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Abstract

Shift-reduce dependency parsers give
comparable accuracies to their chart-
based counterparts, yet the best shift-
reduce constituent parsers still lag behind
the state-of-the-art. One important reason
is the existence of unary nodes in phrase
structure trees, which leads to different
numbers of shift-reduce actions between
different outputs for the same input. This
turns out to have a large empirical impact
on the framework of global training and
beam search. We propose a simple yet
effective extension to the shift-reduce
process, which eliminates size differences
between action sequences in beam-search.
Our parser gives comparable accuracies
to the state-of-the-art chart parsers. With
linear run-time complexity, our parser is
over an order of magnitude faster than the
fastest chart parser.

1 Introduction

Transition-based parsers employ a set of shift-
reduce actions and perform parsing using a se-
quence of state transitions. The pioneering mod-
els rely on a classifier to make local decisions, and
search greedily for a transition sequence to build a
parse tree. Greedy, classifier-based parsers have
been developed for both dependency grammars
(Yamada and Matsumoto, 2003; Nivre et al., 2006)
and phrase-structure grammars (Sagae and Lavie,
2005). With linear run-time complexity, they were
commonly regarded as a faster but less accurate
alternative to graph-based chart parsers (Collins,
1997; Charniak, 2000; McDonald et al., 2005).

Various methods have been proposed to address
the disadvantages of greedy local parsing, among
which a framework of beam-search and global
discriminative training have been shown effective
for dependency parsing (Zhang and Clark, 2008;
Huang and Sagae, 2010). While beam-search
reduces error propagation compared with greedy
search, a discriminative model that is globally op-
timized for whole sequences of transition actions
can avoid local score biases (Lafferty et al., 2001).
This framework preserves the most important ad-
vantage of greedy local parsers, including linear
run-time complexity and the freedom to define ar-
bitrary features. With the use of rich non-local fea-
tures, transition-based dependency parsers achieve
state-of-the-art accuracies that are comparable to
the best-graph-based parsers (Zhang and Nivre,
2011; Bohnet and Nivre, 2012). In addition, pro-
cessing tens of sentences per second (Zhang and
Nivre, 2011), these transition-based parsers can be
a favorable choice for dependency parsing.

The above global-learning and beam-search
framework can be applied to transition-based
phrase-structure (constituent) parsing also (Zhang
and Clark, 2009), maintaining all the afore-
mentioned benefits. However, the effects were
not as significant as for transition-based depen-
dency parsing. The best reported accuracies of
transition-based constituent parsers still lag behind
the state-of-the-art (Sagae and Lavie, 2006; Zhang
and Clark, 2009). One difference between phrase-
structure parsing and dependency parsing is that
for the former, parse trees with different numbers
of unary rules require different numbers of actions
to build. Hence the scoring model needs to disam-
biguate between transitions sequences with differ-
ent sizes. For the same sentence, the largest output
can take twice as many as actions to build as the
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smallest one. This turns out to have a significant
empirical impact on parsing with beam-search.

We propose an extension to the shift-reduce pro-
cess to address this problem, which gives signifi-
cant improvements to the parsing accuracies. Our
method is conceptually simple, requiring only one
additional transition action to eliminate size dif-
ferences between different candidate outputs. On
standard evaluations using both the Penn Tree-
bank and the Penn Chinese Treebank, our parser
gave higher accuracies than the Berkeley parser
(Petrov and Klein, 2007), a state-of-the-art chart
parser. In addition, our parser runs with over 89
sentences per second, which is 14 times faster than
the Berkeley parser, and is the fastest that we are
aware of for phrase-structure parsing. An open
source release of our parser (version 0.6) is freely
available on the Web.1

In addition to the above contributions, we apply
a variety of semi-supervised learning techniques to
our transition-based parser. These techniques have
been shown useful to improve chart-based pars-
ing (Koo et al., 2008; Chen et al., 2012), but little
work has been done for transition-based parsers.
We therefore fill a gap in the literature by report-
ing empirical results using these methods. Experi-
mental results show that semi-supervised methods
give a further improvement of0.9% in F-score on
the English data and2.4% on the Chinese data.
Our Chinese results are the best that we are aware
of on the standard CTB data.

2 Baseline parser

We adopt the parser of Zhang and Clark (2009) for
our baseline, which is based on the shift-reduce
process of Sagae and Lavie (2005), and employs
global perceptron training and beam search.

2.1 Vanilla Shift-Reduce

Shift-reduce parsing is based on a left-to-right
scan of the input sentence. At each step, a tran-
sition action is applied to consume an input word
or construct a new phrase-structure. A stack
is used to maintain partially constructed phrase-
structures, while the input words are stored in a
buffer. The set of transition actions are

• SHIFT: pop the front word from the buffer,
and push it onto the stack.

1http://sourceforge.net/projects/zpar/

Axioms [φ, 0, false,0]

Goal [S, n, true, C]

Inference Rules:

[S, i, false, c]
SHIFT

[S|w, i+ 1, false, c+ cs]

[S|s1s0, i, false, c]
REDUCE-L/R-X

[S|X, i, false, c+ cr]

[S|s0, i, false, c]
UNARY-X

[S|X, i, false, c+ cu]

[S, n, false, c]
FINISH

[S, n, true, c+ cf ]

Figure 1: Deduction system of the baseline shift-
reduce parsing process.

• REDUCE-L/R-X: pop the top two con-
stituents off the stack, combine them into a
new constituent with label X, and push the
new constituent onto the stack.

• UNARY-X: pop the top constituent off the
stack, raise it to a new constituent with la-
bel X, and push the new constituent onto the
stack.

• FINISH: pop the root node off the stack and
ends parsing.

The deduction system for the process is shown
in Figure 1, where the item is formed as〈stack,
buffer front index, completion mark, score〉, and
cs, cr, andcu represent the incremental score of
the SHIFT, REDUCE, andUNARY parsing steps,
respectively; these scores are calculated according
to the context features of the parser state item.n
is the number of words in the input.

2.2 Global Discriminative Training and
Beam-Search

For a given input sentence, the initial state has an
empty stack and a buffer that contains all the input
words. An agenda is used to keep thek best state
items at each step. At initialization, the agenda
contains only the initial state. At each step, every
state item in the agenda is popped and expanded
by applying a valid transition action, and the top
k from the newly constructed state items are put
back onto the agenda. The process repeats until
the agenda is empty, and the best completed state
item (recorded ascandidate output) is taken for
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Description Templates
unigrams s0tc, s0wc, s1tc, s1wc, s2tc

s2wc, s3tc, s3wc, q0wt, q1wt
q2wt, q3wt, s0lwc, s0rwc
s0uwc, s1lwc, s1rwc, s1uwc

bigrams s0ws1w, s0ws1c, s0cs1w, s0cs1c,
s0wq0w, s0wq0t, s0cq0w, s0cq0t,
q0wq1w, q0wq1t, q0tq1w, q0tq1t,
s1wq0w, s1wq0t, s1cq0w, s1cq0t

trigrams s0cs1cs2c, s0ws1cs2c, s0cs1wq0t
s0cs1cs2w, s0cs1cq0t, s0ws1cq0t
s0cs1wq0t, s0cs1cq0w

Table 1: A summary of baseline feature templates,
wheresi represents theith item on the stackS and
qi denotes theith item in the queueQ. w refers to
the head lexicon,t refers to the head POS, andc
refers to the constituent label.

the output.
The score of a state item is the total score of the

transition actions that have been applied to build
the item:

C(α) =
N∑

i=1

Φ(ai) · ~θ

HereΦ(ai) represents the feature vector for theith
actionai in state itemα. It is computed by apply-
ing the feature templates in Table 1 to the context
of α. N is the total number of actions inα.

The model parameter~θ is trained with the aver-
aged perceptron algorithm, applied to state items
(sequence of actions) globally. We apply the early
update strategy (Collins and Roark, 2004), stop-
ping parsing for parameter updates when the gold-
standard state item falls off the agenda.

2.3 Baseline Features

Our baseline features are adopted from Zhang and
Clark (2009), and are shown in Table 1 Heresi
represents theith item on the top of the stackS
andqi denotes theith item in the front end of the
queueQ. The symbolw denotes the lexical head
of an item; the symbolc denotes the constituent
label of an item; the symbolt is the POS of a lex-
ical head. These features are adapted from Zhang
and Clark (2009). We remove Chinese specific
features and make the baseline parser language-
independent.

3 Improved hypotheses comparison

Unlike dependency parsing, constituent parse
trees for the same sentence can have different
numbers of nodes, mainly due to the existence
of unary nodes. As a result, completed state

NP

NN

address

NNS

issues

VP

VB

address

NP

NNS

issues

Figure 2: Example parse trees of the same sen-
tence with different numbers of actions.

items for the same sentence can have different
numbers of unary actions. Take the phrase “ad-
dress issues” for example, two possible parses
are shown in Figure 2 (a) and (b), respectively.
The first parse corresponds to the action sequence
[SHIFT, SHIFT, REDUCE-R-NP, FINISH], while
the second parse corresponds to the action se-
quence [SHIFT, SHIFT, UNARY-NP, REDUCE-L-
VP, FINISH], which consists of one more action
than the first case. In practice, variances between
state items can be much larger than the chosen ex-
ample. In the extreme case where a state item does
not contain any unary action, the number of ac-
tions is 2n, wheren is the number of words in
the sentence. On the other hand, if the maximum
number of consequent unary actions is 2 (Sagae
and Lavie, 2005; Zhang and Clark, 2009), then the
maximum number of actions a state item can have
is 4n.

The significant variance in the number of ac-
tions N can have an impact on the linear sepa-
rability of state items, for which the feature vec-
tors are

∑N
i=1Φ (ai). This turns out to have a sig-

nificant empirical influence on perceptron training
with early-update, where the training of the model
interacts with search (Daume III, 2006).

One way of improving the comparability of
state items is to reduce the differences in their
sizes, and we use apadding method to achieve
this. The idea is to extend the set of actions by
adding anIDLE action, so that completed state
items can be further expanded using theIDLE ac-
tion. The action does not change the state itself,
but simply adds to the number of actions in the
sequence. A feature vector is extracted for the
IDLE action according to the final state context,
in the same way as other actions. Using theIDLE
action, the transition sequence for the two parses
in Figure 2 can be [SHIFT, SHIFT, REDUCE-
NP, FINISH, IDLE] and [SHIFT, SHIFT, UNARY-
NP, REDUCE-L-VP, FINISH], respectively. Their
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Axioms [φ, 0, false, 0, 0]

Goal [S, n, true, m : 2n ≤ m ≤ 4n, C]

Inference Rules:

[S, i, false, k,c]
SHIFT

[S|w, i+ 1, false, k + 1, c+ cs]

[S|s1s0, i, false, k, c]
REDUCE-L/R-X

[S|X, i, false, k + 1, c+ cr]

[S|s0, i, false, k, c]
UNARY-X

[S|X, i, false, k + 1, c+ cu]

[S, n, false, k, c]
FINISH

[S, n, true, k + 1, c+ cf ]

[S,n, true, k, c]
IDLE

[S, n, true, k + 1, c+ ci]

Figure 3: Deductive system of the extended tran-
sition system.

corresponding feature vectors have about the same
sizes, and are more linearly separable. Note that
there can be more than one action that are padded
to a sequence of actions, and the number of IDLE
actions depends on the size difference between the
current action sequence and the largest action se-
quence without IDLE actions.

Given this extension, the deduction system is
shown in Figure 3. We add the number of actions
k to an item. The initial item (Axioms) hask = 0,
while the goal item has2n ≤ k ≤ 4n. Given this
process, beam-search decoding can be made sim-
pler than that of Zhang and Clark (2009). While
they used acandidate output to record the best
completed state item, and finish decoding when
the agenda contains no more items, we can sim-
ply finish decoding when all items in the agenda
are completed, and output the best state item in
the agenda. With this new transition process, we
experimented with several extended features,and
found that the templates in Table 2 are useful to
improve the accuracies further. Heresill denotes
the left child ofsi’s left child. Other notations can
be explained in a similar way.

4 Semi-supervised Parsing with Large
Data

This section discusses how to extract informa-
tion from unlabeled data or auto-parsed data to
further improve shift-reduce parsing accuracies.
We consider three types of information, including

s0llwc, s0lrwc, s0luwc
s0rlwc, s0rrwc, s0ruwc
s0ulwc, s0urwc, s0uuwc
s1llwc, s1lrwc, s1luwc
s1rlwc, s1rrwc, s1ruwc

Table 2: New features for the extended parser.

paradigmatic relations, dependency relations, and
structural relations. These relations are captured
by word clustering, lexical dependencies, and a
dependency language model, respectively. Based
on the information, we propose a set of novel fea-
tures specifically designed for shift-reduce con-
stituent parsing.

4.1 Paradigmatic Relations: Word
Clustering

Word clusters are regarded as lexical intermedi-
aries for dependency parsing (Koo et al., 2008)
and POS tagging (Sun and Uszkoreit, 2012). We
employ the Brown clustering algorithm (Liang,
2005) on unannotated data (word segmentation is
performed if necessary). In the initial state of clus-
tering, each word in the input corpus is regarded
as a cluster, then the algorithm repeatedly merges
pairs of clusters that cause the least decrease in
the likelihood of the input corpus. The clustering
results are a binary tree with words appearing as
leaves. Each cluster is represented as a bit-string
from the root to the tree node that represents the
cluster. We define a functionCLU(w) to return the
cluster ID (a bit string) of an input wordw.

4.2 Dependency Relations: Lexical
Dependencies

Lexical dependencies represent linguistic relations
between words: whether a word modifies another
word. The idea of exploiting lexical dependency
information from auto-parsed data has been ex-
plored before for dependency parsing (Chen et al.,
2009) and constituent parsing (Zhu et al., 2012).

To extract lexical dependencies, we first run the
baseline parser on unlabeled data. To simplify
the extraction process, we can convert auto-parsed
constituency trees into dependency trees by using
Penn2Malt.2 From the dependency trees, we ex-
tract bigram lexical dependencies〈w1, w2, L/R〉
where the symbolL (R) means thatw1 (w2) is the
head ofw2 (w1). We also extract trigram lexical

2http://w3.msi.vxu.se/∼nivre/research/Penn2Malt.html
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dependencies〈w1, w2, w3, L/R〉, whereL means
thatw1 is the head ofw2 andw3, meanwhilew2

andw3 are required to be siblings.
Following the strategy of Chen et al. (2009),

we assign categories to bigram and trigram items
separately according to their frequency counts.
Specifically, top-10% most frequent items are as-
signed to the category ofHigh Frequency (HF);
otherwise if an item is among top20%, we assign
it to the category ofMiddle Frequency (MF); oth-
erwise the category ofLow Frequency (LF). Here-
after, we refer to the bigram and trigram lexical
dependency lists asBLD andTLD, respectively.

4.3 Structural Relations: Dependency
Language Model

The dependency language model is proposed by
Shen et al. (2008) and is used as additional in-
formation for graph-based dependency parsing in
Chen et al. (2012). Formally, given a depen-
dency treey of an input sentencex, we can
denote byH(y) the set of words that have at
least one dependent. For eachxh ∈ H(y), we
have a corresponding dependency structureDh =
(xLk, . . . xL1, xh, xR1, . . . , xRm). The probability
P (Dh) is defined to be

P (Dh) = PL(Dh)× PR(Dh)

wherePL(Dh) can be in turn defined as:

PL(Dh) ≈ P (xL1|xh)
×P (xL2|xL1, xh)
× . . .
×P (xLk|xLk−1, . . . , xLk−N+1, xh)

PR(Dh) can be defined in a similar way.
We build dependency language models on auto-

parsed data. Again, we convert constituency trees
into dependency trees for the purpose of simplic-
ity. From the dependency trees, we build a bigram
and a trigram language model, which are denoted
by BLM and TLM, respectively. The following
are the templates of the records of the dependency
language models.

(1) 〈xLi, xh, P (xLi|xh)〉
(2) 〈xRi, xh, P (xRi|xh)〉
(3) 〈xLi, xLi−1, xh, P (xLi|xLi−1, xh)〉
(4) 〈xRi, xRi−1, xh, P (xRi|xRi−1, xh)〉

Here the templates (1) and (2) belong to BLM
and the templates (3) and (4) belong to TLM. To

Stat Train Dev Test Unlabeled

EN
# sent 39.8k 1.7k 2.4k 3,139.1k
# word 950.0k 40.1k 56.7k 76,041.4k

CH # sent 18.1k 350 348 11,810.7k
# word 493.8k 8.0k 6.8k 269,057.2k

Table 4: Statistics on sentence and word numbers
of the experimental data.

use the dependency language models, we employ
a map functionΦ(r) to assign a category to each
recordr according to its probability, as in Chen et
al. (2012). The following is the map function.

Φ(r) =





HP if P (r) ∈ top−10%
MP else ifP (r) ∈ top−30%
LP otherwise

4.4 Semi-supervised Features

We design a set of features based on the infor-
mation extracted from auto-parsed data or unan-
notated data. The features are summarized in Ta-
ble 3. HereCLU returns a cluster ID for a word.
The functionsBLDl/r(·), TLDl/r(·), BLMl/r(·),
andTLMl/r(·) check whether a given word com-
bination can be found in the corresponding lists.
For example,BLDl(s1w, s0w) returns a category
tag (HF, MF, or LF) if 〈s1w, s0w,L〉 exits in the
list BLD, else it returnsNONE.

5 Experiments

5.1 Set-up

Labeled English data employed in this paper were
derived from the Wall Street Journal (WSJ) corpus
of the Penn Treebank (Marcus et al., 1993). We
used sections 2-21 as labeled training data, section
24 for system development, and section 23 for fi-
nal performance evaluation. For labeled Chinese
data, we used the version 5.1 of the Penn Chinese
Treebank (CTB) (Xue et al., 2005). Articles 001-
270 and 440-1151 were used for training, articles
301-325 were used as development data, and arti-
cles 271-300 were used for evaluation.

For both English and Chinese data, we used ten-
fold jackknifing (Collins, 2000) to automatically
assign POS tags to the training data. We found that
this simple technique could achieve an improve-
ment of0.4% on English and an improvement of
2.0% on Chinese. For English POS tagging, we
adopted SVMTool,3 and for Chinese POS tagging

3http://www.lsi.upc.edu/∼nlp/SVMTool/
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Word Cluster Features
CLU(s1w) CLU(s0w) CLU(q0w)
CLU(s1w)s1t CLU(s0w)s0t CLU(q0w)q0w

Lexical Dependency Features
BLDl(s1w, s0w) BLDl(s1w, s0w)◦s1t◦s0t BLDr(s1w, s0w)
BLDr(s1w, s0w)◦s1t◦s0t BLDl(s1w, q0w)◦s1t◦q0t BLDl(s1w, q0w)
BLDr(s1w, q0w) BLDr(s1w, q0w)◦s1t◦q0t BLDl(s0w, q0w)
BLDl(s0w, q0w)◦s0t◦q0t BLDr(s0w, q0w)◦s0t◦q0t BLDr(s0w, q0w)
TLDl(s1w, s1rdw, s0w) TLDl(s1w, s1rdw, s0w)◦s1t◦s0t TLDr(s1w, s0ldw, s0w)
TLDr(s1w, s0ldw, s0w)◦s1t◦s0t TLDl(s0w, s0rdw, q0w)◦s0t◦q0t TLDl(s0w, s0rdw, q0w)
TLDr(s0w,NONE, q0w) TLDr(s0w,NONE, q0w)◦s0t◦q0t

Dependency Language Model Features
BLMl(s1w, s0w) BLMl(s1w, s0w)◦s1t◦s0t BLMr(s1w, s0w)
BLMr(s1w, s0w)◦s1t◦s0t BLMl(s0w, q0w) BLMl(s0w, q0w)◦s0t◦q0t
BLMr(s0w, q0w)◦s0t◦q0t BLMr(s0w, q0w) TLMl(s1w, s1rdw, s0w)
TLMl(s1w, s1rdw, s0w)◦s1t◦s0t TLMr(s1w, s0ldw, s0w) TLMr(s1w, s0ldw, s0w)◦s1t◦s0t

Table 3: Semi-supervised features designed on the base of word clusters, lexical dependencies, and
dependency language models. Here the symbolsi denotes a stack item,qi denotes a queue item,w
represents a word, andt represents a POS tag.

Lan. System LR LP F1

E
N

G Baseline 88.4 88.7 88.6
+padding 88.8 89.5 89.1
+features 89.0 89.7 89.3

C
H

N Baseline 85.6 86.3 86.0
+padding 85.5 87.2 86.4
+features 85.5 87.6 86.5

Table 5: Experimental results on the English and
Chinese development sets with the padding tech-
nique and new supervised features addedincre-
mentally.

we employed the Stanford POS tagger.4

We took the WSJ articles from the TIPSTER
corpus (LDC93T3A) as unlabeled English data. In
addition, we removed from the unlabeled English
data the sentences that appear in the WSJ corpus
of the Penn Treebank. For unlabeled Chinese data,
we used Chinese Gigaword (LDC2003T09), on
which we conducted Chinese word segmentation
by using a CRF-based segmenter. Table 4 summa-
rizes data statistics on sentence and word numbers
of the data sets listed above.

We used EVALB to evaluate parser perfor-
mances, including labeled precision (LP), labeled
recall (LR), and bracketing F1.5 For significance
tests, we employed the randomized permutation-
based tool provided by Daniel Bikel.6

In both training and decoding, we set the beam
size to 16, which achieves a good tradeoff be-
tween efficiency and accuracy. The optimal iter-
ation number of perceptron learning is determined
4http://nlp.stanford.edu/software/tagger.shtml
5http://nlp.cs.nyu.edu/evalb
6http://www.cis.upenn.edu/∼dbikel/software.html#comparator

Lan. Features LR LP F1

E
N

G +word cluster 89.3 90.0 89.7
+lexical dependencies 89.7 90.3 90.0
+dependency LM 90.0 90.6 90.3

C
H

N +word cluster 85.7 87.5 86.6
+lexical dependencies 87.2 88.6 87.9
+dependency LM 87.2 88.7 88.0

Table 6: Experimental results on the English and
Chinese development sets with different types of
semi-supervised features addedincrementally to
the extended parser.

on the development sets. For word clustering, we
set the cluster number to 50 for both the English
and Chinese experiments.

5.2 Results on Development Sets

Table 5 reports the results of the extended parser
(baseline + padding + supervised features) on the
English and Chinese development sets. We inte-
grated the padding method into the baseline parser,
based on which we further incorporated the super-
vised features in Table 2. From the results we find
that the padding method improves the parser accu-
racies by0.5% and0.4% on English and Chinese,
respectively. Incorporating the supervised features
in Table 2 gives further improvements of0.2% on
English and0.1% on Chinese.

Based on the extended parser, we experimented
different types of semi-supervised features by
adding the features incrementally. The results are
shown in Table 6. By comparing the results in Ta-
ble 5 and the results in Table 6 we can see that the
semi-supervised features achieve an overall im-
provement of1.0% on the English data and an im-
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Type Parser LR LP F1

SI

Ratnaparkhi (1997) 86.3 87.5 86.9
Collins (1999) 88.1 88.3 88.2
Charniak (2000) 89.5 89.9 89.5
Sagae & Lavie (2005)∗ 86.1 86.0 86.0
Sagae & Lavie (2006)∗ 87.8 88.1 87.9
Baseline 90.0 89.9 89.9
Petrov & Klein (2007) 90.1 90.2 90.1
Baseline+Padding 90.2 90.7 90.4
Carreras et al. (2008) 90.7 91.4 91.1

RE
Charniak & Johnson (2005) 91.2 91.8 91.5
Huang (2008) 92.2 91.2 91.7

SE

Zhu et al. (2012)∗ 90.4 90.5 90.4
Baseline+Padding+Semi 91.1 91.5 91.3
Huang & Harper (2009) 91.1 91.6 91.3
Huang et al. (2010)† 91.4 91.8 91.6
McClosky et al. (2006) 92.1 92.5 92.3

Table 7: Comparison of our parsers and related
work on the English test set. ∗ Shift-reduce
parsers.† The results of self-training with a sin-
gle latent annotation grammar.

Type Parser LR LP F1

SI

Charniak (2000)∗ 79.6 82.1 80.8
Bikel (2004)† 79.3 82.0 80.6
Baseline 82.1 83.1 82.6
Baseline+Padding 82.1 84.3 83.2
Petrov & Klein (2007) 81.9 84.8 83.3

RE Charniak & Johnson (2005)∗ 80.8 83.8 82.3

SE
Zhu et al. (2012) 80.6 81.9 81.2
Baseline+Padding+Semi 84.4 86.8 85.6

Table 8: Comparison of our parsers and related
work on the test set of CTB5.1.∗ Huang (2009)
adapted the parsers to Chinese parsing on CTB5.1.
† We run the parser on CTB5.1 to get the results.

provement of1.5% on the Chinese data.

5.3 Final Results

Here we report the final results on the English and
Chinese test sets. We compared the final results
with a large body of related work. We grouped the
parsers into three categories: single parsers (SI),
discriminative reranking parsers (RE), and semi-
supervised parsers (SE). Table 7 shows the com-
parative results on the English test set and Table 8
reports the comparison on the Chinese test set.

From the results we can see that our extended
parser (baseline + padding + supervised features)
outperforms the Berkeley parser by0.3% on En-
glish, and is comparable with the Berkeley parser
on Chinese (−0.1% less). Here+padding means
the padding technique and the features in Table 2.
After integrating semi-supervised features, the
parsing accuracy on English is improved to91.3%.
We note that the performance is on the same level

Parser #Sent/Second
Ratnaparkhi (1997) Unk
Collins (1999) 3.5
Charniak (2000) 5.7
Sagae & Lavie (2005)∗ 3.7‡

Sagae & Lavie (2006)† 2.2‡

Petrov & Klein (2007) 6.2
Carreras et al. (2008) Unk

This Paper
Baseline 100.7
Baseline+Padding 89.5
Baseline+Padding+Semi 46.8

Table 9: Comparison of running times on the En-
glish test set, where the time for loading models
is excluded. ∗ The results of SVM-based shift-
reduce parsing with greedy search.† The results of
MaxEnt-based shift-reduce parser with best-first
search. ‡ Times reported by authors running on
different hardware.

as the performance of self-trained parsers, except
for McClosky et al. (2006), which is based on the
combination of reranking and self-training. On
Chinese, the final parsing accuracy is85.6%. To
our knowledge, this is by far the best reported per-
formance on this data set.

The padding technique, supervised features,
and semi-supervised features achieve an overall
improvement of1.4% over the baseline on En-
glish, which is significant on the level ofp <
10−5. The overall improvement on Chinese is
3.0%, which is also significant on the level of
p < 10−5.

5.4 Comparison of Running Time

We also compared the running times of our parsers
with the related single parsers. We ran timing tests
on an Intel 2.3GHz processor with 8GB mem-
ory. The comparison is shown in Table 9. From
the table, we can see that incorporating semi-
supervised features decreases parsing speed, but
the semi-supervised parser still has the advantage
of efficiency over other parsers. Specifically, the
semi-supervised parser is 7 times faster than the
Berkeley parser. Note that Sagae & Lavie (2005)
and Sagae & Lavie (2006) are also shift-reduce
parsers, and their running times were evaluated on
different hardwares. In practice, the running times
of the shift-reduce parsers should be much shorter
than the reported times in the table.

5.5 Error Analysis

We conducted error analysis for the three sys-
tems: the baseline parser, the extended parser with
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Figure 5: Comparison of parsing accuracies of
the baseline, extended parser, and semi-supervised
parsers on spans of different lengths.

the padding technique, and the semi-supervised
parser, focusing on the English test set. The analy-
sis was performed in four dimensions: parsing ac-
curacies on different phrase types, on constituents
of different span lengths, on different sentence
lengths, and on sentences with different numbers
of unknown words.

5.5.1 Different Phrase Types

Table 10 shows the parsing accuracies of the base-
line, extended parser, and semi-supervised parser
on different phrase types. Here we only consider
the nine most frequent phrase types in the English
test set. In the table, the phrase types are ordered
from left to right in the descending order of their
frequencies. We also show the improvements of
the semi-supervised parser over the baseline parser
(the last row in the table). As the results show, the
extended parser achieves improvements on most
of the phrase types with two exceptions: Preposi-
tion Prase (PP) and Quantifier Phrase (QP). Semi-
supervised features further improve parsing accu-
racies over the extended parser (QP is an excep-
tion). From the last row, we can see that improve-
ments of the semi-supervised parser over the base-
line on VP, S, SBAR, ADVP, and ADJP are above
the average improvement (1.4%).

5.5.2 Different Span Lengths

Figure 5 shows a comparison of the three parsers
on spans of different lengths. Here we consider
span lengths up to 8. As the results show, both
the padding extension and semi-supervised fea-
tures are more helpful on relatively large spans:
the performance gaps between the three parsers
are enlarged with increasing span lengths.
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Figure 6: Comparison of parsing accuracies of
the baseline, extended parser, and semi-supervised
parser on sentences of different lengths.

5.5.3 Different Sentence Lengths

Figure 6 shows a comparison of parsing accura-
cies of the three parsers on sentences of different
lengths. Each number on the horizontal axis repre-
sents the sentences whose lengths are between the
number and its previous number. For example, the
number 30 refers to the sentences whose lengths
are between 20 and 30. From the results we can
see that semi-supervised features improve parsing
accuracy on both short and long sentences. The
points at 70 are exceptions. In fact, sentences with
lengths between 60 and 70 have only 8 instances,
and the statistics on such a small number of sen-
tences are not reliable.

5.5.4 Different Numbers of Unknown Words

Figure 4 shows a comparison of parsing accura-
cies of the baseline, extended parser, and semi-
supervised parser on sentences with different num-
bers of unknown words. As the results show,
the padding method is not very helpful on sen-
tences with large numbers of unknown words,
while semi-supervised features help significantly
on this aspect. This conforms to the intuition that
semi-supervised methods reduce data sparseness
and improve the performance on unknown words.

6 Conclusion

In this paper, we addressed the problem of dif-
ferent action-sequence lengths for shift-reduce
phrase-structure parsing, and designed a set of
novel non-local features to further improve pars-
ing. The resulting supervised parser outperforms
the Berkeley parser, a state-of-the-art chart parser,
in both accuracies and speeds. In addition, we in-
corporated a set of semi-supervised features. The
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System NP VP S PP SBAR ADVP ADJP WHNP QP
Baseline 91.9 90.1 89.8 88.1 85.7 84.6 72.1 94.8 89.3
Extended 92.1 90.7 90.2 87.9 86.6 84.5 73.6 95.5 88.6

Semi-supervised 93.2 92.0 91.5 89.3 88.2 86.8 75.1 95.7 89.1
Improvements +1.3 +1.9 +1.7 +1.2 +2.5 +2.2 +3.0 +0.9 -0.2

Table 10: Comparison of parsing accuracies of the baseline,extended parser, and semi-supervised parsers
on different phrase types.
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Figure 4: Comparison of parsing accuracies of the baseline,extended parser, and semi-supervised parser
on sentences of different unknown words.

final parser reaches an accuracy of91.3% on En-
glish and85.6% on Chinese, by far the best re-
ported accuracies on the CTB data.
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