited design space. When, for a given
item, each annotator has to choose between
k categories (or abstain) and we do not per-
mit ourselves to use any other information,
then the only reasonable choice is to imple-
ment the plurality rule (Taylor, 2005), under
which the winning category is the category
chosen by the largest number of annotators.
In case there are exactly two categories avail-
able, the plurality rule is also called the ma-
jority rule. The only additional consideration
to make here (besides how to deal with ties)
is whether or not we may want to declare no
winner at all in case the plurality winner does
not win by a sufficiently significant margin or
does not make a particular quota. This is the
most common approach in the literature (see,
e.g., Venhuizen et al., 2013).

(2) Independent aggregation of complex annota-
tions. This is a natural generalisation of the
first approach, resulting in a wider range of
possible methods. We shall not explore it
here, but only point out that in case annotators
provide linear orders over categories, there is
a close resemblance to classical voting the-



ory (Taylor, 2005); in case only partial orders
can be elicited, recent work in computational
social choice on the generalisation of classi-
cal voting rules may prove helpful (Pini et al.,
2009; Endriss et al., 2009); and in case an-
notators rate categories using qualitative ex-
pressions such as excellent match, the method
of majority judgment of Balinski and Laraki
(2011) should be considered.

(3) General aggregation of plain annotations.
This is the approach we shall discuss be-
low. It is related to voting in combinato-
rial domains studied in computational social
choice (Chevaleyre et al., 2008), and to both
binary aggregation (Dokow and Holzman,
2010; Grandi and Endriss, 2011) and judg-
ment aggregation (List and Pettit, 2002).

(4) General aggregation of complex annotations.
While appealing due to its great level of gen-
erality, this approach can only be tackled suc-
cessfully once approaches (2) and (3) are suf-
ficiently well understood.

3 Formal Model

Next we present our model for general aggregation
of plain annotations into a collective annotation.

3.1 Terminology and Notation

An annotation task is defined in terms of m items,
with each item j € {1,...,m} being associated
with a finite set of possible categories C;. Anno-
tators are asked to provide an answer for each of
the items of the annotation task. In the context of
plain annotations, a valid answer for item j is an
element of the set A; = C; U {?, L}.? Here ?
represents the answer “don’t know” and we use |
to indicate that the annotator has not answered (or
even seen) the item at all. An annotation is a vec-
tor of answers by one annotator, one answer for
each item of the annotation task at hand, i.e., an
annotation is an element of the Cartesian product
A=A x Ay X -+ X Ap,. A typical element of
A will be denoted as A = (a1, ..., an).

Let NV = {1,...,n} be a finite set of n anno-
tators (or coders). A profile A = (Ay,..., Ay) €
A", for a given annotation task, is a vector of an-
notations, one for each annotator. That is, A is an

2As discussed earlier, in the context of complex annota-
tions, an answer could also be, say, a partial order on C; or a
function associating elements of C; with numerical ratings.
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Item1 Item2 Item3
Annotator 1 B A A
Annotator 2 B B B
Annotator 3 A B A
Majority B B A

Table 1: A profile with a collective annotation.

n X m-matrix; e.g., az 7 is the answer that the 3rd
annotator provides for the 7th item.

We want to aggregate the information provided
by the annotators into a (single) collective anno-
tation. For the sake of simplicity, we use .4 also
as the domain of possible collective annotations
(even though the distinction between 7 and | may
not be strictly needed here; they both indicate that
we do not want to commit to any particular cate-
gory). An aggregator is a function F' : A" — A,
mapping any given profile into a collective annota-
tion, i.e., a labelling of the items in the annotation
task with corresponding categories (or 7 or L). An
example is the plurality rule (also known as the
majority rule for binary tasks with |C;| = 2 for
all items j), which annotates each item with the
category chosen most often.

Note that the collective annotation need not
coincide with any of the individual annotations.
Take, for example, a binary annotation task in
which three coders label three items with category
A or B as shown in Table 1. Here using the major-
ity rule to aggregate the annotations would result
in a collective annotation that does not fully match
any annotation by an individual coder.

3.2 Basic Properties

A typical task in social choice theory is to formu-
late axioms that formalise specific desirable prop-
erties of an aggregator F' (Arrow et al., 2002). Be-
low we adapt three of the most basic axioms that
have been considered in the social choice litera-
ture to our setting and we briefly discuss their rel-
evance to collective annotation tasks.

We will require some additional notation: for
any profile A, item j, and possible answer a € A,
let N ;-f‘a denote the set of annotators who chose
answer a for item j under profile A.

e F'is anonymous if it treats coders symmetri-
cally, i.e., if for every permutation 7 : N” — N,
F(Al, ce ,An) = F(Aﬂ,(l), cee >A7r(n)) In so-
cial choice theory, this is a fairness constraint.
For us, fairness per se is not a desideratum,



but when we do not have any a priori informa-
tion regarding the expertise of annotators, then
anonymity is a natural axiom to adopt.

e F' is neutral if it treats all items symmetri-
cally, i.e., if for every two items j and ;' with
the same set of possible categories (i.e., with
C; = C;) and for every profile A, it is the case
that whenever Nf:‘a = N f‘:a for all answers
a € .Aj = Aj, then F(14)J = F(A)j/. That
is, if the patterns of individual annotations of j
and j’ are the same, then also their collective
annotation should coincide. In social choice
theory, neutrality is also considered a basic fair-
ness requirement (avoiding preferential treat-
ment one candidate in an election). In the con-
text of collective annotation there may be good
reasons to violate neutrality: e.g., we may use
an aggregator that assigns different default cat-
egories to different items and that can override
such a default decision only in the presence of
a significant majority (note that this is different
from anonymity: we will often not have any in-
formation on our annotators, but we may have
tangible information on items).?

e ['is independent if the collective annotation of
any given item j only depends on the individual
annotations of j. Formally, F' is independent if,
for every item j and every two profiles A and
A, itis the case that whenever N f‘a =N f‘a/ for
all answers a € Aj, then F'(A); = F(A');.
In social choice theory, independence is often
seen as a desirable albeit hard (or even impos-
sible) to achieve property (Arrow, 1963). For
collective annotation, we strongly believe that
it is not a desirable property: by considering
how annotators label other items we can learn
about their biases and we should try to exploit
this information to obtain the best possible an-
notation for the item at hand.

Note that the plurality/majority rule is indepen-
dent. All of the methods we shall propose in Sec-
tion 4 are both anonymous and neutral—except to
the extent to which we have to violate basic sym-
metry requirements in order to break ties between
categories chosen equally often for a given item.
None of our aggregators is independent.

31t would also be of interest to formulate a neutrality ax-
iom w.r.t. categories (rather than items). For two categories,
this idea has been discussed under the name of domain-
neutrality in the literature (Grandi and Endriss, 2011), but
for larger sets of categories it has not yet been explored.
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Some annotation tasks might be subject to in-
tegrity constraints that determine the internal con-
sistency of an annotation. For example, if our
items are pairs of words and the possible cate-
gories include synonymous and antonymous, then
if item 1 is about words A and B, item 2 about
words B and C, and item 3 about words A and
C, then any annotation that labels items 1 and 2
as synonymous should not label item 3 as antony-
mous. Thus, a further desirable property that will
play a role for some annotation tasks is collective
rationality (Grandi and Endriss, 2011): if all in-
dividual annotations respect a given integrity con-
straint, then so should the collective annotation.

We can think of integrity constraints as impos-
ing top-down expert knowledge on an annotation.
However, for some annotation tasks, no integrity
constraints may be known to us in advance, even
though we may have reasons to believe that the
individual annotators do respect some such con-
straints. In that case, selecting one of the indi-
vidual annotations in the profile as the collective
annotation is the only way to ensure that these in-
tegrity constraints will be satisfied by the collec-
tive annotation (Grandi and Endriss, 2011). Of
course, to do so we would need to assume that
there is at least one annotator who has labelled all
items (and to be able to design a high-quality ag-
gregator in this way we should have a sufficiently
large number of such annotators to choose from),
which may not always be possible, particularly in
the context of crowdsourcing.

4 Three Families of Aggregators

In this section we instantiate our formal model by
proposing three families of methods for aggrega-
tion. Each of them is inspired, in part, by standard
approaches to desigining aggregation rules devel-
oped in social choice theory and, in part, by the
specific needs of collective annotation. Regard-
ing the latter point, we specifically emphasise the
fact that not all annotators can be expected to be
equally reliable (in general or w.r.t. certain items)
and we try to integrate the process of aggregation
with a process whereby less reliable annotators are
either given less weight or are excluded altogether.

4.1 Bias-Correcting Majority Rules

We first want to explore the following idea: If a
given annotator annotates most items with 0, then
we might want to assign less significance to that



choice for any particular item.* That is, if an an-
notator appears to be biased towards a particular
category, then we might want to try to correct for
this bias during aggregation.

What follows applies only to annotation tasks
where every item is associated with the same set of
categories. For ease of exposition, let us further-
more assume that there are only two categories, 0
and 1, and that annotators do not make use of the
option to annotate with 7 (“don’t know”).

For every annotator ¢ € N and every cate-
gory X € {0,1}, fix a weight wX € R. The
bias-correcting majority (BCM) rule for this fam-
ily of weights is defined as follows. Given profile
A, the collective category for item j will be 1 in
case Yo, _yw >, _owy],and0otherwise.’
That is, we compute the overall weight for cate-
gory 1 by adding up the corresponding weights for
those coders that chose 1 for item j, and we do
accordingly for the overall weight for category O;
finally, we choose as collective category that cate-
gory with the larger overall weight. Note that for
w;X = 1 we obtain the simple majority rule.

Below we define three intuitively appealing
families of weights, and thereby three BCM rules.
However, before we do so, we first require some
additional notation. Fix a profile of annotations.
For X € {0,1}, let Freq;(X) denote the relative
frequency with which annotator ¢ has chosen cat-
egory X. For instance, if ¢ has annotated 20 items
and has chosen 1 in five cases, then Freg;(1) =
0.25. Similarly, let Freq(X) denote the frequency
of X across the entire profile.

Here are three ways of making the intuitive idea
of bias correction concrete:

(1) The complement-based BCM rule (ComBCM)
is defined by weights w* = Freq;(1-X).
That is, the weight of annotator ¢ for cate-
gory X is equal to her relative frequency of
having chosen the other category 1—X. For
example, if you annotate two items with 1 and
eight with 0, then each of your 1-annotations
will have weight 0.8, while each of your
0-annotations will only have weight 0.2.

(2) The difference-based BCM rule (DiffBCM) is
defined by weights w;X = 1 + Freq(X) —

4 A similar idea is at the heart of cumulative voting, which
requires a voter to distribute a fixed number of points amongst
the candidates (Glasser, 1959; Brams and Fishburn, 2002).

3For the sake of simplicity, our description here presup-
poses that ties are always broken in favour of 0. Other tie-
breaking rules (e.g., random tie-breaking) are possible.
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Freq;,(X). Recall that Freq(X) is the rela-
tive frequency of X in the entire profile, while
Freq,(X) is the relative frequency of X in
the annotation of 7. Hence, if 7 assigns cat-
egory X less often than the general popula-
tion, then her weight on X -choices will be in-
creased by the difference (and vice versa in
case she assigns X more often than the popu-
lation at large). For example, if you assign 1
in two out of ten cases, while in general cat-
egory 1 appears in exactly 50% of all annota-
tions, then your weight for a choice of 1 will
be 1 4+ 0.5 — 0.2 = 1.3, while you weight for
a choice of 0 will only be 0.7.

(3) The relative BCM rule (ReIBCM) is defined

b}/ \.Neights wiX = ;rr:ff())(()r The idea is very
similar to the DiffBCM rule. For the exam-
ple given above, your weight for a choice of
1 would be 0.5/0.2 = 2.5, while your weight

for a choice of 0 would be 0.5/0.8 = 0.625.

The main difference between the ComBCM rule
and the other two rules is that the former only takes
into account the possible bias of individual anno-
tators, while the latter two factor in as well the
possible skewness of the data (as reflected by the
labelling behaviour of the full set of annotators).

In addition, while ComBCM is specific to the
case of two categories, Diff BCM and RelBCM
immediately generalise to any number of cate-
gories. In this case, we add up the category-
specific weights as before and then choose the cat-
egory with maximal support (i.e., we generalise
the majority rule underlying the family of BCM
rules to the plurality rule).

We stress that our bias-correcting majority rules
do not violate anonymity (nor neutrality for that
matter). If we were to give less weight to a given
annotator based on, say, her name, this would con-
stitute a violation of anonymity; if we do so due to
properties of the profile at hand and if we do so in
a symmetric manner, then it does not.

4.2 Greedy Consensus Rules

Now consider the following idea: If for a given
item there is almost complete consensus amongst
those coders that annotated it with a proper cate-
gory (i.e., those who did not choose 7 or L), then
we should probably adopt their choice for the col-
lective annotation. Indeed, most aggregators will
make this recommendation. Furthermore, the fact
that there is almost full consensus for one item



may cast doubts on the reliability of coders who
disagree with this near-consensus choice and we
might want to disregard their views not only w.r.t.
that item but also as far as the annotation of other
items is concerned. Next we propose a family of
aggregators that implement this idea.

For simplicity, suppose that the only proper cat-
egories available are 0 and 1 and that annotators
do not make use of ? (but it is easy to generalise
to arbitrary numbers of categories and scenarios
where different items are associated with different
categories). Fix a tolerance value t € {0, ..., m}.
The greedy consensus rule GreedyCR? works as
follows. First, initialise the set N/* with the full
population of annotators A/. Then iterate the fol-
lowing two steps:

(1) Find the item with the strongest majority for
either 0 or 1 amongst coders in A/* and lock
in that value for the collective annotation.

(2) Eliminate all coders from N* who disagree
on more than ¢ items with the values locked
in for the collective annotation so far.

Repeat this process until the categories for all m
items have been settled.® We may think of this as
a “greedy” way of identifying a coalition N'** with
high inter-annotator agreement and then applying
the majority rule to this coalition to obtain the col-
lective annotation.

To be precise, the above is a description of an
entire family of aggregators: Whenever there is
more than one item with a majority of maximal
strength, we could choose to lock in any one of
them. Also, when there is a split majority between
annotators in N* voting 0 and those voting 1, we
have to use a tie-breaking rule to make a decision.
Additional heuristics may be used to make these
local decisions, or they may be left to chance.

Note that in case t = m, GreedyCR? is sim-
ply the majority rule (as no annotator will ever get
eliminated). In case ¢ = 0, we end up with a coali-
tion of annotators that unanimously agree with all
of the categories chosen for the collective annota-
tion. However, this coalition of perfectly aligned

SThere are some similarities to Tideman’s Ranked Pairs
method for preference aggregation (Tideman, 1987), which
works by fixing the relative rankings of pairs of alternatives
in order of the strength of the supporting majorities. In pref-
erence aggregation (unlike here), the population of voters is
not reduced in the process; instead, decisions against the ma-
jority are taken whenever this is necessary to guarantee the
transitivity of the resulting collective preference order.
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annotators need not be the largest such coalition
(due to the greedy nature of our rule).

Note that greedy consensus rules, as defined
here, are both anonymous and neutral. Specifi-
cally, it is important not to confuse possible skew-
ness of the data with a violation of neutrality of the
aggregator.

4.3 Distance-based Aggregation

Our third approach is based on the notion of dis-
tance. We first define a metric on choices to be
able to say how distant two choices are. This in-
duces an aggregator that, for a given profile, re-
turns a collective choice that minimises the sum
of distances to the individual choices in the pro-
file.” This opens up a wide range of possibilities;
we only sketch some of them here.

A natural choice is the adjusted Hamming dis-
tance H : Ax A — R(, which counts how many
items two annotations differ on:

m

Z 6(%’? a;)

J=1

H(AA) =

Here § is the adjusted discrete distance defined as
d(z,y) =0ifx=yorx e {?, L}ory € {7, L},
and as §(x,y) = 1 in all other cases.’

Once we have fixed a distance d on A (such
as H), this induces an aggregator F:

Fy(A) = argmin d(A,A)

AeA T4
To be precise, Fy is an irresolute aggregator that
might return a set of best annotations with minimal
distance to the profile.

Note that Fy is simply the plurality rule. This
is so because every element of the Cartesian prod-
uct is a possible annotation. In the presence of in-
tegrity constraints excluding some combinations,
however, a distance-based rule allows for more so-
phisticated forms of aggregation (by choosing the
optimal annotation w.r.t. all feasible annotations).

We may also try to restrict the computation of
distances to a subset of “reliable” annotators. Con-
sider the following idea: If a group of annota-
tors is (fairly) reliable, then they should have a

"This idea has been used in voting (Kemeny, 1959), belief
merging (Konieczny and Pino Pérez, 2002), and judgment
aggregation (Miller and Osherson, 2009).

8This &, divided by m, is the same thing as what Artstein
and Poesio (2008) call the agreement value agr; for item j.



(fairly) high inter-annotator agreement. By this
reasoning, we should choose a group of annota-
tors ANN C AN that maximises inter-annotator
agreement in ANN and work with the aggrega-
tor argmin s 4 > ;e ann 4(A, A;). But this is too
simplistic: any singleton ANN = {i} will result
in perfect agreement. That is, while we can eas-
ily maximise agreement, doing so in a naive way
means ignoring most of the information collected.
In other words, we face the following dilemma:

e On the one hand, we should choose a small set
ANN (i.e., select few annotators to base our col-
lective annotation on), as that will allow us to
increase the (average) reliability of the annota-
tors taken into account.

e On the other hand, we should choose a large set
ANN (i.e., select many annotators to base our
collective annotation on), as that will increase
the amount of information exploited.

One pragmatic approach is to fix a minimum qual-
ity threshold regarding one of the two dimensions
and optimise in view of the other.”

5 A Case Study

In this section, we report on a case study in
which we have tested our bias-correcting major-
ity and greedy consensus rules.' We have used
the dataset created by Snow et al. (2008) for
the task of recognising textual entailment, orig-
inally proposed by Dagan et al. (2006) in the
PASCAL Recognizing Textual Entailment (RTE)
Challenge. RTE is a binary classification task con-
sisting in judging whether the meaning of a piece
of text (the so-called hypothesis) can be inferred
from another piece of text (the entailing text).
The original RTE1 Challenge testset consists of
800 text-hypothesis pairs (such as T": “Chrétien
visited Peugeot’s newly renovated car factory”,
H: “Peugeot manufactures cars”) with a gold
standard annotation that classifies each item as ei-
ther true (1)—in case H can be inferred from 17—
or false (0). Exactly 400 items are annotated as
0 and exactly 400 as 1. Bos and Markert (2006)
performed an independent expert annotation of

GreedyCR' is a greedy (rather than optimal) implemen-
tation of this basic idea, with the tolerance value ¢ fixing a
threshold on (a particular form of) inter-annotator agreement.

1Since the annotation task and dataset used for our case
study do not involve any interesting integrity constraints, we
have not tested any distance-based aggregation rules.

this testset, obtaining 95% agreement between the
RTE1 gold standard and their own annotation.

The dataset of Snow et al. (2008) includes 10
non-expert annotations for each of the 800 items
in the RTE]1 testset, collected with Amazon’s Me-
chanical Turk. A quick examination of the dataset
shows that there are a total of 164 annotators who
have annotated between 20 items (124 annotators)
and 800 items each (only one annotator). Non-
expert annotations with category 1 (rather than 0)
are slightly more frequent (Freg(1) ~ 0.57).

We have applied our aggregators to this data and
compared the outcomes with each other and to the
gold standard. The results are summarised in Ta-
ble 2 and discussed in the sequel. For each pair
we report the observed agreement A, (proportion
of items on which two annotations agree) and, in
brackets, Cohen’s kappa k = A1°—_Aée’ with A, be-
ing the expected agreement for independent anno-
tators (Cohen, 1960; Artstein and Poesio, 2008).

Note that there are several variants of the major-
ity rule, depending on how we break ties. In Ta-
ble 2, Maj'~? is the majority rule that chooses 1 in
case the number of annotators choosing 1 is equal
to the number of annotators choosing O (and ac-
cordingly for Maj%1). For 65 out of the 800 items
there has been a tie (i.e., five annotators choose 0
and another five choose 1). This means that the tie-
breaking rule used can have a significant impact
on results. Snow et al. (2008) work with a major-
ity rule where ties are broken uniformly at random
and report an observed agreement (accuracy) be-
tween the majority rule and the gold standard of
89.7%. This is confirmed by our results: 89.7%
is the mean of 87.5% (our result for Maj'*) and
91.9% (our result for MajOH). If we break ties
in the optimal way (in view of approximating the
gold standard (which of course would not actu-
ally be possible without having access to that gold
standard), then we obtain an observed agreement
of 93.8%, but if we are unlucky and ties happen to
get broken in the worst possible way, we obtain an
observed agreement of only 85.6%.

For none of our bias-correcting majority rules
did we encounter any ties. Hence, for these ag-
gregators the somewhat arbitrary choices we have
to make when breaking ties are of no significance,
which is an important point in their favour. Ob-
serve that all of the bias-correcting majority rules
approximate the gold standard better than the ma-
jority rule with uniformly random tie-breaking.
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Annotation Maj'~° Maj%"! ComBCM  DiffBCM RelBCM  GreedyCR®  GreedyCR'®
Gold Standard ~ 87.5% (.75) 91.9% (.84) 91.1% (.80) 91.5% (.81) 90.8% (.80) 86.6% (.73)  92.5% (.85)
Maj'~° 91.9% (.84) 88.9% (.76) 94.3% (.87) 94.0% (.87) 87.6% (.75)  91.5% (.83)
Maj"~! 96.0% (91) 97.6% (.95) 96.9% (.93) 89.0% (.78)  96.1% (.92)
ComBCM 94.6% (.86) 94.4% (.86) 88.8% (.75)  93.9% (.86)
DiffBCM 98.8% (.97) 88.6% (.75)  94.8% (.88)
RelBCM 88.4% (.74)  93.8% (.86)
GreedyCR® 90.6% (.81)

Table 2: Observed agreement (and ) between collective annotations and the gold standard.

Recall that the greedy consensus rule is in fact
a family of aggregators: whenever there is more
than one item with a maximal majority, we may
lock in any one of them. Furthermore, when there
is a split majority, then ties may be broken either
way. The results reported here refer to an imple-
mentation that always chooses the lexicographi-
cally first item amongst all those with a maximal
majority and that breaks ties in favour of 1. These
parameters yield neither the best or the worst ap-
proximations of the gold standard. We tested a
range of tolerance values. As an example, Table 2
includes results for tolerance values 0 and 15. The
coalition found for tolerance O consists of 46 an-
notators who all completely agree with the col-
lective annotation; the coalition found for toler-
ance 15 consists of 156 annotators who all dis-
agree with the collective annotation on at most
15 items. While GreedyCR" appears to perform
rather poorly, GreedyCR!® approximates the gold
standard particularly well. This is surprising and
suggests, on the one hand, that eliminating only
the most extreme outlier annotators is a useful
strategy, and on the other hand, that a high-quality
collective annotation can be obtained from a group
of annotators that disagree substantially.!!

6 Related Work

There is an increasing number of projects using
crowdsourcing methods for labelling data. On-
line Games with a Purpose, originally conceived
by von Ahn and Dabbish (2004) to annotate im-
ages, have been used for a variety of linguis-
tic tasks: Lafourcade (2007) created JeuxDeMots
to develop a semantic network by asking players
to label words with semantically related words;
Phrase Detectives (Chamberlain et al., 2008) has
been used to gather annotations on anaphoric co-
reference; and more recently Basile et al. (2012)

"Recall that 124 out of 164 coders only annotated 20 items
each; a tolerance value of 15 thus is fairly lenient.

546

have developed the Wordrobe set of games for
annotating named entities, word senses, homo-
graphs, and pronouns. Similarly, crowdsourcing
via microworking sites like Amazon’s Mechanical
Turk has been used in several annotation experi-
ments related to tasks such as affect analysis, event
annotation, sense definition and word sense disam-
biguation (Snow et al., 2008; Rumshisky, 2011;
Rumshisky et al., 2012), amongst others.!?

All these efforts face the problem of how to ag-
gregate the information provided by a group of
volunteers into a collective annotation. However,
by and large, the emphasis so far has been on is-
sues such as experiment design, data quality, and
costs, with little attention being paid to the aggre-
gation methods used, which are typically limited
to some form of majority vote (or taking averages
if the categories are numeric). In contrast, our fo-
cus has been on investigating different aggregation
methods for arriving at a collective annotation.

Our work has connections with the literature on
inter-annotator agreement. Agreement scores such
as kappa are used to assess the quality of an anno-
tation but do not play a direct role in constructing
one single annotation from the labellings of sev-
eral coders.!> The methods we have proposed, in
contrast, do precisely that. Still, agreement plays
a prominent role in some of these methods. In our
discussion of distance-based aggregation, we sug-
gested how agreement can be used to select a sub-
set of annotators whose individual annotations are
minimally distant from the resulting collective an-
notation. Our greedy consensus rule also makes
use of agreement to ensure a minimum level of
consensus. In both cases, the aggregators have the
effect of disregarding some outlier annotators.

12See also the papers presented at the NAACL 2010 Work-
shop on Creating Speech and Language Data with Amazon’s
Mechanical Turk (t inyurl.com/amtworkshop2010).

BCreating a gold standard often involves adjudication of
disagreements by experts, or even the removal of cases with
disagreement from the dataset. See, e.g., the papers cited by
Beigman Klebanov and Beigman (2009).



Other researchers have explored ways to di-
rectly identify “low-quality” annotators. For in-
stance, Snow et al. (2008) and Raykar et al. (2010)
propose Bayesian methods for identifying and cor-
recting annotators’ biases, while Ipeirotis et al.
(2010) propose an algorithm for assigning a qual-
ity score to annotators that distinguishes intrinsic
error rate from an annotator’s bias. In our ap-
proach, we do not directly rate annotators or re-
calibrate their annotations—rather, some outlier
annotators get to play a marginal role in the re-
sulting collective annotation as a side effect of the
aggregation methods themselves.

Although in our case study we have tested our
aggregators by comparing their outcomes to a gold
standard, our approach to collective annotation it-
self does not assume that there is in fact a ground
truth. Instead, we view collective annotations as
reflecting the views of a community of speakers.'
This contrasts significantly with, for instance, the
machine learning literature, where there is a fo-
cus on estimating the hidden true label from a set
of noisy labels using maximum-likelihood estima-
tors (Dawid and Skene, 1979; Smyth et al., 1995;
Raykar et al., 2010).

In application domains where it is reasonable to
assume the existence of a ground truth and where
we are able to model the manner in which individ-
ual judgments are being distorted relative to this
ground truth, social choice theory provides tools
(using again maximum-likelihood estimators) for
the design of aggregators that maximise chances
of recovering the ground truth for a given model of
distortion (Young, 1995; Conitzer and Sandholm,
2005). In recent work, Mao et al. (2013) have dis-
cussed the use of these methods in the context of
crowdsourcing. Specifically, they have designed
an experiment in which the ground truth is defined
unambiguously and known to the experiment de-
signer, so as to be able to extract realistic models
of distortion from the data collected in a crowd-
sourcing exercise.

7 Conclusions

We have presented a framework for combining
the expertise of speakers taking part in large-scale

“In some domains, such as medical diagnosis, it makes
perfect sense to assume that there is a ground truth. However,
in tasks related to linguistic knowledge and language use such
an assumption seems far less justified. Hence, a collective
annotation may be the closest we can get to a representation
of the linguistic knowledge/use of a linguistic community.
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annotation projects. Such projects are becoming
more and more common, due to the availability
of online crowdsourcing methods for data annota-
tion. Our work is novel in several respects. We
have drawn inspiration from the field of social
choice theory to formulate a general formal model
for aggregation problems, which we believe sheds
light on the kind of issues that arise when trying
to build annotated linguistic resources from a po-
tentially large group of annotators; and we have
proposed several families of concrete methods for
aggregating individual annotations that are more
fine-grained that the standard majority rule that so
far has been used across the board. We have tested
some of our methods on a gold standard testset for
the task of recognising textual entailment.

Our aim has been conceptual, namely to point
out that it is important for computational linguists
to reflect on the methods used when aggregat-
ing annotation information. We believe that so-
cial choice theory offers an appropriate general
methodology for supporting this reflection. Im-
portantly, this does not mean that the concrete ag-
gregation methods developed in social choice the-
ory are immediately applicable or that all the ax-
ioms typically studied in social choice theory are
necessarily relevant to aggregating linguistic an-
notations. Rather, what we claim is that it is the
methodology of social choice theory which is use-
ful: to formally state desirable properties of ag-
gregators as axioms and then to investigate which
specific aggregators satisfy them. To put it dif-
ferently: at the moment, researchers in compu-
tational linguistics simply use some given aggre-
gation methods (almost always the majority rule)
and judge their quality on how they fare in specific
experiments—but there is no principled reflection
on the methods themselves. We believe that this
should change and hope that the framework out-
lined here can provide a suitable starting point.

In future work, the framework we have pre-
sented here should be tested more extensively, not
only against a gold standard but also in terms of
the usefulness of the derived collective annotations
for training supervised learning systems. On the
theoretial side, it would be interesting to study the
axiomatic properties of the methods of aggrega-
tion we have proposed here in more depth and to
define axiomatic properties of aggregators that are
specifically tailored to the task of collective anno-
tation of linguistic resources.
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