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Abstract

Shift-reduce dependency parsers give
comparable accuracies to their chart-
based counterparts, yet the best shift-
reduce constituent parsers still lag behind
the state-of-the-art. One important reason
is the existence of unary nodes in phrase
structure trees, which leads to different
numbers of shift-reduce actions between
different outputs for the same input. This

turns out to have a large empirical impact
on the framework of global training and

beam search. We propose a simple yet
effective extension to the shift-reduce

process, which eliminates size differences

between action sequences in beam-search.

Our parser gives comparable accuracies
to the state-of-the-art chart parsers. With
linear run-time complexity, our parser is
over an order of magnitude faster than the
fastest chart parser.

I ntroduction

Various methods have been proposed to address
the disadvantages of greedy local parsing, among
which a framework of beam-search and global
discriminative training have been shown effective
for dependency parsing (Zhang and Clark, 2008;
Huang and Sagae, 2010). While beam-search
reduces error propagation compared with greedy
search, a discriminative model that is globally op-
timized for whole sequences of transition actions
can avoid local score biases (Lafferty et al., 2001).
This framework preserves the most important ad-
vantage of greedy local parsers, including linear
run-time complexity and the freedom to define ar-
bitrary features. With the use of rich non-local fea-
tures, transition-based dependency parsers achieve
state-of-the-art accuracies that are comparable to
the best-graph-based parsers (Zhang and Nivre,
2011; Bohnet and Nivre, 2012). In addition, pro-
cessing tens of sentences per second (Zhang and
Nivre, 2011), these transition-based parsers can be
a favorable choice for dependency parsing.

The above global-learning and beam-search
framework can be applied to transition-based
phrase-structure (constituent) parsing also (Zhang
and Clark, 2009), maintaining all the afore-
However, the effects were

reduce actions and perform parsing using a senot as significant as for transition-based depen-
quence of state transitions. The pioneering moddency parsing. The best reported accuracies of
els rely on a classifier to make local decisions, andransition-based constituent parsers still lag behind
search greedily for a transition sequence to build @he state-of-the-art (Sagae and Lavie, 2006; Zhang
parse tree. Greedy, classifier-based parsers haaad Clark, 2009). One difference between phrase-
been developed for both dependency grammarstructure parsing and dependency parsing is that
(Yamada and Matsumoto, 2003; Nivre et al., 2006¥or the former, parse trees with different numbers
and phrase-structure grammars (Sagae and Lavief unary rules require different numbers of actions
2005). With linear run-time complexity, they were to build. Hence the scoring model needs to disam-
commonly regarded as a faster but less accurateiguate between transitions sequences with differ-
alternative to graph-based chart parsers (Collingnt sizes. For the same sentence, the largest output
1997; Charniak, 2000; McDonald et al., 2005).

can take twice as many as actions to build as the
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smallest one. This turns out to have a significant Axioms (6,0, false,0]
empirical impact on parsing with beam-search. Goal (S, n, true, C]
We propose an extension to the shift-reduce pro-

cess to address this problem, which gives signifi- Inference Rules:

cant improvements to the parsing accuracies. Our SHIFT [5, 4, false, ]
method is conceptually simple, requiring only one [Sho, i+ 1, false, ¢ + ]
additional transition action to eliminate size dif- [S|s150, 4, false, c]
ferences between different candidate outputs. On REDUCE-L/RX [S|X, i, false, ¢ + ]
standard evaluations using both the Penn Tree- (S50, false,
bank and the Penn Chinese Treebank, our parser UNARY-X 51X, i 7fa}se c‘—ﬁ-c ]
gave higher accuracies than the Berkeley parser e
(Petrov and Klein, 2007), a state-of-the-art chart FINISH [S,n, false, c]
parser. In addition, our parser runs with over 89 [S,n, true, ¢ + ]

sentences per second, which is 14 times faster than _ _ _
the Berkeley parser, and is the fastest that we are'gure 1. ngucnon system of the baseline shift-
aware of for phrase-structure parsing. An oper{educe parsing process.
source release of our parser (version 0.6) is freely
available on the Web:

In addition to the above contributions, we apply
a variety of semi-supervised learning techniques to
our transition-based parser. These techniques have
been shown useful to improve chart-based pars-

ing (KOO et al., 2008, Chen et al., 2012), but little o UNARY-X: pop the top constituent off the
work has been done for transition-based parsers. stack, raise it to a new constituent with la-

We therefore fill a gap in the literature by report- bel X, and push the new constituent onto the
ing empirical results using these methods. Experi-  stack.

mental results show that semi-supervised methods

give a further improvement @f.9% in F-score on e FINISH: pop the root node off the stack and
the English data and@.4% on the Chinese data. ends parsing.

Our Chinese results are the best that we are aware . _
of on the standard CTB data. The deduction system for the process is shown

in Figure 1, where the item is formed &stack,
2 Basdline parser buffer front index, completion mark, score), and

¢cs, ¢, ande, represent the incremental score of
We adopt the parser of Zhang and Clark (2009) fothe SHIFT, REDUCE, andUNARY parsing steps,
our baseline, which is based on the shift-reducgespectively; these scores are calculated according
process of Sagae and Lavie (2005), and employt® the context features of the parser state item.

e REDUCE-L/R-X: pop the top two con-
stituents off the stack, combine them into a
new constituent with label X, and push the
new constituent onto the stack.

global perceptron training and beam search. is the number of words in the input.
2.1 Vanilla Shift-Reduce 2.2 Global Discriminative Training and
Beam-Search

Shift-reduce parsing is based on a left-to-right

scan of the input sentence. At each step, a trarfO" @ given input sentence, the initial state has an
sition action is applied to consume an input wordempty stack and a buffer that contains all the input

or construct a new phrase-structure. A stackVOrds. Anagenda is used to keep thbest state
is used to maintain partially constructed phrasell€Ms at each step. At initialization, the agenda

structures, while the input words are stored in &£ONntains only the initial state. At each step, every
buffer. The set of transition actions are state item in the agenda is popped and expanded
by applying a valid transition action, and the top

e SHIFT: pop the front word from the buffer, ¥ from the newly constructed state items are put

and push it onto the stack. back onto the agenda. The process repeats until
the agenda is empty, and the best completed state
http://sourceforge.net/projects/zpar/ item (recorded asandidate output) is taken for
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Description  Templates NP VP

unigrams sote, spwe, s1te, s1we, sate T T~
sawe, sste, sswe, qgowt, grwt /\ VB NP
qawt, gswt, solwe, sorwe NN NNS \ \
souwe, s1lwe, s1rwe, syuwce address NNS

bigrams SoWS1W, SoWS1C, SOCS1W, S0CS1C, ‘ ‘ \
Ssowqgow, Sowqot, Socqow, Socqot, address issues issues

qowqiw, qgowqit, gotqrw, qotqit,
s1wqgow, S1wqot, s1cqow, s1¢qot

trigrams $0C81C82€, SQWS1CS2C, S0CS1W(ot Figure 2: Example parse trees of the same sen-

SpCS1CS2W, SoCSlcht, sowslcqot . . .
S0Cs1WQ0t, 50681 tence with different numbers of actions.

Table 1: A summary of baseline feature templates,
wheres; represents thg,, item on the stacls and  items for the same sentence can have different
¢; denotes thé,, item in the queud). w refersto  numbers of unary actions. Take the phrase “ad-
the head lexicont refers to the head POS, and dress issues” for example, two possible parses
refers to the constituent label. are shown in Figure 2 (a) and (b), respectively.
The first parse corresponds to the action sequence
[SHIFT, SHIFT, REDUCE-R-NP, FINISH], while
the output. o the second parse corresponds to the action se-
Th_e.score (_Jf a state item is the total _score of t_h‘%]uencei_SHIFT, SHIFT, UNARY-NP, REDUCE-L-
tran§|t|on actions that have been applied to bunc\/R FINISH], which consists of one more action
the item: N than the first case. In practice, variances between
Cla) = ®(a;) - 9 state items can be much larger than the chosen ex-
i=1 ample. In the extreme case where a state item does

Here®(a;) represents the feature vector for the MOt contain any unary action, the number of ac-
actiona; in state itemn. It is computed by apply- tONS is 2n, wheren is the number_ of Words_ in
ing the feature templates in Table 1 to the contexth® sentence. On the other hand, if the maximum
of . N is the total number of actions im. number of consequent unary actions is 2 (Sagae

The model parametéfis trained with the aver- and Lavie, 2005; Zhang and Clark, 2009), then the
aged perceptron algorithm, applied to state item&@ximum number of actions a state item can have
(sequence of actions) globally. We apply the earlyS dn.
update strategy (Collins and Roark, 2004), stop- The significant variance in the number of ac-
ping parsing for parameter updates when the goldtions N can have an impact on the linear sepa-
standard state item falls off the agenda. rability of state items, for which the feature vec-

_ tors are>"¥ , ® (a;). This turns out to have a sig-

23 Basdine Features nificant empirical influence on perceptron training
Our baseline features are adopted from Zhang angith early-update, where the training of the model
Clark (2009), and are shown in Table 1 Hefe interacts with search (Daume IIl, 2006).

represents the,, item on 'Fhe top of the stack One way of improving the comparability of
andg; denotes the,, item in the front end of the giate jtems is to reduce the differences in their
queueQ. The symboky denotes the Iexmal_head sizes, and we use padding method to achieve
of an item; the symbot denotes the constituent {hjs The idea is to extend the set of actions by
label of an item; the symbalis the POS of alex-  aqding anIDLE action, so that completed state
ical head. These features are adapted from Zhangms can be further expanded using IB&E ac-
and Clark (2009). We remove Chinese specifiGion, The action does not change the state itself,
features and make the baseline parser languaggyt simply adds to the number of actions in the

independent. sequence. A feature vector is extracted for the
IDLE action according to the final state context,
in the same way as other actions. Using th&E
Unlike dependency parsing, constituent parsection, the transition sequence for the two parses
trees for the same sentence can have differenh Figure 2 can be JHIFT, SHIFT, REDUCE-
numbers of nodes, mainly due to the existence\NP, FINISH, IDLE] and [SHIFT, SHIFT, UNARY-

of unary nodes. As a result, completed stateNP, REDUCE-L-VP, FINISH], respectively. Their

3 Improved hypotheses comparison
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(6,0, false, 0, 0] sollwe, solrwe, spluwe

Axioms
sorlwe, sorrwe, soruwc
Goal [S,n,true,m : 2n < m < 4n, C|
soulwe, spurwe, squuwce
Inference Rules: s1llwe, s1lrwe, sjluwe
[S, 1, false, k,c] sirlwe, sirrwe, siruwc
SHIFT

Slw, i+ 1,false k+ 1, ¢+ cs
[SJw, i ¢t el Table 2: New features for the extended parser.

[S|s150, 1, false, k, c]
[S|X,1i,false, k+ 1,¢c+ ¢

REDUCE-L/R-X

S50, 4, false, &, c] paradigmatic relations, dependency relations, and
- - structural relations. ese relations are capture
UNARYX [S1X,4,false, k+ 1, ¢ + cu] tructural relat Th lat ptured
S talse. & by word clustering, lexical dependencies, and a
FINISH [S,n, fele k, ] dependency language model, respectively. Based
[S,n, true, k + 1,c+ cf] . .
e ’ on the information, we propose a set of novel fea-
IDLE [S,n, true, k, c] tures specifically designed for shift-reduce con-
[S,n, true,k +1,c+ ci stituent parsing.

Figure 3: Deductive system of the extended tran4.1 Paradigmatic Relations: Word
sition system. Clustering

Word clusters are regarded as lexical intermedi-

aries for dependency parsing (Koo et al., 2008)

corresponding feature vectors have about the samg,q pos tagging (Sun and Uszkoreit, 2012). We
sizes, and are more linearly separable. Note thaémploy the Brown clustering algorithm (Liang,
there can be more than one action that are paddeghos) on unannotated data (word segmentation is
to a sequence of actions, and the number of IDLEye formed if necessary). In the initial state of clus-
actions depends on the size difference between “}%ring, each word in the input corpus is regarded
current action sequence and the largest action sgg 4 cluster, then the algorithm repeatedly merges
quence without IDLE actions. pairs of clusters that cause the least decrease in
Given this extension, the deduction system igne likelihood of the input corpus. The clustering
shown in Figure 3. We add the number of actionsesults are a binary tree with words appearing as
k to an item. The initial item (Axioms) has= 0,  |eaves. Each cluster is represented as a bit-string
while the goal item hagn < k < 4n. Giventhis  from the root to the tree node that represents the

process, beam-search decoding can be made_s"auster. We define a functioBLU(w) to return the

they used acandidate output to record the best
completed state item, and finish decoding wher#.2 Dependency Relations: L exical
the agenda contains no more items, we can sim- Dependencies

ply finish decoding when all items in the agenday exjcal dependencies represent linguistic relations
are completed, and output the best state item iBetween words: whether a word modifies another
the agenda. With this new transition process, Weyord. The idea of exploiting lexical dependency

experimented with several extended features,anm]formation from auto_parsed data has been ex-
found that the templates in Table 2 are useful lored before for dependency parsing (Chen et al.,
improve the accuracies further. Hergl denotes 2009) and constituent parsing (Zhu et al., 2012).

the left child ofs;’s left child. Other notations can  Tq extract lexical dependencies, we first run the

be explained in a similar way. baseline parser on unlabeled data. To simplify
] ] ] ] the extraction process, we can convert auto-parsed
4 Semi-supervised Parsing with Large constituency trees into dependency trees by using
Data Penn2Malt? From the dependency trees, we ex-

This section discusses how to extract informa. 2t bigram lexical dependenciés, ws, L/ R)

tion from unlabeled data or auto-parsed data ry/here the symbol. (R) means thatu, (w,) is the

further improve shift-reduce parsing accuracies%ead Ofwy (w). We also extract trigram lexical

We consider three types of information, including ?http://w3.msi.vxu.se/nivre/research/Penn2Malt.html
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dependenciegw, , wo, w3, L/R), whereL means #ngtm Ts[gjgk Df"ﬂ( Teik U”ga?g'gdlk

thatwy is the head ofv; andws, meanwhilew,  EN 4o 950.0k 401k 56.7k 76,0414k

andws are required to be siblings. cy fsent 181k 350 348  118I0.7k
Following the strategy of Chen et al. (2009), #word 493.8k 8.0k 6.8k 269,057.2k

we assign categories to bigram and trigram ittMge 4: Statistics on sentence and word numbers

separately according to their frequency counts. j¢ i a experimental data.

Specifically, topt0% most frequent items are as-

signed to the category dfligh Frequency (HF);

otherwise if an item is among ta)’%, we assign  yse the dependency language models, we employ
it to the category oMiddle Frequency (MF); oth- 3 map function®(r) to assign a category to each
erwise the category dfow Frequency (LF). Here-  recordr according to its probability, as in Chen et

dependency lists &BLD andTLD, respectively.

HP if P(r) € top—10%
O(r)=< MP elseifP(r) € top—30%
LP otherwise

4.3 Structural Relations: Dependency
L anguage Modél

The dependency language model is proposed by

Shen et al. (2008) and is used as additional in4.4 Semi-supervised Features
formation for graph-based dependency parsing in
Chen et al. (2012). Formally, given a depen-
dency treey of an input sentence:, we can
denote byH(y) the set of words that have at
least one dependent. For eaeh € H(y), we
have a corresponding dependency strucibye—
(.’L‘Lk, o TL1,Thy TRy - - ,.’L‘Rm). The probablllty
P(Dy,) is defined to be

We design a set of features based on the infor-
mation extracted from auto-parsed data or unan-
notated data. The features are summarized in Ta-
ble 3. HereCLU returns a cluster ID for a word.
The functionsBLD;,.(-), TLD;,,.(-), BLM;,.(+),
andTLM;/,(-) check whether a given word com-
bination can be found in the corresponding lists.
For example BLD;(s;w, sow) returns a category
P(Dy) = P(Dy) % Pr(Dy) tag HF, MF, or LF) if (sjw, sow, L) exits in the

list BLD, else it returnsNONE.

whereP,(Dy,) can be in turn defined as: )
5 Experiments

Pr(Dp) = P(xrilxn)

51 Set-up
X P(zra|lrry, oh) . o
N Labeled English data employed in this paper were
XP(ELR|TLh—1s - TLe—N41,Th) derived from the Wall Street Journal (WSJ) corpus
of the Penn Treebank (Marcus et al., 1993). We
Pr(Dy,) can be defined in a similar way. used sections 2-21 as labeled training data, section

We build dependency language models on auto24 for system development, and section 23 for fi-
parsed data. Again, we convert constituency treesal performance evaluation. For labeled Chinese
into dependency trees for the purpose of simplicdata, we used the version 5.1 of the Penn Chinese
ity. From the dependency trees, we build a bigranTreebank (CTB) (Xue et al., 2005). Articles 001-
and a trigram language model, which are denote@70 and 440-1151 were used for training, articles
by BLM and TLM, respectively. The following 301-325 were used as development data, and arti-
are the templates of the records of the dependenayles 271-300 were used for evaluation.

language models. For both English and Chinese data, we used ten-
fold jackknifing (Collins, 2000) to automatically
(1) (@Li,zn, P(zrizs)) assign POS tags to the training data. We found that
(2) (@ri,zn, P(zRilzn)) this simple technique could achieve an improve-
(3) (zrizri-1,oh, P(TLilTri-1, on)) ment 0f0.4% on English and an improvement of
(4) (@ri, TRi—1, T, P(@RilTRi-1, 1)) 2.0% on Chinese. For English POS tagging, we

adopted SVMTool® and for Chinese POS taggin
Here the templates (1) and (2) belong to BLM P ’ : gging

and the templates (3) and (4) belong to TLM. To3http:/iwww.Isi.upc.edutnip/svMmTool/
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Word Cluster Features

CLU(s1w) CLU(sow) CLU(gqow)
CLU(s1w)s1t CLU (sow)sot CLU(gow)qow

Lexical Dependency Features
BLD; (s1w, sow) BLD; (s1w, sow)ositosot BLD. (s1w, sow)
BLD-(s1w, sow)ositosot BLD; (s1w, gow)ositoqot BLD; (s1w, gow)
BLD, (s1w, gow) BLD, (s1w, gow)ositogqot BLD; (sow, gow)
BLD; (sow, gow)osotoqot BLD, (sow, gow)osotogot BLD-(sow, gow)
TLD; (s1w, s1mdw, sow) TLD;(s1w, s1mdw, sow)os1tosot TLD.(s1w, soldw, sow)
TLD-(s1w, soldw, sow)ositosgt  TLD;(sow, sordw, gow)osotoqot TLD; (sow, sordw, gow)
TLD.,(sow, NONE, gow) TLD, (sow, NONE, gow)osotoqot

Dependency Language Model Features

BLM; (s1w, sow) BLM; (s1w, sow)ositosot BLM,(s1w, sow)
BLM,.(s1w, sow)ositosot BLM; (sow, gow) BLM; (sow, gow)osotoqot
BLM,(sow, gow)osotoqot BLM,(sow, gow) TLM; (s1w, s1rdw, Sow)
TLM;(s1w, sirdw, sow)ositosot  TLM,(s1w, soldw, sow) TLM,(s1w, soldw, sow)ositosot

Table 3. Semi-supervised features designed on the base rdf clusters, lexical dependencies, and
dependency language models. Here the symbalenotes a stack iteng; denotes a queue iteny
represents a word, antdepresents a POS tag.

Lan. System LR LP F1 Lan. Features LR LP F1
¢  Baseline | 88.4 88.7 88.6 o  +word cluster 89.3 90.0 897
E +padding | 88.8 89.5 89.1 E +lexical dependencies 89.7 90.3 90.0

+features| 89.0 89.7 89.3 +dependency LM 90.0 90.6 90.3
= Baseline | 85.6 86.3 86.0 = +word cluster 85.7 875 86.6
6 +padding | 85.5 87.2 86.4 5 +lexical dependencies 87.2 88.6 87.9
+features| 85.5 87.6 86.5 +dependency LM 87.2 88.7 88.0

Table 5: Experimental results on the English andrable 6: Experimental results on the English and
Chinese development sets with the padding techehinese development sets with different types of
nique and new supervised features addede- semi-supervised features addedrementally to
mentally. the extended parser.

we employed the Stanford POS tagder. on the development sets. For word clustering, we

We took the WSJ articles from the TIPSTER set the cluster number to 50 for both the English
corpus (LDC93T3A) as unlabeled English data. Inand Chinese experiments.
addition, we removed from the unlabeled English
data the sentences that appear in the WSJ corptrfs2
of the Penn Treebank. For unlabeled Chinese datdable 5 reports the results of the extended parser
we used Chinese Gigaword (LDC2003T09), on(baseline + padding + supervised features) on the
which we conducted Chinese word segmentatiorEnglish and Chinese development sets. We inte-
by using a CRF-based segmenter. Table 4 summarated the padding method into the baseline parser,
rizes data statistics on sentence and word numbelmsed on which we further incorporated the super-
of the data sets listed above. vised features in Table 2. From the results we find

We used EVALB to evaluate parser perfor- thatthe padding method improves the parser accu-
mances, including labeled precision (LP), labeledacies by0.5% and0.4% on English and Chinese,
recall (LR), and bracketing F®. For significance respectively. Incorporating the supervised features
tests, we employed the randomized permutationin Table 2 gives further improvements @2% on
based tool provided by Daniel Bikél. English and).1% on Chinese.

In both training and decoding, we set the beam Based on the extended parser, we experimented
size to 16, which achieves a good tradeoff bedifferent types of semi-supervised features by
tween efficiency and accuracy. The optimal iter-adding the features incrementally. The results are
ation number of perceptron learning is determinedshown in Table 6. By comparing the results in Ta-
mor d.edu/software/tagger.shtml ble 5 and the_ results in Table 6_we can see that_the
Shttp://nip.cs.nyu.edu/evalb semi-supervised features achieve an overall im-
®hitp://www.cis.upenn.eduikibikel/software. html#comparator provement ofl.0% on the English data and an im-

Results on Development Sets
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Type Parser LR LP F1 Par ser #Sent/Second

Ratnaparkhi (1997) 86.3 875 86.9 Ratnaparkhi(1997) Unk
Collins (1999) 88.1 883 882 Collins(1999) 35
Charniak (2000) 89.5 89.9 895 Charniak (2000) 5.7
S| Sagae & Lavie (2005) 86.1 86.0 86.0 Sagae & Lavie (2003) 3.7
Sagae & Lavie (2006) 87.8 88.1 87.9 Sagae & Lavie (2006) 2.0t
Basdline 90.0 899 899 Petrov & Klein (2007) 6.2
Petrov & Klein (2007) 90.1 90.2 90.1 Carreras et al. (2008) Unk
BaselinetPadding 90.2 90.7 904 Baseline 100.7
Carreras et al. (2008) 90.7 914 911 ThisPaper Baseline+Padding 89.5
RE Charniak & Johnson (2005) 91.2 91.8 915 Baseline+Padding+Semi 46.8
Huang (2008) 922 912 0917
Zhu et al. (2012) 904 905 904 Table 9: Comparison of running times on the En-
BaselinetPadding+Semi 911 915 913 lish test set. wh the ti for loadi del
SE  Huang & Harper (2009) 91.1 o916 91.3 giishlest sei, where (ne ume for loading models
Huang et al. (2010) 91.4 91.8 916 Is excluded.* The results of SVM-based shift-
McClosky et al. (2006) 921 925 92.3 reduce parsing with greedy sear¢fhe results of

&/IaxEnt-based shift-reduce parser with best-first
search. ¥ Times reported by authors running on
different hardware.

Table 7: Comparison of our parsers and relate
work on the English test set.* Shift-reduce
parsers.t The results of self-training with a sin-
gle latent annotation grammatr.

as the performance of self-trained parsers, except

Type Parser LR LP_ F1 for McClosky et al. (2006), which is based on the
Charniak (2000) 796821808 mbination of reranking and self-trainin On
Bikel (2004} 79.3 820 go.6 combination orreranking and sefi-training.

Sl Basdine 821 831 826 Chinese, the final parsing accuracy8is6%. To
Ea‘fe””gziqdi&%m) 882-119 8@-28 83£ 5 our knowledge, this is by far the best reported per-
etrov ein . . . .

RE  Charniak & Johnson (2005) 80.8 838 823 formance on this data set. '

ge Zhuetal (2012) _ 806 819 812 The padding technique, supervised features,
Baselinet+Padding+Semi 844 868 856 and semi-supervised features achieve an overall

Table 8: Comparison of our parsers and relateémlorovement 0f1.4% over the baseline on En-

work on the test set of CTB51Huang (2009) ggfg V\_llq']Ch IS 5|g|;|n_|f|cant on thte Ievglhgf <
adapted the parsers to Chinese parsing on CTBS&. ' € overall Improvement on INese 1S

 We run the parser on CTB5.1 to get the results. 3.2%1,03\/5h|ch is also significant on the level of
P .

provement ofl.5% on the Chinese data. 54 Comparison of Running Time

_ We also compared the running times of our parsers
5.3 Final Results with the related single parsers. We ran timing tests

Here we report the final results on the English andn an Intel 2.3GHz processor with 8GB mem-
Chinese test sets. We compared the final resul@ry. The comparison is shown in Table 9. From
with a large body of related work. We grouped thethe table, we can see that incorporating semi-
parsers into three categories: single parsers (SIyupervised features decreases parsing speed, but
discriminative reranking parsers (RE), and semithe semi-supervised parser still has the advantage
supervised parsers (SE). Table 7 shows the con®f efficiency over other parsers. Specifically, the
parative results on the English test set and Table 8emi-supervised parser is 7 times faster than the
reports the comparison on the Chinese test set. Berkeley parser. Note that Sagae & Lavie (2005)
From the results we can see that our extendednd Sagae & Lavie (2006) are also shift-reduce
parser (baseline + padding + supervised featureg)arsers, and their running times were evaluated on
outperforms the Berkeley parser By% on En-  different hardwares. In practice, the running times
glish, and is comparable with the Berkeley parsepf the shift-reduce parsers should be much shorter
on Chinese £0.1% less). Heretpadding means than the reported times in the table.
the padding technique and the features in Table 2. ,
After integrating semi-supervised features, the>> Efror Analysis
parsing accuracy on English is improvedt03%. We conducted error analysis for the three sys-
We note that the performance is on the same levdbems: the baseline parser, the extended parser with
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Figure 5: Comparison of parsing accuracies ofrigure 6: Comparison of parsing accuracies of
the baseline, extended parser, and semi-superviséige baseline, extended parser, and semi-supervised
parsers on spans of different lengths. parser on sentences of different lengths.

the padding technique, and the semi-superviseB.5.3 Different Sentence Lengths

parser, focusing on the English test set. The analyFigure 6 shows a comparison of parsing accura-
sis was performed in four dimensions: parsing accies of the three parsers on sentences of different
curacies on different phrase types, on constituentiengths. Each number on the horizontal axis repre-
of different span lengths, on different sentencesents the sentences whose lengths are between the
lengths, and on sentences with different numbergaumber and its previous number. For example, the

of unknown words. number 30 refers to the sentences whose lengths
_ are between 20 and 30. From the results we can
55.1 Different Phrase Types see that semi-supervised features improve parsing

Table 10 shows the parsing accuracies of the bas@ccuracy on both short and long sentences. The
line, extended parser, and semi-supervised parsepints at 70 are exceptions. In fact, sentences with
on different phrase types. Here we only considetengths between 60 and 70 have only 8 instances,
the nine most frequent phrase types in the Englisland the statistics on such a small number of sen-
test set. In the table, the phrase types are orderdénces are not reliable.

from left to right in the descending order of their .
frequencies. gWe also show the i?nprovements 015'5'4 Different Numbers of Unknown Words

the semi-supervised parser over the baseline parsEigure 4 shows a comparison of parsing accura-
(the last row in the table). As the results show, thefies of the baseline, extended parser, and semi-
extended parser achieves improvements on mostpervised parser on sentences with different num-
of the phrase types with two exceptions: Preposibers of unknown words. As the results show,
tion Prase (PP) and Quantifier Phrase (QP). Semibe padding method is not very helpful on sen-
supervised features further improve parsing accuténces with large numbers of unknown words,
racies over the extended parser (QP is an exceﬁ\lh”e semi-supervised features help significantly
tion). From the last row, we can see that improve2n this aspect. This conforms to the intuition that
ments of the semi-supervised parser over the bas@éMmi-supervised methods reduce data sparseness
line on VP, S, SBAR, ADVP, and ADJP are aboveand improve the performance on unknown words.
the average improvement.{%). 6 Conclusion
552 Different Span Lengths In this paper, we addressed the problem of dif-
Figure 5 shows a comparison of the three parserferent action-sequence lengths for shift-reduce
on spans of different lengths. Here we considephrase-structure parsing, and designed a set of
span lengths up to 8. As the results show, botmovel non-local features to further improve pars-
the padding extension and semi-supervised feang. The resulting supervised parser outperforms
tures are more helpful on relatively large spansthe Berkeley parser, a state-of-the-art chart parser,
the performance gaps between the three parseis both accuracies and speeds. In addition, we in-
are enlarged with increasing span lengths. corporated a set of semi-supervised features. The
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System NP VP S PP  SBAR ADVP ADJP WHNP QP
Baseline 919 90.1 89.8 881 85.7 84.6 72.1 94.8 89.3
Extended 921 90.7 90.2 879 86.6 84.5 73.6 955 88.6
Semi-supervised 93.2 92.0 915 89.3 88.2 86.8 75.1 95.7 89.1
Improvements +1.3 +1.9 +1.7 +1.2 +2.5 +2.2 +3.0 +0.9 -0.2

Table 10: Comparison of parsing accuracies of the basektended parser, and semi-supervised parsers
on different phrase types.
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Figure 4: Comparison of parsing accuracies of the baseadiiended parser, and semi-supervised parser
on sentences of different unknown words.
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