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Abstract

We present a generative probabilistic
model, inspired by historical printing pro-
cesses, for transcribing images of docu-
ments from the printing press era. By
jointly modeling the text of the docu-
ment and the noisy (but regular) process
of rendering glyphs, our unsupervised sys-
tem is able to decipher font structure and
more accurately transcribe images into
text. Overall, our system substantially out-
performs state-of-the-art solutions for this
task, achieving a 31% relative reduction
in word error rate over the leading com-
mercial system for historical transcription,
and a 47% relative reduction over Tesser-
act, Google’s open source OCR system.

1 Introduction

Standard techniques for transcribing modern doc-
uments do not work well on historical ones. For
example, even state-of-the-art OCR systems pro-
duce word error rates of over 50% on the docu-
ments shown in Figure 1. Unsurprisingly, such er-
ror rates are too high for many research projects
(Arlitsch and Herbert, 2004; Shoemaker, 2005;
Holley, 2010). We present a new, generative
model specialized to transcribing printing-press
era documents. Our model is inspired by the un-
derlying printing processes and is designed to cap-
ture the primary sources of variation and noise.

One key challenge is that the fonts used in his-
torical documents are not standard (Shoemaker,
2005). For example, consider Figure 1a. The fonts
are not irregular like handwriting – each occur-
rence of a given character type, e.g. a, will use the
same underlying glyph. However, the exact glyphs
are unknown. Some differences between fonts are
minor, reflecting small variations in font design.
Others are more severe, like the presence of the
archaic long s character before 1804. To address
the general problem of unknown fonts, our model

(a)

(b)

(c)
Figure 1: Portions of historical documents with (a) unknown
font, (b) uneven baseline, and (c) over-inking.

learns the font in an unsupervised fashion. Font
shape and character segmentation are tightly cou-
pled, and so they are modeled jointly.

A second challenge with historical data is that
the early typesetting process was noisy. Hand-
carved blocks were somewhat uneven and often
failed to sit evenly on the mechanical baseline.
Figure 1b shows an example of the text’s baseline
moving up and down, with varying gaps between
characters. To deal with these phenomena, our
model incorporates random variables that specifi-
cally describe variations in vertical offset and hor-
izontal spacing.

A third challenge is that the actual inking was
also noisy. For example, in Figure 1c some charac-
ters are thick from over-inking while others are ob-
scured by ink bleeds. To be robust to such render-
ing irregularities, our model captures both inking
levels and pixel-level noise. Because the model
is generative, we can also treat areas that are ob-
scured by larger ink blotches as unobserved, and
let the model predict the obscured text based on
visual and linguistic context.

Our system, which we call Ocular, operates by
fitting the model to each document in an unsuper-
vised fashion. The system outperforms state-of-
the-art baselines, giving a 47% relative error re-
duction over Google’s open source Tesseract sys-
tem, and giving a 31% relative error reduction over
ABBYY’s commercial FineReader system, which
has been used in large-scale historical transcrip-
tion projects (Holley, 2010).
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Over-inked

It appeared that the Prisoner was veryE :

X :

Wandering baseline Historical font

Figure 2: An example image from a historical document (X)
and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model

Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) andX (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T,R,X) =

P (E) [Language model]

· P (T |E) [Typesetting model]

· P (R) [Inking model]

· P (X|E, T,R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
m∏

i=1

P (ei|ei−1, . . . , ei−n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.
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Figure 3: Character tokens ei are generated by the language model. For each token index i, a glyph bounding box width gi,
left padding width li, and a right padding width ri, are generated. Finally, the pixels in each glyph bounding box XGLYPH

i are
generated conditioned on the corresponding character, while the pixels in left and right padding bounding boxes, XLPAD

i and
XRPAD

i , are generated from a background distribution.

3.2 Typesetting Model P (T |E)

Generally speaking, the process of typesetting
produces a line of text by first tiling bounding
boxes of various widths and then filling in the
boxes with glyphs. Our generative model, which
is depicted in Figure 3, reflects this process. As
a first step, our model generates the dimensions
of character bounding boxes; for each character
token index i we generate three bounding box
widths: a glyph box width gi, a left padding box
width li, and a right padding box width ri, as
shown in Figure 3. We let the pixel height of all
lines be fixed to h. Let Ti = (li, gi, ri) so that Ti
specifies the dimensions of the character box for
token index i; T is then the concatenation of all
Ti, denoting the full layout.

Because the width of a glyph depends on its
shape, and because of effects resulting from kern-
ing and the use of ligatures, the components of
each Ti are drawn conditioned on the character
token ei. This means that, as part of our param-
eterization of the font, for each character type c
we have vectors of multinomial parameters θLPAD

c ,
θGLYPH
c , and θRPAD

c governing the distribution of the
dimensions of character boxes of type c. These
parameters are depicted on the right-hand side of

Figure 3. We can now express the typesetting lay-
out portion of the model as:

P (T |E) =

m∏

i=1

P (Ti|ei)

=

m∏

i=1

[
P (li; θ

LPAD
ei ) · P (gi; θ

GLYPH
ei ) · P (ri; θ

RPAD
ei )

]

Each character type c in our font has another set
of parameters, a matrix φc. These are weights that
specify the shape of the character type’s glyph,
and are depicted in Figure 3 as part of the font pa-
rameters. φc will come into play when we begin
generating pixels in Section 3.3.

3.2.1 Inking Model P (R)
Before we start filling the character boxes with
pixels, we need to specify some properties of
the inking and rendering process, including the
amount of ink used and vertical variation along
the text baseline. Our model does this by gener-
ating, for each character token index i, a discrete
value di that specifies the overall inking level in
the character’s bounding box, and a discrete value
vi that specifies the glyph’s vertical offset. These
variations in the inking and typesetting process are
mostly independent of character type. Thus, in
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our model, their distributions are not character-
specific. There is one global set of multinomial
parameters governing inking level (θINK), and an-
other governing offset (θVERT); both are depicted
on the left-hand side of Figure 3. LetRi = (di, vi)
and let R be the concatenation of all Ri so that we
can express the inking model as:

P (R) =

m∏

i=1

P (Ri)

=

m∏

i=1

[
P (di; θ

INK) · P (vi; θ
VERT)

]

The di and vi variables are suppressed in Figure 3
to reduce clutter but are expressed in Figure 4,
which depicts the process of rendering a glyph
box.

3.3 Noise Model P (X|E, T,R)
Now that we have generated a typesetting layout
T and an inking context R, we have to actually
generate each of the pixels in each of the charac-
ter boxes, left padding boxes, and right padding
boxes; the matrices that these groups of pixels
comprise are denoted XGLYPH

i , XLPAD
i , and XRPAD

i ,
respectively, and are depicted at the bottom of Fig-
ure 3.

We assume that pixels are binary valued and
sample their values independently from Bernoulli
distributions.2 The probability of black (the
Bernoulli parameter) depends on the type of pixel
generated. All the pixels in a padding box have
the same probability of black that depends only on
the inking level of the box, di. Since we have al-
ready generated this value and the widths li and ri
of each padding box, we have enough information
to generate left and right padding pixel matrices
XLPAD

i and XRPAD
i .

The Bernoulli parameter of a pixel inside a
glyph bounding box depends on the pixel’s loca-
tion inside the box (as well as on di and vi, but
for simplicity of exposition, we temporarily sup-
press this dependence) and on the model param-
eters governing glyph shape (for each character
type c, the parameter matrix φc specifies the shape
of the character’s glyph.) The process by which
glyph pixels are generated is depicted in Figure 4.

The dependence of glyph pixels on location
complicates generation of the glyph pixel matrix
XGLYPH

i since the corresponding parameter matrix
2We could generate real-valued pixels with a different

choice of noise distribution.
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Figure 4: We generate the pixels for the character token ei
by first sampling a glyph width gi, an inking level di, and
a vertical offset vi. Then we interpolate the glyph weights
φei and apply the logistic function to produce a matrix of
Bernoulli parameters of width gi, inking di, and offset vi.
θPIXEL(j, k, gi, di, vi;φei) is the Bernoulli parameter at row j
and column k. Finally, we sample from each Bernoulli distri-
bution to generate a matrix of pixel values, XGLYPH

i .

φei has some type-level width w which may dif-
fer from the current token-level width gi. Intro-
ducing distinct parameters for each possible width
would yield a model that can learn completely dif-
ferent glyph shapes for slightly different widths of
the same character. We, instead, need a parame-
terization that ties the shapes for different widths
together, and at the same time allows mobility in
the parameter space during learning.

Our solution is to horizontally interpolate the
weights of the shape parameter matrix φei down
to a smaller set of columns matching the token-
level choice of glyph width gi. Thus, the type-
level matrix φei specifies the canonical shape of
the glyph for character ei when it takes its max-
imum width w. After interpolating, we apply
the logistic function to produce the individual
Bernoulli parameters. If we let [XGLYPH

i ]jk denote
the value of the pixel at the jth row and kth col-
umn of the glyph pixel matrix XGLYPH

i for token i,
and let θPIXEL(j, k, gi;φei) denote the token-level
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µ

Figure 5: In order to produce Bernoulli parameter matrices
θPIXEL of variable width, we interpolate over columns of φc

with vectors µ, and apply the logistic function to each result.

Bernoulli parameter for this pixel, we can write:

[XGLYPH
i ]jk ∼ Bernoulli

(
θPIXEL(j, k, gi;φei)

)

The interpolation process for a single row is de-
picted in Figure 5. We define a constant interpola-
tion vector µ(gi, k) that is specific to the glyph box
width gi and glyph box column k. Each µ(gi, k)
is shaped according to a Gaussian centered at the
relative column position in φei . The glyph pixel
Bernoulli parameters are defined as follows:

θPIXEL(j, k,gi;φei) =

logistic
( w∑

k′=1

[
µ(gi, k)k′ · [φei ]jk′

])

The fact that the parameterization is log-linear will
ensure that, during the unsupervised learning pro-
cess, updating the shape parameters φc is simple
and feasible.

By varying the magnitude of µ we can change
the level of smoothing in the logistic model and
cause it to permit areas that are over-inked. This is
the effect that di controls. By offsetting the rows
of φc that we interpolate weights from, we change
the vertical offset of the glyph, which is controlled
by vi. The full pixel generation process is dia-
grammed in Figure 4, where the dependence of
θPIXEL on di and vi is also represented.

4 Learning

We use the EM algorithm (Dempster et al., 1977)
to find the maximum-likelihood font parameters:
φc, θLPAD

c , θGLYPH
c , and θRPAD

c . The image X is the
only observed random variable in our model. The
identities of the characters E the typesetting lay-
out T and the inking R will all be unobserved. We
do not learn θINK and θVERT, which are set to the
uniform distribution.

4.1 Expectation Maximization
During the E-step we compute expected counts
for E and T , but maximize over R, for which

we compute hard counts. Our model is an in-
stance of a hidden semi-Markov model (HSMM),
and therefore the computation of marginals is
tractable with the semi-Markov forward-backward
algorithm (Levinson, 1986).

During the M-step, we update the parame-
ters θLPAD

c , θRPAD
c using the standard closed-form

multinomial updates and use a specialized closed-
form update for θGLYPH

c that enforces unimodal-
ity of the glyph width distribution.3 The glyph
weights, φc, do not have a closed-form update.
The noise model that φc parameterizes is a lo-
cal log-linear model, so we follow the approach
of Berg-Kirkpatrick et al. (2010) and use L-BFGS
(Liu and Nocedal, 1989) to optimize the expected
likelihood with respect to φc.

4.2 Coarse-to-Fine Learning and Inference

The number of states in the dynamic programming
lattice grows exponentially with the order of the
language model (Jelinek, 1998; Koehn, 2004). As
a result, inference can become slow when the lan-
guage model order n is large. To remedy this, we
take a coarse-to-fine approach to both learning and
inference. On each iteration of EM, we perform
two passes: a coarse pass using a low-order lan-
guage model, and a fine pass using a high-order
language model (Petrov et al., 2008; Zhang and
Gildea, 2008). We use the marginals4 from the
coarse pass to prune states from the dynamic pro-
gram of the fine pass.

In the early iterations of EM, our font parame-
ters are still inaccurate, and to prune heavily based
on such parameters would rule out correct anal-
yses. Therefore, we gradually increase the ag-
gressiveness of pruning over the course of EM. To
ensure that each iteration takes approximately the
same amount of computation, we also gradually
increase the order of the fine pass, only reaching
the full order n on the last iteration. To produce a
decoding of the image into text, on the final iter-
ation we run a Viterbi pass using the pruned fine
model.

3We compute the weighted mean and weighted variance
of the glyph width expected counts. We set θGLYPH

c to be pro-
portional to a discretized Gaussian with the computed mean
and variance. This update is approximate in the sense that it
does not necessarily find the unimodal multinomial that max-
imizes expected log-likelihood, but it works well in practice.

4In practice, we use max-marginals for pruning to ensure
that there is still a valid path in the pruned lattice.
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Old Bailey, 1725:

Old Bailey, 1875:

Trove, 1883:

Trove, 1823:

(a)

(b)

(c)

(d)

Figure 6: Portions of several documents from our test set rep-
resenting a range of difficulties are displayed. On document
(a), which exhibits noisy typesetting, our system achieves a
word error rate (WER) of 25.2. Document (b) is cleaner in
comparison, and on it we achieve a WER of 15.4. On doc-
ument (c), which is also relatively clean, we achieve a WER
of 12.5. On document (d), which is severely degraded, we
achieve a WER of 70.0.

5 Data

We perform experiments on two historical datasets
consisting of images of documents printed be-
tween 1700 and 1900 in England and Australia.
Examples from both datasets are displayed in Fig-
ure 6.

5.1 Old Bailey

The first dataset comes from a large set of im-
ages of the proceedings of the Old Bailey, a crimi-
nal court in London, England (Shoemaker, 2005).
The Old Bailey curatorial effort, after deciding
that current OCR systems do not adequately han-
dle 18th century fonts, manually transcribed the

documents into text. We will use these manual
transcriptions to evaluate the output of our system.
From the Old Bailey proceedings, we extracted a
set of 20 images, each consisting of 30 lines of
text to use as our first test set. We picked 20 doc-
uments, printed in consecutive decades. The first
document is from 1715 and the last is from 1905.
We choose the first document in each of the corre-
sponding years, choose a random page in the doc-
ument, and extracted an image of the first 30 con-
secutive lines of text consisting of full sentences.5

The ten documents in the Old Bailey dataset that
were printed before 1810 use the long s glyph,
while the remaining ten do not.

5.2 Trove

Our second dataset is taken from a collection of
digitized Australian newspapers that were printed
between the years of 1803 and 1954. This col-
lection is called Trove, and is maintained by the
the National Library of Australia (Holley, 2010).
We extracted ten images from this collection in the
same way that we extracted images from Old Bai-
ley, but starting from the year 1803. We manually
produced our own gold annotations for these ten
images. Only the first document of Trove uses the
long s glyph.

5.3 Pre-processing

Many of the images in historical collections are
bitonal (binary) as a result of how they were cap-
tured on microfilm for storage in the 1980s (Arl-
itsch and Herbert, 2004). This is part of the reason
our model is designed to work directly with bi-
narized images. For consistency, we binarized the
images in our test sets that were not already binary
by thresholding pixel values.

Our model requires that the image be pre-
segmented into lines of text. We automatically
segment lines by training an HSMM over rows of
pixels. After the lines are segmented, each line
is resampled so that its vertical resolution is 30
pixels. The line extraction process also identifies
pixels that are not located in central text regions,
and are part of large connected components of ink,
spanning multiple lines. The values of such pixels
are treated as unobserved in the model since, more
often than not, they are part of ink blotches.

5This ruled out portions of the document with extreme
structural abnormalities, like title pages and lists. These
might be interesting to model, but are not within the scope
of this paper.
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6 Experiments

We evaluate our system by comparing our text
recognition accuracy to that of two state-of-the-art
systems.

6.1 Baselines
Our first baseline is Google’s open source OCR
system, Tesseract (Smith, 2007). Tesseract takes
a pipelined approach to recognition. Before rec-
ognizing the text, the document is broken into
lines, and each line is segmented into words.
Then, Tesseract uses a classifier, aided by a word-
unigram language model, to recognize whole
words.

Our second baseline, ABBYY FineReader 11
Professional Edition,6 is a state-of-the-art com-
mercial OCR system. It is the OCR system that
the National Library of Australia used to recognize
the historical documents in Trove (Holley, 2010).

6.2 Evaluation
We evaluate the output of our system and the base-
line systems using two metrics: character error
rate (CER) and word error rate (WER). Both these
metrics are based on edit distance. CER is the edit
distance between the predicted and gold transcrip-
tions of the document, divided by the number of
characters in the gold transcription. WER is the
word-level edit distance (words, instead of char-
acters, are treated as tokens) between predicted
and gold transcriptions, divided by the number of
words in the gold transcription. When computing
WER, text is tokenized into words by splitting on
whitespace.

6.3 Language Model
We ran experiments using two different language
models. The first language model was trained
on the initial one million sentences of the New
York Times (NYT) portion of the Gigaword cor-
pus (Graff et al., 2007), which contains about 36
million words. This language model is out of do-
main for our experimental documents. To inves-
tigate the effects of using an in domain language
model, we created a corpus composed of the man-
ual annotations of all the documents in the Old
Bailey proceedings, excluding those used in our
test set. This corpus consists of approximately 32
million words. In all experiments we used a char-
acter n-gram order of six for the final Viterbi de-

6http://www.abbyy.com

System CER WER
Old Bailey

Google Tesseract 29.6 54.8
ABBYY FineReader 15.1 40.0
Ocular w/ NYT (this work) 12.6 28.1
Ocular w/ OB (this work) 9.7 24.1

Trove
Google Tesseract 37.5 59.3
ABBYY FineReader 22.9 49.2
Ocular w/ NYT (this work) 14.9 33.0

Table 1: We evaluate the predicted transcriptions in terms of
both character error rate (CER) and word error rate (WER),
and report macro-averages across documents. We compare
with two baseline systems: Google’s open source OCR sys-
tem, Tessearact, and a state-of-the-art commercial system,
ABBYY FineReader. We refer to our system as Ocular w/
NYT and Ocular w/ OB, depending on whether NYT or Old
Bailey is used to train the language model.

coding pass and an order of three for all coarse
passes.

6.4 Initialization and Tuning
We used as a development set ten additional docu-
ments from the Old Bailey proceedings and five
additional documents from Trove that were not
part of our test set. On this data, we tuned the
model’s hyperparameters7 and the parameters of
the pruning schedule for our coarse-to-fine ap-
proach.

In experiments we initialized θRPAD
c and θLPAD

c to
be uniform, and initialized θGLYPH

c and φc based
on the standard modern fonts included with the
Ubuntu Linux 12.04 distribution.8 For documents
that use the long s glyph, we introduce a special
character type for the non-word-final s, and ini-
tialize its parameters from a mixture of the modern
f and | glyphs.9

7 Results and Analysis

The results of our experiments are summarized in
Table 1. We refer to our system as Ocular w/
NYT or Ocular w/ OB, depending on whether the
language model was trained using NYT or Old
Bailey, respectively. We compute macro-averages

7One of the hyperparameters we tune is the exponent of
the language model. This balances the contributions of the
language model and the typesetting model to the posterior
(Och and Ney, 2004).

8http://www.ubuntu.com/
9Following Berg-Kirkpatrick et al. (2010), we use a reg-

ularization term in the optimization of the log-linear model
parameters φc during the M-step. Instead of regularizing to-
wards zero, we regularize towards the initializer. This slightly
improves performance on our development set and can be
thought of as placing a prior on the glyph shape parameters.
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(c) Trove, 1883:

(b) Old Bailey, 1885:

(a) Old Bailey, 1775: the prisoner at the bar. Jacob Lazarus and his

taken ill and taken away – I remember

how the murderers came to learn the nation in

Predicted text:

Predicted typesetting:

Image:

Predicted text:

Predicted typesetting:

Image:

Predicted text:

Predicted typesetting:

Image:

Figure 7: For each of these portions of test documents, the first line shows the transcription predicted by our model and the
second line shows a representation of the learned typesetting layout. The grayscale glyphs show the Bernoulli pixel distributions
learned by our model, while the padding regions are depicted in blue. The third line shows the input image.

across documents from all years. Our system, us-
ing the NYT language model, achieves an average
WER of 28.1 on Old Bailey and an average WER
of 33.0 on Trove. This represents a substantial er-
ror reduction compared to both baseline systems.

If we average over the documents in both Old
Bailey and Trove, we find that Tesseract achieved
an average WER of 56.3, ABBYY FineReader
achieved an average WER of 43.1, and our system,
using the NYT language model, achieved an aver-
age WER of 29.7. This means that while Tesseract
incorrectly predicts more than half of the words in
these documents, our system gets more than three-
quarters of them right. Overall, we achieve a rela-
tive reduction in WER of 47% compared to Tesser-
act and 31% compared to ABBYY FineReader.

The baseline systems do not have special pro-
visions for the long s glyph. In order to make
sure the comparison is fair, we separately com-
puted average WER on only the documents from
after 1810 (which do no use the long s glyph). We
found that using this evaluation our system actu-
ally acheives a larger relative reduction in WER:
50% compared to Tesseract and 35% compared to
ABBYY FineReader.

Finally, if we train the language model using
the Old Bailey corpus instead of the NYT corpus,
we see an average improvement of 4 WER on the
Old Bailey test set. This means that the domain of
the language model is important, but, the results
are not affected drastically even when using a lan-
guage model based on modern corpora (NYT).

7.1 Learned Typesetting Layout
Figure 7 shows a representation of the typesetting
layout learned by our model for portions of several

Initializer

1700

1740

1780 1820

1860

1900

Figure 8: The central glyph is a representation of the initial
model parameters for the glyph shape for g, and surrounding
this are the learned parameters for documents from various
years.

test documents. For each portion of a test doc-
ument, the first line shows the transcription pre-
dicted by our model, and the second line shows
padding and glyph regions predicted by the model,
where the grayscale glyphs represent the learned
Bernoulli parameters for each pixel. The third line
shows the input image.

Figure 7a demonstrates a case where our model
has effectively explained both the uneven baseline
and over-inked glyphs by using the vertical offsets
vi and inking variables di. In Figure 7b the model
has used glyph widths gi and vertical offsets to ex-
plain the thinning of glyphs and falling baseline
that occurred near the binding of the book. In sep-
arate experiments on the Old Bailey test set, using
the NYT language model, we found that remov-
ing the vertical offset variables from the model in-
creased WER by 22, and removing the inking vari-
ables increased WER by 16. This indicates that it
is very important to model both these aspects of
printing press rendering.
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Figure 9: This Old Bailey document from 1719 has severe ink bleeding from the facing page. We annotated these blotches (in
red) and treated the corresponding pixels as unobserved in the model. The layout shown is predicted by the model.

Figure 7c shows the output of our system on
a difficult document. Here, missing characters
and ink blotches confuse the model, which picks
something that is reasonable according to the lan-
guage model, but incorrect.

7.2 Learned Fonts

It is interesting to look at the fonts learned by our
system, and track how historical fonts changed
over time. Figure 8 shows several grayscale im-
ages representing the Bernoulli pixel probabilities
for the most likely width of the glyph for g under
various conditions. At the center is the representa-
tion of the initial parameter values, and surround-
ing this are the learned parameters for documents
from various years. The learned shapes are visibly
different from the initializer, which is essentially
an average of modern fonts, and also vary across
decades.

We can ask to what extent learning the font
structure actually improved our performance. If
we turn off learning and just use the initial pa-
rameters to decode, WER increases by 8 on the
Old Bailey test set when using the NYT language
model.

7.3 Unobserved Ink Blotches

As noted earlier, one strength of our generative
model is that we can make the values of certain
pixels unobserved in the model, and let inference
fill them in. We conducted an additional experi-
ment on a document from the Old Bailey proceed-
ings that was printed in 1719. This document, a
fragment of which is shown in Figure 9, has se-
vere ink bleeding from the facing page. We manu-
ally annotated the ink blotches (shown in red), and
made them unobserved in the model. The result-
ing typesetting layout learned by the model is also
shown in Figure 9. The model correctly predicted
most of the obscured words. Running the model
with the manually specified unobserved pixels re-

duced the WER on this document from 58 to 19
when using the NYT language model.

7.4 Remaining Errors

We performed error analysis on our development
set by randomly choosing 100 word errors from
the WER alignment and manually annotating them
with relevant features. Specifically, for each word
error we recorded whether or not the error con-
tained punctuation (either in the predicted word or
the gold word), whether the text in the correspond-
ing portion of the original image was italicized,
and whether the corresponding portion of the im-
age exhibited over-inking, missing ink, or signif-
icant ink blotches. These last three feature types
are subjective in nature but may still be informa-
tive. We found that 56% of errors were accompa-
nied by over-inking, 50% of errors were accom-
panied by ink blotches, 42% of errors contained
punctuation, 21% of errors showed missing ink,
and 12% of errors contained text that was itali-
cized in the original image.

Our own subjective assessment indicates that
many of these error features are in fact causal.
More often than not, italicized text is incorrectly
transcribed. In cases of extreme ink blotching,
or large areas of missing ink, the system usually
makes an error.

8 Conclusion

We have demonstrated a model, based on the his-
torical typesetting process, that effectively learns
font structure in an unsupervised fashion to im-
prove transcription of historical documents into
text. The parameters of the learned fonts are inter-
pretable, as are the predicted typesetting layouts.
Our system achieves state-of-the-art results, sig-
nificantly outperforming two state-of-the-art base-
line systems.
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