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Abstract

In this paper, we consider the problem
of cross-formalism transfer in parsing.
We are interested in parsing constituency-
based grammars such as HPSG and CCG
using a small amount of data specific for
the target formalism, and a large quan-
tity of coarse CFG annotations from the
Penn Treebank. While all of the target
formalisms share a similar basic syntactic
structure with Penn Treebank CFG, they
also encode additional constraints and se-
mantic features. To handle this appar-
ent discrepancy, we design a probabilistic
model that jointly generates CFG and tar-
get formalism parses. The model includes
features of both parses, allowing trans-
fer between the formalisms, while pre-
serving parsing efficiency. We evaluate
our approach on three constituency-based
grammars — CCG, HPSG, and LFG, aug-
mented with the Penn Treebank-1. Our ex-
periments show that across all three for-
malisms, the target parsers significantly
benefit from the coarse annotations.1

1 Introduction

Over the last several decades, linguists have in-
troduced many different grammars for describing
the syntax of natural languages. Moreover, the
ongoing process of developing new formalisms is
intrinsic to linguistic research. However, before
these grammars can be used for statistical pars-
ing, they require annotated sentences for training.
The difficulty of obtaining such annotations is a
key limiting factor that inhibits the effective use of
these grammars.

1The source code for the work is available at
http://groups.csail.mit.edu/rbg/code/
grammar/acl2013.

The standard solution to this bottleneck has re-
lied on manually crafted transformation rules that
map readily available syntactic annotations (e.g,
the Penn Treebank) to the desired formalism. De-
signing these transformation rules is a major un-
dertaking which requires multiple correction cy-
cles and a deep understanding of the underlying
grammar formalisms. In addition, designing these
rules frequently requires external resources such
as Wordnet, and even involves correction of the
existing treebank. This effort has to be repeated
for each new grammar formalism, each new anno-
tation scheme and each new language.

In this paper, we propose an alternative ap-
proach for parsing constituency-based grammars.
Instead of using manually-crafted transformation
rules, this approach relies on a small amount of
annotations in the target formalism. Frequently,
such annotations are available in linguistic texts
that introduce the formalism. For instance, a
textbook on HPSG (Pollard and Sag, 1994) il-
lustrates grammatical constructions using about
600 examples. While these examples are infor-
mative, they are not sufficient for training. To
compensate for the annotation sparsity, our ap-
proach utilizes coarsely annotated data readily
available in large quantities. A natural candidate
for such coarse annotations is context-free gram-
mar (CFG) from the Penn Treebank, while the
target formalism can be any constituency-based
grammars, such as Combinatory Categorial Gram-
mar (CCG) (Steedman, 2001), Lexical Functional
Grammar (LFG) (Bresnan, 1982) or Head-Driven
Phrase Structure Grammar (HPSG) (Pollard and
Sag, 1994). All of these formalisms share a sim-
ilar basic syntactic structure with Penn Treebank
CFG. However, the target formalisms also encode
additional constraints and semantic features. For
instance, Penn Treebank annotations do not make
an explicit distinction between complement and
adjunct, while all the above grammars mark these
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roles explicitly. Moreover, even the identical syn-
tactic information is encoded differently in these
formalisms. An example of this phenomenon is
the marking of subject. In LFG, this informa-
tion is captured in the mapping equation, namely
↑ SBJ =↓, while Penn Treebank represents it as
a functional tag, such as NP-SBJ. Figure 1 shows
derivations in the three target formalisms we con-
sider, as well as a CFG derivation. We can see that
the derivations of these formalisms share the same
basic structure, while the formalism-specific infor-
mation is mainly encoded in the lexical entries and
node labels.

To enable effective transfer the model has to
identify shared structural components between
the formalisms despite the apparent differences.
Moreover, we do not assume parallel annotations.
To this end, our model jointly parses the two cor-
pora according to the corresponding annotations,
enabling transfer via parameter sharing. In partic-
ular, we augment each target tree node with hidden
variables that capture the connection to the coarse
annotations. Specifically, each node in the target
tree has two labels: an entry which is specific to
the target formalism, and a latent label containing
a value from the Penn Treebank tagset, such as NP
(see Figure 2). This design enables us to repre-
sent three types of features: the target formalism-
specific features, the coarse formalism features,
and features that connect the two. This model-
ing approach makes it possible to perform transfer
to a range of target formalisms, without manually
drafting formalism-specific rules.

We evaluate our approach on three
constituency-based grammars — CCG, HPSG,
and LFG. As a source of coarse annotations,
we use the Penn Treebank.2 Our results clearly
demonstrate that for all three formalisms, pars-
ing accuracy can be improved by training with
additional coarse annotations. For instance, the
model trained on 500 HPSG sentences achieves
labeled dependency F-score of 72.3%. Adding
15,000 Penn Treebank sentences during training
leads to 78.5% labeled dependency F-score, an
absolute improvement of 6.2%. To achieve similar
performance in the absence of coarse annotations,
the parser has to be trained on about 1,500
sentences, namely three times what is needed
when using coarse annotations. Similar results are

2While the Penn Treebank-2 contains richer annotations,
we decided to use the Penn Treebank-1 to demonstrate the
feasibility of transfer from coarse annotations.

CFG CCG 

LFG 

I                eat               apples 
NP                VB                   NP 

VP 

S 

I                eat                apples 
NP        (S[dcl]\NP)/NP         NP 

S[dcl]\NP 

S[dcl] 

 I               eat                 apples 
[Pron.I]     [   SBJ,   OBJ]       [N.3pl] 

ROOT 

↑=↓
↑ ↑

=↓SBJ!↑ =↓OBJ!↑

↑=↓

HPSG 

  I              eat                 apples 
[N.no3sg]   [N<V.bse>N]        [N.3pl] 

head_comp 

subj_head 

Figure 1: Derivation trees for CFG as well as
CCG, HPSG and LFG formalisms.

also observed on CCG and LFG formalisms.

2 Related Work

Our work belongs to a broader class of research
on transfer learning in parsing. This area has gar-
nered significant attention due to the expense asso-
ciated with obtaining syntactic annotations. Trans-
fer learning in parsing has been applied in differ-
ent contexts, such as multilingual learning (Sny-
der et al., 2009; Hwa et al., 2005; McDonald et
al., 2006; McDonald et al., 2011; Jiang and Liu,
2009), domain adaptation (McClosky et al., 2010;
Dredze et al., 2007; Blitzer et al., 2006), and cross-
formalism transfer (Hockenmaier and Steedman,
2002; Miyao et al., 2005; Cahill et al., 2002; Rie-
zler et al., 2002; Chen and Shanker, 2005; Candito
et al., 2010).

There have been several attempts to map anno-
tations in coarse grammars like CFG to annota-
tions in richer grammar, like HPSG, LFG, or CCG.
Traditional approaches in this area typically rely
on manually specified rules that encode the rela-
tion between the two formalisms. For instance,
mappings may specify how to convert traces and
functional tags in Penn Treebank to the f-structure
in LFG (Cahill, 2004). These conversion rules
are typically utilized in two ways: (1) to create a
new treebank which is consequently used to train a
parser for the target formalism (Hockenmaier and
Steedman, 2002; Clark and Curran, 2003; Miyao
et al., 2005; Miyao and Tsujii, 2008), (2) to trans-
late the output of a CFG parser into the target for-
malism (Cahill et al., 2002).

The design of these rules is a major linguis-
tic and computational undertaking, which requires
multiple iterations over the data to increase cov-
erage (Miyao et al., 2005; Oepen et al., 2004).
By nature, the mapping rules are formalism spe-
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cific and therefore not transferable. Moreover, fre-
quently designing such mappings involves modifi-
cation to the original annotations. For instance,
Hockenmaier and Steedman (2002) made thou-
sands of POS and constituent modifications to the
Penn Treebank to facilitate transfer to CCG. More
importantly, in some transfer scenarios, determin-
istic rules are not sufficient, due to the high am-
biguity inherent in the mapping. Therefore, our
work considers an alternative set-up for cross-
formalism transfer where a small amount of an-
notations in the target formalism is used as an al-
ternative to using deterministic rules.

The limitation of deterministic transfer rules
has been recognized in prior work (Riezler et al.,
2002). Their method uses a hand-crafted LFG
parser to create a set of multiple parsing candi-
dates for a given sentence. Using the partial map-
ping from CFG to LFG as the guidance, the re-
sulting trees are ranked based on their consistency
with the labeled LFG bracketing imported from
CFG. In contrast to this method, we neither require
a parser for the target formalism, nor manual rules
for partial mapping. Consequently, our method
can be applied to many different target grammar
formalisms without significant engineering effort
for each one. The utility of coarse-grained tree-
banks is determined by the degree of structural
overlap with the target formalism.

3 The Learning Problem

Recall that our goal is to learn how to parse the tar-
get formalisms while using two annotated sources:
a small set of sentences annotated in the target for-
malism (e.g., CCG), and a large set of sentences
with coarse annotations. For the latter, we use the
CFG parses from the Penn Treebank. For sim-
plicity we focus on the CCG formalism in what
follows. We also generalize our model to other
formalisms, as explained in Section 5.4.

Our notations are as follows: an input sentence
is denoted by S. A CFG parse is denoted by yCFG
and a CCG parse is denoted by yCCG. Clearly the
set of possible values for yCFG and yCCG is deter-
mined by S and the grammar. The training set is a
set of N sentences S1, . . . , SN with CFG parses
y1CFG, . . . , y

N
CFG, and M sentences S̄1, . . . , S̄M

with CCG parses y1CCG, . . . , y
M
CCG. It is impor-

tant to note that we do not assume we have parallel
data for CCG and CFG.

Our goal is to use such a corpus for learning

eat apples 

coarse feature on yCFG 
VP VP,NP 

VP    (S[dcl]\NP)/NP 

VP    S[dcl]\NP 

NP    NP 

formalism feature on yCCG 
S[dcl]\NP (S[dcl]\NP)/NP,NP 

joint feature on yCFG, yCCG 
VP, S[dcl]\NP 
(VP, (S[dcl]\NP)/NP), (NP, NP) 

Figure 2: Illustration of the joint CCG-CFG representa-
tion. The shadowed labels correspond to the CFG deriva-
tion yCFG, whereas the other labels correspond to the CCG
derivation yCCG. Note that the two derivations share the
same (binarized) tree structure. Also shown are features that
are turned on for this joint derivation (see Section 6).

how to generate CCG parses to unseen sentences.

4 A Joint Model for Two Formalisms

The key idea behind our work is to learn a joint
distribution over CCG and CFG parses. Such a
distribution can be marginalized to obtain a distri-
bution over CCG or CFG and is thus appropriate
when the training data is not parallel, as it is in our
setting.

It is not immediately clear how to jointly model
the CCG and CFG parses, which are structurally
quite different. Furthermore, a joint distribution
over these will become difficult to handle com-
putationally if not constructed carefully. To ad-
dress this difficulty, we make several simplifying
assumptions. First, we assume that both parses are
given in normal form, i.e., they correspond to bi-
nary derivation trees. CCG parses are already pro-
vided in this form in CCGBank. CFG parses in the
Penn Treebank are not binary, and we therefore bi-
narize them, as explained in Section 5.3.

Second, we assume that any yCFG and yCCG
jointly generated must share the same derivation
tree structure. This makes sense. Since both for-
malisms are constituency-based, their trees are ex-
pected to describe the same constituents. We de-
note the set of valid CFG and CCG joint parses for
sentence S by Y(S).

The above two simplifying assumptions make
it easy to define joint features on the two parses,
as explained in Section 6. The representation and
features are illustrated in Figure 2.

We shall work within the discriminative frame-
work, where given a sentence we model a dis-
tribution over parses. As is standard in such
settings, the distribution will be log-linear in a
set of features of these parses. Denoting y =
(yCFG, yCCG), we seek to model the distribution
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p(y|S) corresponding to the probability of gen-
erating a pair of parses (CFG and CCG) given a
sentence. The distribution thus has the following
form:

pjoint(y|S; θ) =
1

Z(S; θ)
ef(y,S)·θ . (1)

where θ is a vector of parameters to be learned
from data, and f(y, S) is a feature vector. Z(S; θ)
is a normalization (partition) function normalized
over y ∈ Y(S) the set of valid joint parses.

The feature vector contains three types of fea-
tures: CFG specific, CCG specific and joint CFG-
CCG. We denote these by fCFG, fCCG, fjoint.
These depend on yCCG, yCFG and y respectively.
Accordingly, the parameter vector θ is a concate-
nation of θCCG, θCFG and θjoint.

As mentioned above, we can use Equation 1
to obtain distributions over yCCG and yCFG via
marginalization. For the distribution over yCCG
we do precisely this, namely use:

pCCG(yCCG|S; θ) =
∑

yCFG

pjoint(y|S; θ) (2)

For the distribution over yCFG we could have
marginalized pjoint over yCCG. However, this
computation is costly for each sentence, and has
to be repeated for all the sentences. Instead, we
assume that the distribution over yCFG is a log-
linear model with parameters θCFG (i.e., a sub-
vector of θ) , namely:

pCFG(yCFG|S; θCFG) =
efCFG(yCFG,S)·θCFG

Z(S; θCFG)
.

(3)
Thus, we assume that both pjoint and pCFG have
the same dependence on the fCFG features.

The Likelihood Objective: Given the models
above, it is natural to use maximum likelihood to
find the optimal parameters. To do this, we define
the following regularized likelihood function:

L(θ) =
N∑

i=1

log
(
pCFG(yiCFG|Si, θCFG)

)
+

M∑

i=1

log
(
pCCG(yiCCG|S̄i, θ)

)
− λ

2
‖θ‖22

where pCCG and pCFG are defined in Equations
2 and 3 respectively. The last term is the l2-norm
regularization. Our goal is then to find a θ that
maximizes L(θ).

Training Algorithm: For maximizing L(θ)
w.r.t. θ we use the limited-memory BFGS algo-
rithm (Nocedal and Wright, 1999). Calculating
the gradient of L(θ) requires evaluating the ex-
pected values of f(y, S) and fCFG under the dis-
tributions pjoint and pCFG respectively. This can
be done via the inside-outside algorithm.3

Parsing Using the Model: To parse a sentence
S, we calculate the maximum probability assign-
ment for pjoint(y|S; θ).4 The result is both a CFG
and a CCG parse. Here we will mostly be inter-
ested in the CCG parse. The joint parse with max-
imum probability is found using a standard CYK
chart parsing algorithm. The chart construction
will be explained in Section 5.

5 Implementation

This section introduces important implementa-
tion details, including supertagging, feature for-
est pruning and binarization methods. Finally,
we explain how to generalize our model to other
constituency-based formalisms.

5.1 Supertagging

When parsing a target formalism tree, one needs
to associate each word with a lexical entry. How-
ever, since the number of candidates is typically
more than one thousand, the size of the chart ex-
plodes. One effective way of reducing the number
of candidates is via supertagging (Clark and Cur-
ran, 2007). A supertagger is used for selecting a
small set of lexical entry candidates for each word
in the sentence. We use the tagger in (Clark and
Curran, 2007) as a general suppertagger for all the
grammars considered. The only difference is that
we use different lexical entries in different gram-
mars.

5.2 Feature Forest Pruning

In the BFGS algorithm (see Section 4), feature ex-
pectation is computed using the inside-outside al-
gorithm. To perform this dynamic programming
efficiently, we first need to build the packed chart,
namely the feature forest (Miyao, 2006) to rep-
resent the exponential number of all possible tree

3To speed up the implementation, gradient computation
is parallelized, using the Message Passing Interface pack-
age (Gropp et al., 1999).

4An alternative approach would be to marginalize over
yCFG and maximize over yCCG. However, this is a harder
computational problem.
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structures. However, a common problem for lex-
icalized grammars is that the forest size is too
large. In CFG, the forest is pruned according to
the inside probability of a simple generative PCFG
model and a prior (Collins, 2003). The basic idea
is to prune the trees with lower probability. For the
target formalism, a common practice is to prune
the forest using the supertagger (Clark and Cur-
ran, 2007; Miyao, 2006). In our implementation,
we applied all pruning techniques, because the for-
est is a combination of CFG and target grammar
formalisms (e.g., CCG or HPSG).

5.3 Binarization

We assume that the derivation tree in the target for-
malism is in a normal form, which is indeed the
case for the treebanks we consider. As mentioned
in Section 4, we would also like to work with bi-
narized CFG derivations, such that all trees are in
normal form and it is easy to construct features
that link the two (see Section 6).

Since Penn Treebank trees are not binarized, we
construct a simple procedure for binarizing them.
The procedure is based on the available target for-
malism parses in the training corpus, which are bi-
narized. We illustrate it with an example. In what
follows, we describe derivations using the POS of
the head words of the corresponding node in the
tree. This makes it possible to transfer binariza-
tion rules between formalisms.

Suppose we want to learn the binarization rule
of the following derivation in CFG:

NN→ (DT JJ NN) (4)

We now look for binary derivations with these
POS in the target formalism corpus, and take the
most common binarization form. For example, we
may find that the most common binarization to bi-
narize the CFG derivation in Equation 4 is:

NN→ (DT (JJ NN))

If no (DT JJ NN) structure is observed in the
CCG corpus, we first apply the binary branching
on the children to the left of the head, and then on
the children to the right of the head.

We also experiment with using fixed binariza-
tion rules such as left/right branching, instead of
learning them. This results in a drop on the depen-
dency F-score by about 5%.

5.4 Implementation in Other Formalisms

We introduce our model in the context of CCG,
but the model can easily be generalized to other
constituency-based grammars, such as HPSG and
LFG. In a derivation tree, the formalism-specific
information is mainly encoded in the lexical en-
tries and the applied grammar rules, rather than the
tree structures. Therefore we only need to change
the node labels and lexical entries to the language-
specific ones, while the framework of the model
remains the same.

6 Features

Feature functions in log-linear models are de-
signed to capture the characteristics of each
derivation in the tree. In our model, as mentioned
in Section 1, the features are also defined to en-
able information transfer between coarse and rich
formalisms. In this section, we first introduce how
different types of feature templates are designed,
and then show an example of how the features help
transfer the syntactic structure information. Note
that the same feature templates are used for all the
target grammar formalisms.

Recall that our y contains both the CFG and
CCG parses, and that these use the same derivation
tree structure. Each feature will consider either the
CFG derivation, the CCG derivation or these two
derivations jointly.

The feature construction is similar to construc-
tions used in previous work (Miyao, 2006). The
features are based on the atomic features listed in
Table 1. These will be used to construct f(y, S) as
explained next.

hl lexical entries/CCG categories of the head word
r grammar rules, i.e. HPSG schema, resulting CCG

categories, LFG mapping equations
sy CFG syntactic label of the node (e.g. NP, VP)
d distance between the head words of the children
c whether a comma exists between the head words

of the children
sp the span of the subtree rooted at the node
hw surface form of the head word of the node
hp part-of-speech of the head word
pi part-of-speech of the i-th word in the sentence

Table 1: Templates of atomic features.

We define the following feature templates:
fbinary for binary derivations, funary for unary
derivations, and froot for the root nodes. These
use the atomic features in Table 1, resulting in the
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following templates:

fbinary =

〈 r, syp, d, c
syl, spl, hwl, hpl, hll,
syr, spr, hwr, hpr, hlr,
pst−1, pst−2, pen+1, pen+2

〉

funary = 〈r, syp, hw, hp, hl〉

froot = 〈sy, hw, hp, hl〉
In the above we used the following notation: p, l, r
denote the parent node and left/right child node,
and st, en denote the starting and ending index of
the constituent.

We also consider templates with subsets of the
above features. The final list of binary feature tem-
plates is shown in Table 2. It can be seen that some
features depend only on the CFG derivations (i.e.,
those without r,hl), and are thus in fCFG(y, S).
Others depend only on CCG derivations (i.e.,
those without sy), and are in fCCG(y, S). The
rest depend on both CCG and CFG and are thus
in fjoint(y, S).

Note that after binarization, grandparent and
sibling information becomes very important in en-
coding the structure. However, we limit the fea-
tures to be designed locally in a derivation in order
to run inside-outside efficiently. Therefore we use
the preceding and succeeding POS tag information
to approximate the grandparent and sibling infor-
mation. Empirically, these features yield a signifi-
cant improvement on the constituent accuracy.

fCFG

〈d,wl,r, hpl,r, syp,l,r〉, 〈d,wl,r, syp,l,r〉,
〈c, wl,r, hpl,r, syp,l,r〉, 〈c, wl,r, syp,l,r〉,
〈d, c, hpl,r, syp,l,r〉, 〈d, c, syp,l,r〉,
〈c, spl,r, hpl,r, syp,l,r〉, 〈c, spl,r, syp,l,r〉,
〈pst−1, syp,l,r〉, 〈pen+1, syp,l,r〉,
〈pst−1, pen+1, syp,l,r〉,
〈pst−1, pst−2, syp,l,r〉, 〈pen+1, pen+2, syp,l,r〉,
〈pst−1, pst−2, pen+1, pen+2, syp,l,r〉,

fCCG

〈r, d, c, hwl,r, hpl,r, hll,r〉, 〈r, d, c, hwl,r, hpl,r〉
〈r, d, c, hwl,r, hll,r〉,
〈r, c, spl,r, hwl,r, hpl,r, hll,r〉
〈r, c, spl,r, hwl,r, hpl,r, 〉, 〈r, c, spl,r, hwl,r, hll,r〉
〈r, d, c, hpl,r, hll,r〉, 〈r, d, c, hpl,r〉, 〈r, d, c, hll,r〉
〈r, c, hpl,r, hll,r〉, 〈r, c, hpl,r〉, 〈r, c, hll,r〉

fjoint
〈r, d, c, syl,r, hll,r〉, 〈r, d, c, syl,r〉
〈r, c, spl,r, syl,r, hll,r〉, 〈r, c, spl,r, syl,r〉

Table 2: Binary feature templates used in f(y, S).
Unary and root features follow a similar pattern.

In order to apply the same feature templates to
other target formalisms, we only need to assign
the atomic features r and hl with the formalism-
specific values. We do not need extra engineering
work on redesigning the feature templates.

eat apples 
VP    (S[dcl]\NP)/NP 

VP    S[dcl]\NP 

NP    NP 

VP VP,NP 

S[dcl]\NP (S[dcl]\NP)/NP,NP 

VP, S[dcl]\NP 
(VP, (S[dcl]\NP)/NP), (NP, NP) 

CCGbank 

VP 

Penn Treebank 

VP NP 

write letters 

VP VP,NP 
fCFG (y,S) : fCFG (y,S) :

fCCG (y,S) :

f joint (y,S) :

Figure 3: Example of transfer between CFG and
CCG formalisms.

Figure 3 gives an example in CCG of how
features help transfer the syntactic information
from Penn Treebank and learn the correspondence
to the formalism-specific information. From the
Penn Treebank CFG annotations, we can learn
that the derivation VP→(VP, NP) is common, as
shown on the left of Figure 3. In a CCG tree, this
tendency will encourage the yCFG (latent) vari-
ables to take this CFG parse. Then weights on the
fjoint features will be learned to model the con-
nection between the CFG and CCG labels. More-
over, the formalism-specific features fCCG can
also encode the formalism-specific syntactic and
semantic information. These three types of fea-
tures work together to generate a tree skeleton and
fill in the CFG and CCG labels.

7 Evaluation Setup

Grammar Train Dev. Test
CCG

Sec. 02-21
Sec. 00 Sec. 23HPSG

LFG 140 sents. in 560 sents. in
PARC700 PARC700

Table 3: Training/Dev./Test split on WSJ sections
and PARC700 for different grammar formalisms.

Datasets: As a source of coarse annotations, we
use the Penn Treebank-1 (Marcus et al., 1993). In
addition, for CCG, HPSG and LFG, we rely on
formalism-specific corpora developed in prior re-
search (Hockenmaier and Steedman, 2002; Miyao
et al., 2005; Cahill et al., 2002; King et al., 2003).
All of these corpora were derived via conversion
of Penn Treebank to the target formalisms. In par-
ticular, our CCG and HPSG datasets were con-
verted from the Penn Treebank based on hand-
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Figure 4: Model performance with 500 target formalism trees and different numbers of CFG trees,
evaluated using labeled/unlabeled dependency F-score and unlabeled PARSEVAL.

crafted rules (Hockenmaier and Steedman, 2002;
Miyao et al., 2005). Table 3 shows which sec-
tions of the treebanks were used in training, test-
ing and development for both formalisms. Our
LFG training dataset was constructed in a sim-
ilar fashion (Cahill et al., 2002). However, we
choose to use PARC700 as our LFG tesing and de-
velopment datasets, following the previous work
by (Kaplan et al., 2004). It contains 700 man-
ually annotated sentences that are randomly se-
lected from Penn Treebank Section 23. The split
of PARC700 follows the setting in (Kaplan et al.,
2004). Since our model does not assume parallel
data, we use distinct sentences in the source and
target treebanks. Following previous work (Hock-
enmaier, 2003; Miyao and Tsujii, 2008), we only
consider sentences not exceeding 40 words, except
on PARC700 where all sentences are used.

Evaluation Metrics: We use two evaluation
metrics. First, following previous work, we eval-
uate our method using the labeled and unlabeled
predicate-argument dependency F-score. This
metric is commonly used to measure parsing qual-
ity for the formalisms considered in this paper.
The detailed definition of this measure as applied
for each formalism is provided in (Clark and Cur-
ran, 2003; Miyao and Tsujii, 2008; Cahill et al.,
2004). For CCG, we use the evaluation script
from the C&C tools.5 For HPSG, we evaluate
all types of dependencies, including punctuations.
For LFG, we consider the preds-only dependen-
cies, which are the dependencies between pairs
of words. Secondly, we also evaluate using unla-
beled PARSEVAL, a standard measure for PCFG
parsing (Petrov and Klein, 2007; Charniak and
Johnson, 2005; Charniak, 2000; Collins, 1997).
The dependency F-score captures both the target-

5Available at http://svn.ask.it.usyd.edu.au/trac/candc/wiki

grammar labels and tree-structural relations. The
unlabeled PARSEVAL is used as an auxiliary mea-
sure that enables us to separate these two aspects
by focusing on the structural relations exclusively.

Training without CFG Data: To assess the
impact of coarse data in the experiments be-
low, we also consider the model trained only on
formalism-specific annotations. When no CFG
sentences are available, we assign all the CFG la-
bels to a special value shared by all the nodes. In
this set-up, the model reduces to a normal log-
linear model for the target formalism.

Parameter Settings: During training, all the
feature parameters θ are initialized to zero. The
hyperparameters used in the model are tuned on
the development sets. We noticed, however, that
the resulting values are consistent across differ-
ent formalisms. In particular, we set the l2-norm
weight to λ = 1.0, the supertagger threshold to
β = 0.01, and the PCFG pruning threshold to
α = 0.002.

8 Experiment and Analysis

Impact of Coarse Annotations on Target For-
malism: To analyze the effectiveness of annota-
tion transfer, we fix the number of annotated trees
in the target formalism and vary the amount of
coarse annotations available to the algorithm dur-
ing training. In particular, we use 500 sentences
with formalism-specific annotations, and vary the
number of CFG trees from zero to 15,000.

As Figure 4 shows, CFG data boosts parsing ac-
curacy for all the target formalisms. For instance,
there is a gain of 6.2% in labeled dependency
F-score for HPSG formalism when 15,000 CFG
trees are used. Moreover, increasing the number
of coarse annotations used in training leads to fur-
ther improvement on different evaluation metrics.
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Figure 5: Model performance with different target formalism trees and zero or 15,000 CFG trees. The
first row shows the results of labeled dependency F-score and the second row shows the results of unla-
beled PARSEVAL.

Tradeoff between Target and Coarse Annota-
tions: We also assess the relative contribution
of coarse annotations when the size of annotated
training corpus in the target formalism varies. In
this set of experiments, we fix the number of CFG
trees to 15,000 and vary the number of target an-
notations from 500 to 4,000. Figure 5 shows
the relative contribution of formalism-specific an-
notations compared to that of the coarse annota-
tions. For instance, Figure 5a shows that the pars-
ing performance achieved using 2,000 CCG sen-
tences can be achieved using approximately 500
CCG sentences when coarse annotations are avail-
able for training. More generally, the result con-
vincingly demonstrates that coarse annotations are
helpful for all the sizes of formalism-specific train-
ing data. As expected, the improvement margin
decreases when more formalism-specific data is
used.

Figure 5 also illustrates a slightly different char-
acteristics of transfer performance between two
evaluation metrics. Across all three grammars,
we can observe that adding CFG data has a
more pronounced effect on the PARSEVAL mea-
sure than the dependency F-score. This phe-
nomenon can be explained as follows. The un-
labeled PARSEVAL score (Figure 5d-f) mainly re-
lies on the coarse structural information. On
the other hand, predicate-argument dependency F-
score (Figure 5a-c) also relies on the target gram-
mar information. Because that our model only
transfers structural information from the source

treebank, the gains of PARSEVAL are expected to
be larger than that of dependency F-score.

Grammar Parser # Grammar trees
1,000 15,000

CCG C&C 74.1 / 83.4 82.6 / 90.1
Model 76.8 / 85.5 84.7 / 90.9

HPSG Enju 75.8 / 80.6 84.2 / 87.3
Model 76.9 / 82.0 84.9 / 88.3

LFG
Pipeline

Annotator 68.5 / 74.0 82.6 / 85.9

Model 69.8 / 76.6 81.1 / 84.7

Table 4: The labeled/unlabeled dependency F-
score comparisons between our model and state-
of-the-art parsers.

Comparison to State-of-the-art Parsers: We
would also like to demonstrate that the above
gains of our transfer model are achieved using
an adequate formalism-specific parser. Since our
model can be trained exclusively on formalism-
specific data, we can compare it to state-of-the-
art formalism-specific parsers. For this experi-
ment, we choose the C&C parser (Clark and Cur-
ran, 2003) for CCG, Enju parser (Miyao and Tsu-
jii, 2008) for HPSG and pipeline automatic an-
notator (Cahill et al., 2004) with Charniak parser
for LFG. For all three parsers, we use the imple-
mentation provided by the authors with the default
parameter values. All the models are trained on
either 1,000 or 15,000 sentences annotated with
formalism-specific trees, thus evaluating their per-
formances on small scale or large scale of data.
As Table 4 shows, our model is competitive with
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all the baselines described above. It’s not sur-
prising that Cahill’s model outperforms our log-
linear model because it relies heavily on hand-
crafted rules optimized for the dataset.

Correspondence between CFG and Target For-
malisms: Finally, we analyze highly weighted
features. Table 5 shows such features for HPSG;
similar patterns are also found for the other
grammar formalisms. The first two features are
formalism-specific ones, the first for HPSG and
the second for CFG. They show that we correctly
learn a frequent derivation in the target formalism
and CFG. The third one shows an example of a
connection between CFG and the target formal-
ism. Our model correctly learns that a syntactic
derivation with children VP and NP is very likely
to be mapped to the derivation (head comp)→
([N〈V〉N],[N.3sg]) in HPSG.

Feature type Features with high weight

Target
formalism

Template
(r) → (hll, hpl)(hlr, pr)

Examples
(head comp)→

([N〈V〉N],VB)([N.3sg],NN)

Coarse
formalism

Template
(syp) → (syl, hpl)(syr, hpr)

Examples
(VP)→(VP,VB)(NP,NN)

Joint
features

Template
(r) → (hll, syl)(ler, syr)

Examples
(head comp)→

([N〈V〉N],VP)([N.3sg],NP)

Table 5: Example features with high weight.

9 Conclusions

We present a method for cross-formalism trans-
fer in parsing. Our model utilizes coarse syn-
tactic annotations to supplement a small num-
ber of formalism-specific trees for training on
constituency-based grammars. Our experimen-
tal results show that across a range of such for-
malisms, the model significantly benefits from the
coarse annotations.
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