
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 145–154,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Generic binarization for parsing and translation

Matthias Büchse
Technische Universität Dresden
matthias.buechse@tu-dresden.de

Alexander Koller
University of Potsdam

koller@ling.uni-potsdam.de

Heiko Vogler
Technische Universität Dresden

heiko.vogler@tu-dresden.de

Abstract

Binarization of grammars is crucial for im-
proving the complexity and performance
of parsing and translation. We present a
versatile binarization algorithm that can
be tailored to a number of grammar for-
malisms by simply varying a formal pa-
rameter. We apply our algorithm to bi-
narizing tree-to-string transducers used in
syntax-based machine translation.

1 Introduction

Binarization amounts to transforming a given
grammar into an equivalent grammar of rank 2,
i.e., with at most two nonterminals on any right-
hand side. The ability to binarize grammars is
crucial for efficient parsing, because for many
grammar formalisms the parsing complexity de-
pends exponentially on the rank of the gram-
mar. It is also critically important for tractable
statistical machine translation (SMT). Syntax-
based SMT systems (Chiang, 2007; Graehl et
al., 2008) typically use some type of synchronous
grammar describing a binary translation rela-
tion between strings and/or trees, such as syn-
chronous context-free grammars (SCFGs) (Lewis
and Stearns, 1966; Chiang, 2007), synchronous
tree-substitution grammars (Eisner, 2003), syn-
chronous tree-adjoining grammars (Nesson et al.,
2006; DeNeefe and Knight, 2009), and tree-to-
string transducers (Yamada and Knight, 2001;
Graehl et al., 2008). These grammars typically
have a large number of rules, many of which have
rank greater than two.

The classical approach to binarization, as
known from the Chomsky normal form transfor-
mation for context-free grammars (CFGs), pro-
ceeds rule by rule. It replaces each rule of rank
greater than 2 by an equivalent collection of rules
of rank 2. All CFGs can be binarized in this

way, which is why their recognition problem is
cubic. In the case of linear context-free rewriting
systems (LCFRSs, (Weir, 1988)) the rule-by-rule
technique also applies to every grammar, as long
as an increased fanout it permitted (Rambow and
Satta, 1999).

There are also grammar formalisms for which
the rule-by-rule technique is not complete. In the
case of SCFGs, not every grammar has an equiva-
lent representation of rank 2 in the first place (Aho
and Ullman, 1969). Even when such a represen-
tation exists, it is not always possible to compute
it rule by rule. Nevertheless, the rule-by-rule bi-
narization algorithm of Huang et al. (2009) is very
useful in practice.

In this paper, we offer a generic approach
for transferring the rule-by-rule binarization tech-
nique to new grammar formalisms. At the core of
our approach is a binarization algorithm that can
be adapted to a new formalism by changing a pa-
rameter at runtime. Thus it only needs to be im-
plemented once, and can then be reused for a va-
riety of formalisms. More specifically, our algo-
rithm requires the user to (i) encode the grammar
formalism as a subclass of interpreted regular tree
grammars (IRTGs, (Koller and Kuhlmann, 2011))
and (ii) supply a collection of b-rules, which rep-
resent equivalence of grammars syntactically. Our
algorithm then replaces, in a given grammar, each
rule of rank greater than 2 by an equivalent collec-
tion of rules of rank 2, if such a collection is li-
censed by the b-rules. We define completeness of
b-rules in a way that ensures that if any equivalent
collection of rules of rank 2 exists, the algorithm
finds one. As a consequence, the algorithm bina-
rizes every grammar that can be binarized rule by
rule. Step (i) is possible for all the grammar for-
malisms mentioned above. We show Step (ii) for
SCFGs and tree-to-string transducers.

We will use SCFGs as our running example
throughout the paper. We will also apply the algo-

145

rithm to tree-to-string transducers (Graehl et al.,
2008; Galley et al., 2004), which describe rela-
tions between strings in one language and parse
trees of another, which means that existing meth-
ods for binarizing SCFGs and LCFRSs cannot be
directly applied to these systems. To our knowl-
edge, our binarization algorithm is the first to bi-
narize such transducers. We illustrate the effec-
tiveness of our system by binarizing a large tree-
to-string transducer for English-German SMT.

Plan of the paper. We start by defining IRTGs
in Section 2. In Section 3, we define the gen-
eral outline of our approach to rule-by-rule bina-
rization for IRTGs, and then extend this to an ef-
ficient binarization algorithm based on b-rules in
Section 4. In Section 5 we show how to use the
algorithm to perform rule-by-rule binarization of
SCFGs and tree-to-string transducers, and relate
the results to existing work.

2 Interpreted regular tree grammars

Grammar formalisms employed in parsing and
SMT, such as those mentioned in the introduc-
tion, differ in the the derived objects—e.g., strings,
trees, and graphs—and the operations involved in
the derivation—e.g., concatenation, substitution,
and adjoining. Interpreted regular tree grammars
(IRTGs) permit a uniform treatment of many of
these formalisms. To this end, IRTGs combine
two ideas, which we explain here.

Algebras IRTGs represent the objects and op-
erations symbolically using terms; the object in
question is obtained by interpreting each symbol
in the term as a function. As an example, Table 1
shows terms for a string and a tree, together with
the denoted object. In the string case, we describe
complex strings as concatenation (con2) of ele-
mentary symbols (e.g., a, b); in the tree case, we
alternate the construction of a sequence of trees
(con2) with the construction of a single tree by
placing a symbol (e.g., α, β, σ) on top of a (pos-
sibly empty) sequence of trees. Whenever a term
contains variables, it does not denote an object,
but rather a function. In the parlance of universal-
algebra theory, we are employing initial-algebra
semantics (Goguen et al., 1977).

An alphabet is a nonempty finite set. Through-
out this paper, let X = {x1, x2, . . . } be a set,
whose elements we call variables. We let Xk de-
note the set {x1, . . . , xk} for every k ≥ 0. Let Σ

be an alphabet and V ⊆ X . We write TΣ(V) for
the set of all terms over Σ with variables V , i.e.,
the smallest set T such that (i) V ⊆ T and (ii) for
every σ ∈ Σ, k ≥ 0, and t1, . . . , tk ∈ T , we
have σ(t1, . . . , tk) ∈ T . Alternatively, we view
TΣ(V) as the set of all (rooted, labeled, ordered,
unranked) trees over Σ and V , and draw them
as usual. By TΣ we abbreviate TΣ(∅). The set
CΣ(V) of contexts over Σ and V is the set of all
trees over Σ and V in which each variable in V
occurs exactly once.

A signature is an alphabet Σ where each symbol
is equipped with an arity. We write Σ|k for the
subset of all k-ary symbols of Σ, and σ|k to denote
σ ∈ Σ|k. We denote the signature by Σ as well.
A signature is binary if the arities do not exceed 2.
Whenever we use TΣ(V) with a signature Σ, we
assume that the trees are ranked, i.e., each node
labeled by σ ∈ Σ|k has exactly k children.

Let ∆ be a signature. A ∆-algebra A consists
of a nonempty set A called the domain and, for
each symbol f ∈ ∆ with rank k, a total function
fA : Ak → A, the operation associated with f .
We can evaluate any term t in T∆(Xk) in A, to
obtain a k-ary operation tA over the domain. In
particular, terms in T∆ evaluate to elements of A.
For instance, in the string algebra shown in Ta-
ble 1, the term con2(a, b) evaluates to ab, and the
term con2(con2(x2, a), x1) evaluates to a binary
operation f such that, e.g., f(b, c) = cab.

Bimorphisms IRTGs separate the finite control
(state behavior) of a derivation from its derived
object (in its term representation; generational be-
havior); the former is captured by a regular tree
language, while the latter is obtained by applying
a tree homomorphism. This idea goes back to the
tree bimorphisms of Arnold and Dauchet (1976).

Let Σ be a signature. A regular tree grammar
(RTG) G over Σ is a triple (Q, q0, R) where Q
is a finite set (of states), q0 ∈ Q, and R is a fi-
nite set of rules of the form q → α(q1, . . . , qk),
where q ∈ Q, α ∈ Σ|k and q, q1, . . . , qk ∈ Q.
We call α the terminal symbol and k the rank
of the rule. Rules of rank greater than two are
called suprabinary. For every q ∈ Q we de-
fine the language Lq(G) derived from q as the set
{α(t1, . . . , tk) | q → α(q1, . . . , qk) ∈ R, tj ∈
Lqj (G)}. If q = q0, we drop the superscript and
write L(G) for the tree language of G. In the lit-
erature, there is a definition of RTG which also
permits more than one terminal symbol per rule,

146

strings over Γ trees over Γ

example term
and denoted object

con2

a b
7→ ab

σ

con2

α

con0

β

con0

7→
σ

α β

domain Γ∗ T ∗Γ (set of sequences of trees)

signature ∆ {a|0 | a ∈ Γ} ∪ {γ|1 | γ ∈ Γ} ∪
{conk|k | 0 ≤ k ≤ K, k 6= 1} {conk|k | 0 ≤ k ≤ K, k 6= 1}

operations a : () 7→ a γ : x1 7→ γ(x1)
conk : (x1, . . . , xk) 7→ x1 · · ·xk conk : (x1, . . . , xk) 7→ x1 · · ·xk

Table 1: Algebras for strings and trees, given an alphabet Γ and a maximum arity K ∈ N.

or none. This does not increase the generative ca-
pacity (Brainerd, 1969).

A (linear, nondeleting) tree homomorphism is a
mapping h : TΣ(X) → T∆(X) that satisfies the
following condition: there is a mapping g : Σ →
T∆(X) such that (i) g(σ) ∈ C∆(Xk) for every
σ ∈ Σ|k, (ii) h(σ(t1, . . . , tk)) is the tree obtained
from g(σ) by replacing the occurrence of xj by
h(tj), and (iii) h(xj) = xj . This extends the
usual definition of linear and nondeleting homo-
morphisms (Gécseg and Steinby, 1997) to trees
with variables. We abuse notation and write h(σ)
for g(σ) for every σ ∈ Σ.

Let n ≥ 1 and ∆1, . . . ,∆n be signatures. A
(generalized) bimorphism over (∆1, . . . ,∆n) is a
tuple B = (G, h1, . . . , hn) where G is an RTG
over some signature Σ and hi is a tree homo-
morphism from TΣ(X) into T∆i(X). The lan-
guage L(B) induced by B is the tree relation
{(h1(t), . . . , hn(t)) | t ∈ L(G)}.

An IRTG is a bimorphism whose derived trees
are viewed as terms over algebras; see Fig. 1.
Formally, an IRTG G over (∆1, . . . ,∆n) is a
tuple (B,A1, . . . ,An) such that B is a bimor-
phism over (∆1, . . . ,∆n) and Ai is a ∆i-algebra.
The language L(G) induced by G is the relation
{(tA1

1 , . . . , tAn
n) | (t1, . . . , tn) ∈ L(B)}. We call

the trees in L(G) derivation trees and the terms
in L(B) semantic terms. We say that two IRTGs
G and G′ are equivalent if L(G) = L(G′). IRTGs
were first defined in (Koller and Kuhlmann, 2011).

For example, Fig. 2 is an IRTG that encodes
a synchronous context-free grammar (SCFG). It
contains a bimorphism B = (G, h1, h2) consist-
ing of an RTG G with four rules and homomor-

L(G)

T∆1 · · · T∆n

A1 · · · An

h1 hn

(.)A1 (.)An

⊆ TΣ

bimorphism B = (G, h1, h2)

IRTG G = (B,A1,A2)

derivation
trees

semantic
terms

derived
objects

Figure 1: IRTG, bimorphism overview.

A→ α(B,C,D)
B → α1, C → α2, D → α3

con3

x1 x2 x3

h1←− [α h27−→
con4

x3 a x1 x2

b
h1←− [α1

h27−→ b

c
h1←− [α2

h27−→ c

d
h1←− [α3

h27−→ d

Figure 2: An IRTG encoding an SCFG.

phisms h1 and h2 which map derivation trees to
trees over the signature of the string algebra in Ta-
ble 1. By evaluating these trees in the algebra,
the symbols con3 and con4 are interpreted as con-
catenation, and we see that the first rule encodes
the SCFG rule A → 〈BCD,DaBC〉. Figure 3
shows a derivation tree with its two homomorphic
images, which evaluate to the strings bcd and dabc.

IRTGs can be tailored to the expressive capacity
of specific grammar formalisms by selecting suit-
able algebras. The string algebra in Table 1 yields
context-free languages, more complex string al-

147

con3

b c d

h1←− [
α

α1 α2 α3

h27−→
con4

d a b c

Figure 3: Derivation tree and semantic terms.

A→ α′(A′, D)
A′ → α′′(B,C)

con2

x1 x2

h′
1←− [α′ h′

27−→

con2

con2

x2 a

x1

con2

x1 x2

h′
1←− [α′′ h′

27−→
con2

x1 x2

Figure 4: Binary rules corresponding to the α-rule
in Fig. 2.

gebras yield tree-adjoining languages (Koller and
Kuhlmann, 2012), and algebras over other do-
mains can yield languages of trees, graphs, or
other objects. Furthermore, IRTGs with n = 1 de-
scribe languages that are subsets of the algebra’s
domain, n = 2 yields synchronous languages or
tree transductions, and so on.

3 IRTG binarization

We will now show how to apply the rule-by-rule
binarization technique to IRTGs. We start in this
section by defining the binarization of a rule in an
IRTG, and characterizing it in terms of binariza-
tion terms and variable trees. We derive the actual
binarization algorithm from this in Section 4.

For the remainder of this paper, let G =
(B,A1, . . . ,An) be an IRTG over (∆1, . . . ,∆n)
with B = (G, h1, . . . , hn).

3.1 An introductory example

We start with an example to give an intuition of
our approach. Consider the first rule in Fig. 2,
which has rank three. This rule derives (in one
step) the fragment α(x1, x2, x3) of the derivation
tree in Fig. 3, which is mapped to the semantic
terms h1(α) and h2(α) shown in Fig. 2. Now con-
sider the rules in Fig. 4. These rules can be used to
derive (in two steps) the derivation tree fragment ξ
in Fig. 5e. Note that the terms h′1(ξ) and h1(α)
are equivalent in that they denote the same func-
tion over the string algebra, and so are the terms
h′2(ξ) and h2(α). Thus, replacing the α-rule by
the rules in Fig. 4 does not change the language of
the IRTG. However, since the new rules are binary,

(a)
con3

x1 x2 x3

con4

x3 a x1 x2

(b)

con2

x1 con2

x2 x3

con2

con2

x1 x2

x3

t1 : con2

con2

x3 a

con2

x1 x2

t2 :
con2

con2

x3 con2

a x1

x2

(c)

(d)

con2

x1 x2

x1
con2

x1 x2

x1 x2

con2

con2

x2 a

x1

x1
con2

x1 x2

x1 x2

(e)

h1←− [α h27−→

{x1, x2, x3}

{x1} {x2, x3}

{x2} {x3}

{x1, x2, x3}

{x1, x2}

{x1} {x2}

{x3}

τ : {x1, x2, x3}

{x1, x3}

{x1} {x3}

{x2}

con2

con2

x1 x2

x3

t1 :
h′
1←− [

α′

α′′

x1 x2

x3

ξ :

h′
27−→

con2

con2

x3 a

con2

x1 x2

t2 :

Figure 5: Outline of the binarization algorithm.

parsing and translation will be cheaper.
Now we want to construct the binary rules sys-

tematically. In the example, we proceed as fol-
lows (cf. Fig. 5). For each of the terms h1(α) and
h2(α) (Fig. 5a), we consider all terms that satisfy
two properties (Fig. 5b): (i) they are equivalent
to h1(α) and h2(α), respectively, and (ii) at each
node at most two subtrees contain variables. As
Fig. 5 suggests, there may be many different terms
of this kind. For each of these terms, we ana-
lyze the bracketing of variables, obtaining what we
call a variable tree (Fig. 5c). Now we pick terms
t1 and t2 corresponding to h1(α) and h2(α), re-
spectively, such that (iii) they have the same vari-
able tree, say τ . We construct a tree ξ from τ by a
simple relabeling, and we read off the tree homo-
morphisms h′1 and h′2 from a decomposition we
perform on t1 and t2, respectively; see Fig. 5, dot-
ted arrows, and compare the boxes in Fig. 5d with
the homomorphisms in Fig. 4. Now the rules in
Fig. 4 are easily extracted from ξ.

These rules are equivalent to r because of (i);
they are binary because ξ is binary, which in turn
holds because of (ii); finally, the decompositions
of t1 and t2 are compatible with ξ because of (iii).
We call terms t1 and t2 binarization terms if they
satisfy (i)–(iii). We will see below that we can con-

148

struct binary rules equivalent to r from any given
sequence of binarization terms t1, t2, and that bi-
narization terms exist whenever equivalent binary
rules exist. The majority of this paper revolves
around the question of finding binarization terms.

Rule-by-rule binarization of IRTGs follows the
intuition laid out in this example closely: it means
processing each suprabinary rule, attempting to
replace it with an equivalent collection of binary
rules.

3.2 Binarization terms

We will now make this intuition precise. To this
end, we assume that r = q → α(q1, . . . , qk) is a
suprabinary rule of G. As we have seen, binariz-
ing r boils down to constructing:
• a tree ξ over some binary signature Σ′ and
• tree homomorphisms h′1, . . . , h

′
n of type

h′i : TΣ′(X)→ T∆i(X),
such that h′i(ξ) and hi(α) are equivalent, i.e., they
denote the same function over Ai. We call such a
tuple (ξ, h′1, . . . , h

′
n) a binarization of the rule r.

Note that a binarization of r need not exist. The
problem of rule-by-rule binarization consists in
computing a binarization of each suprabinary rule
of a grammar. If such a binarization does not exist,
the problem does not have a solution.

In order to define variable trees, we assume a
mapping seq that maps each finite set U of pair-
wise disjoint variable sets to a sequence over U
which contains each element exactly once. Let
t ∈ C∆(Xk). The variable set of t is the set of
all variables that occur in t. The set S(t) of sub-
tree variables of t consists of the nonempty vari-
able sets of all subtrees of t. We represent S(t)
as a tree v(t), which we call variable tree as fol-
lows. Any two elements of S(t) are either compa-
rable (with respect to the subset relation) or dis-
joint. We extend this ordering to a tree struc-
ture by ordering disjoint elements via seq. We let
v(L) = {v(t) | t ∈ L} for every L ⊆ C∆(Xk).

In the example of Fig. 5, t1 and t2 have the same
set of subtree variables; it is {{x1}, {x2}, {x3},
{x1, x2}, {x1, x2, x3}}. If we assume that seq or-
ders sets of variables according to the least vari-
able index, we arrive at the variable tree in the cen-
ter of Fig. 5.

Now let t1 ∈ T∆1(Xk), . . . , tn ∈ T∆n(Xk).
We call the tuple t1, . . . , tn binarization terms of
r if the following properties hold: (i) hi(α) and ti
are equivalent; (ii) at each node the tree ti contains

at most two subtrees with variables; and (iii) the
terms t1, . . . , tn have the same variable tree.

Assume for now that we have found binariza-
tion terms t1, . . . , tn. We show how to construct a
binarization (ξ, h′1, . . . , h

′
n) of r with ti = h′i(ξ).

First, we construct ξ. Since t1, . . . , tn are bi-
narization terms, they have the same variable tree,
say, τ . We obtain ξ from τ by replacing every la-
bel of the form {xj} with xj , and every other label
with a fresh symbol. Because of condition (ii) in
in the definition of binarization terms, ξ is binary.

In order to construct h′i(σ) for each symbol σ
in ξ, we transform ti into a tree t′i with labels from
C∆i(X) and the same structure as ξ. Then we read
off h′i(σ) from the node of t′i that corresponds to
the σ-labeled node of ξ. The transformation pro-
ceeds as illustrated in Fig. 6: first, we apply the
maximal decomposition operation d; it replaces
every label f ∈ ∆i|k by the tree f(x1, . . . , xk),
represented as a box. After that, we keep applying
the merge operation m as often as possible; it
merges two boxes that are in a parent-child rela-
tion, given that one of them has at most one child.
Thus the number of variables in any box can only
decrease. Finally, the reorder operation o orders
the children of each box according to the seq of
their variable sets. These operations do not change
the variable tree; one can use this to show that t′i
has the same structure as ξ.

Thus, if we can find binarization terms, we
can construct a binarization of r. Conversely, for
any given binarization (ξ, h′1, . . . , h

′
n) the seman-

tic terms h′1(ξ), . . . , h′n(ξ) are binarization terms.
This proves the following lemma.

Lemma 1 There is a binarization of r if and only
if there are binarization terms of r.

3.3 Finding binarization terms

It remains to show how we can find binarization
terms of r, if there are any.

Let bi : T∆i(Xk) → P(T∆i(Xk)) the mapping
with bi(t) = {t′ ∈ T∆i(Xk) | t and t′ are equiv-
alent, and at each node t′ has at most two chil-
dren with variables}. Figure 5b shows some ele-
ments of b1(h1(α)) and b2(h2(α)) for our exam-
ple. Terms t1, . . . , tn are binarization terms pre-
cisely when ti ∈ bi(hi(α)) and t1, . . . , tn have the
same variable tree. Thus we can characterize bi-
narization terms as follows.

Lemma 2 There are binarization terms if and
only if

⋂
i v(bi(hi(α))) 6= ∅.

149

con2

con2

x3 a

con2

x1 x2

 d

con2

x1 x2

con2

x1 x2

x3 a

con2

x1 x2

x1 x2

 m

con2

x1 x2

con2

x1 a

x3

con2

x1 x2

x1 x2

 m

con2

con2

x1 a

x2

x3
con2

x1 x2

x1 x2

 o

con2

con2

x2 a

x1

con2

x1 x2

x1 x2

x3

Figure 6: Transforming t2 into t′2.

This result suggests the following procedure
for obtaining binarization terms. First, determine
whether the intersection in Lemma 2 is empty. If
it is, then there is no binarization of r. Otherwise,
select a variable tree τ from this set. We know that
there are trees t1, . . . , tn such that ti ∈ bi(hi(α))
and v(ti) = τ . We can therefore select arbitrary
concrete trees ti ∈ bi(hi(α))∩ v−1(τ). The terms
t1, . . . , tn are then binarization terms.

4 Effective IRTG binarization

In this section we develop our binarization algo-
rithm. Its key task is finding binarization terms
t1, . . . , tn. This task involves deciding term equiv-
alence, as ti must be equivalent to hi(α). In gen-
eral, equivalence is undecidable, so the task can-
not be solved. We avoid deciding equivalence by
requiring the user to specify an explicit approxi-
mation of bi, which we call a b-rule. This param-
eter gives rise to a restricted version of the rule-
by-rule binarization problem, which is efficiently
computable while remaining practically relevant.

Let ∆ be a signature. A binarization rule (b-
rule) over ∆ is a mapping b : ∆ → P(T∆(X))
where for every f ∈ ∆|k we have that b(f) ⊆
C∆(Xk), at each node of a tree in b(f) only two
children contain variables, and b(f) is a regular
tree language. We extend b to T∆(X) by setting
b(xj) = {xj} and b(f(t1, . . . , tk)) = {t[xj/t′j |
1 ≤ j ≤ k] | t ∈ b(f), t′j ∈ b(tj)}, where [xj/t

′
j]

denotes substitution of xj by t′j . Given an alge-
bra A over ∆, a b-rule b over ∆ is called a b-rule
over A if, for every t ∈ T∆(Xk) and t′ ∈ b(t),
t′ and t are equivalent inA. Such a b-rule encodes
equivalence in A, and it does so in an explicit and
compact way: because b(f) is a regular tree lan-
guage, a b-rule can be specified by a finite collec-
tion of RTGs, one for each symbol f ∈ ∆. We will
look at examples (for the string and tree algebras
shown earlier) in Section 5.

From now on, we assume that b1, . . . , bn are
b-rules over A1, . . . ,An, respectively. A bina-
rization (ξ, h′1, . . . , h

′
n) of r is a binarization of r

with respect to b1, . . . , bn if h′i(ξ) ∈ bi(hi(α)).
Likewise, binarization terms t1, . . . , tn are bi-
narization terms with respect to b1, . . . , bn if
ti ∈ bi(hi(α)). Lemmas 1 and 2 carry over to
the restricted notions. The problem of rule-by-
rule binarization with respect to b1, . . . , bn con-
sists in computing a binarization with respect to
b1, . . . , bn for each suprabinary rule.

By definition, every solution to this restricted
problem is also a solution to the general prob-
lem. The converse need not be true. However,
we can guarantee that the restricted problem has
at least one solution whenever the general problem
has one, by requiring v(bi(hi(α)) = v(b(hi(α)).
Then the intersection in Lemma 2 is empty in the
restricted case if and only if it is empty in the gen-
eral case. We call the b-rules b1, . . . , b1 complete
on G if the equation holds for every α ∈ Σ.

Now we show how to effectively compute bina-
rization terms with respect to b1, . . . , bn, along the
lines of Section 3.3. More specifically, we con-
struct an RTG for each of the sets (i) bi(hi(α)),
(ii) b′i = v(bi(hi(α))), (iii)

⋂
i b
′
i, and (iv) b′′i =

bi(hi(α))∩v−1(τ) (given τ). Then we can select τ
from (iii) and ti from (iv) using a standard algo-
rithm, such as the Viterbi algorithm or Knuth’s
algorithm (Knuth, 1977; Nederhof, 2003; Huang
and Chiang, 2005). The effectiveness of our pro-
cedure stems from the fact that we only manipulate
RTGs and never enumerate languages.

The construction for (i) is recursive, following
the definition of bi. The base case is a language
{xj}, for which the RTG is easy. For the recursive
case, we use the fact that regular tree languages
are closed under substitution (Gécseg and Steinby,
1997, Prop. 7.3). Thus we obtain an RTG Gi with
L(Gi) = bi(hi(α)).

For (ii) and (iv), we need the following auxiliary

150

construction. Let Gi = (P, p0, R). We define the
mapping vari : P → P(Xk) such that for every
p ∈ P , every t ∈ Lp(Gi) contains exactly the vari-
ables in vari(p). We construct it as follows. We
initialize vari(p) to “unknown” for every p. For
every rule p → xj , we set vari(p) = {xj}. For
every rule p→ σ(p1, . . . , pk) such that vari(pj) is
known, we set vari(p) =

⋃
j vari(pj). This is iter-

ated; it can be shown that vari(p) is never assigned
two different values for the same p. Finally, we set
all remaining unknown entries to ∅.

For (ii), we construct an RTG G′i with L(G′i) =
b′i as follows. We let G′i = ({〈vari(p)〉 | p ∈
P}, vari(p0), R′) where R′ consists of the rules

〈{xj}〉 → {xj} if p→ xi ∈ R ,

〈vari(p)〉 → vari(p)(〈U1〉, . . . , 〈Ul〉〉)
if p→ σ(p1, . . . , pk) ∈ R,

V = {vari(pj) | 1 ≤ j ≤ k} \ {∅},
|V | ≥ 2, seq(V) = (U1, . . . , Ul) .

For (iii), we use the standard product construc-
tion (Gécseg and Steinby, 1997, Prop. 7.1).

For (iv), we construct an RTG G′′i such that
L(G′′i) = b′′i as follows. We let G′′i = (P, p0, R

′′),
where R′′ consists of the rules

p→ σ(p1, . . . , pk)

if p→ σ(p1, . . . , pk) ∈ R,
V = {vari(pj) | 1 ≤ j ≤ k} \ {∅},
if |V | ≥ 2, then

(vari(p), seq(V)) is a fork in τ .

By a fork (u, u1 · · ·uk) in τ , we mean that there
is a node labeled u with k children labeled u1 up
to uk.

At this point we have all the ingredients for our
binarization algorithm, shown in Algorithm 1. It
operates directly on a bimorphism, because all the
relevant information about the algebras is captured
by the b-rules. The following theorem documents
the behavior of the algorithm. In short, it solves
the problem of rule-by-rule binarization with re-
spect to b-rules b1, . . . , bn.

Theorem 3 Let G = (B,A1, . . . ,An) be
an IRTG, and let b1, . . . , bn be b-rules over
A1, . . . ,An, respectively.

Algorithm 1 terminates. Let B′ be the
bimorphism computed by Algorithm 1 on B
and b1, . . . , bn. Then G′ = (B′,A1, . . . ,An) is
equivalent to G, and G′ is of rank 2 if and only

Input: bimorphism B = (G, h1, . . . , hn),
b-rules b1, . . . , bn over ∆1, . . . ,∆n

Output: bimorphism B′

1: B′ ← (G|≤2, h1, . . . , hn)
2: for rule r : q → α(q1, . . . , qk) of G|>2 do
3: for i = 1, . . . , n do
4: compute RTG Gi for bi(hi(α))
5: compute RTG G′i for v(bi(hi(α)))

6: compute RTG Gv for
⋂

i L(G′i)
7: if L(Gv) = ∅ then
8: add r to B′
9: else

10: select t′ ∈ L(Gv)
11: for i = 1, . . . , n do
12: compute RTG G′′i for
13: b′′i = bi(hi(α)) ∩ v−1(t′)
14: select ti ∈ L(G′′i)

15: construct binarization for t1, . . . , tn
16: add appropriate rules to B′

Algorithm 1: Complete binarization algorithm,
whereG|≤2 andG|>2 isG restricted to binary and
suprabinary rules, respectively.

if every suprabinary rule of G has a binarization
with respect to b1, . . . , bn.

The runtime of Algorithm 1 is dominated by the
intersection construction in line 6, which isO(m1 ·
. . . ·mn) per rule, where mi is the size of G′i. The
quantity mi is linear in the size of the terms on the
right-hand side of hi, and in the number of rules in
the b-rule bi.

5 Applications

Algorithm 1 implements rule-by-rule binarization
with respect to given b-rules. If a rule of the given
IRTG does not have a binarization with respect to
these b-rules, it is simply carried over to the new
grammar, which then has a rank higher than 2. The
number of remaining suprabinary rules depends
on the b-rules (except for rules that have no bi-
narization at all). The user can thus engineer the
b-rules according to their current needs, trading off
completeness, runtime, and engineering effort.

By contrast, earlier binarization algorithms for
formalisms such as SCFG and LCFRS simply at-
tempt to find an equivalent grammar of rank 2;
there is no analogue of our b-rules. The problem
these algorithms solve corresponds to the general
rule-by-rule binarization problem from Section 3.

151

NP

NP

DT

the

x1:NNP POS

’s

x2:JJ x3:NN
−→ das x2 x3 der x1

Figure 7: A rule of a tree-to-string transducer.

We show that under certain conditions, our algo-
rithm can be used to solve this problem as well.
In the following two subsections, we illustrate this
for SCFGs and tree-to-string transducers, respec-
tively. In the final subsection, we discuss how to
extend this approach to other grammar formalisms
as well.

5.1 Synchronous context-free grammars
We have used SCFGs as the running example in
this paper. SCFGs are IRTGs with two interpre-
tations into the string algebra of Table 1, as illus-
trated by the example in Fig. 2. In order to make
our algorithm ready to use, it remains to specify a
b-rule for the string algeba.

We use the following b-rule for both b1 and b2.
Each symbol a ∈ ∆i|0 is mapped to the language
{a}. Each symbol conk, k ≥ 2, is mapped to
the language induced by the following RTG with
states of the form [j, j′] (where 0 ≤ j < j′ ≤ k)
and final state [0, k]:

[j − 1, j]→ xj (1 ≤ j ≤ k)

[j, j′]→ con2([j, j′′], [j′′, j′])
(0 ≤ j < j′′ < j′ ≤ k)

This language expresses all possible ways in
which conk can be written in terms of con2.

Our definition of rule-by-rule binarization with
respect to b1 and b2 coincides with that of Huang
et al. (2009): any rule can be binarized by
both algorithms or neither. For instance, for the
SCFG rule A → 〈BCDE,CEBD〉, the sets
v(b1(h1(α))) and v(b2(h2(α))) are disjoint, thus
no binarization exists. Two strings of length N
can be parsed with a binary IRTG that represents
an SCFG in time O(N6).

5.2 Tree-to-string transducers
Some approaches to SMT go beyond string-to-
string translation models such as SCFG by exploit-
ing known syntactic structures in the source or tar-
get language. This perspective on translation nat-
urally leads to the use of tree-to-string transducers

NP→ α(NNP, JJ,NN)

NP
con3

NP
con3

DT
the
con0

x1 POS
’s

con0

x2 x3
h1←− [α h27−→

con5

das x2 x3 der x1

Figure 8: An IRTG rule encoding the rule in Fig. 7.

(Yamada and Knight, 2001; Galley et al., 2004;
Huang et al., 2006; Graehl et al., 2008). Figure 7
shows an example of a tree-to-string rule. It might
be used to translate “the Commission’s strategic
plan” into “das langfristige Programm der Kom-
mission”.

Our algorithm can binarize tree-to-string trans-
ducers; to our knowledge, it is the first algorithm
to do so. We model the tree-to-string transducer
as an IRTG G = ((G, h1, h2),A1,A2), where
A2 is the string algebra, but this time A1 is the
tree algebra shown in Table 1. This algebra has
operations conk to concatenate sequences of trees
and unary γ that maps any sequence (t1, . . . , tl) of
trees to the tree γ(t1, . . . , tl), viewed as a sequence
of length 1. Note that we exclude the operation
con1 because it is the identity and thus unneces-
sary. Thus the rule in Fig. 7 translates to the IRTG
rule shown in Fig. 8.

For the string algebra, we reuse the b-rule from
Section 5.1; we call it b2 here. For the tree algebra,
we use the following b-rule b1. It maps con0 to
{con0} and each unary symbol γ to {γ(x1)}. Each
symbol conk, k ≥ 2, is treated as in the string
case. Using these b-rules, we can binarize the rule
in Fig. 8 and obtain the rules in Fig. 9. Parsing
of a binary IRTG that represents a tree-to-string
transducer is O(N3 ·M) for a string of length N
and a tree with M nodes.

We have implemented our binarization algo-
rithm and the b-rules for the string and the tree
algebra. In order to test our implementation, we
extracted a tree-to-string transducer from about a
million parallel sentences of English-German Eu-
roparl data, using the GHKM rule extractor (Gal-
ley, 2010). Then we binarized the transducer. The
results are shown in Fig. 10. Of the 2.15 million
rules in the extracted transducer, 460,000 were
suprabinary, and 67 % of these could be binarized.
Binarization took 4.4 minutes on a single core of
an Intel Core i5 2520M processor.

152

NP→ α′(NNP, A′)
A′ → α′′(JJ,NN)

NP
con2

NP
con2

DT
the
con0

con2

x1 POS
’s

con0

x2

h′
1←− [α′ h′

27−→

con2

con2

das x2

con2

der x1

con2

x1 x2

h′
1←− [α′′ h′

27−→
con2

x1 x2

Figure 9: Binarization of the rule in Fig. 8.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

ext bin

#
 r

u
le

s
(m

il
li

o
n
s)

rank

0
1
2
3
4
5
6-7
8-10

Figure 10: Rules of a transducer extracted from
Europarl (ext) vs. its binarization (bin).

5.3 General approach

Our binarization algorithm can be used to solve
the general rule-by-rule binarization problem for
a specific grammar formalism, provided that one
can find appropriate b-rules. More precisely,
we need to devise a class C of IRTGs over the
same sequence A1, . . . ,An of algebras that en-
codes the grammar formalism, together with b-
rules b1, . . . , bn over A1, . . . ,An that are com-
plete on every grammar in C, as defined in Sec-
tion 4.

We have already seen the b-rules for SCFGs and
tree-to-string transducers in the preceding subsec-
tions; now we have a closer look at the class C
for SCFGs. We used the class of all IRTGs with
two string algebras and in which hi(α) contains
at most one occurrence of a symbol conk for ev-
ery α ∈ Σ. On such a grammar the b-rules are
complete. Note that this would not be the case
if we allowed several occurrences of conk, as in
con2(con2(x1, x2), x3). This term is equivalent
to itself and to con2(x1, con

2(x2, x3)), but the b-

rules only cover the former. Thus they miss one
variable tree. For the term con3(x1, x2, x3), how-
ever, the b-rules cover both variable trees.

Generally speaking, given C and b-rules
b1, . . . , bn that are complete on every IRTG in C,
Algorithm 1 solves the general rule-by-rule bina-
rization problem on C. We can adapt Theorem 3 by
requiring that G must be in C, and replacing each
of the two occurrences of “binarization with re-
spect to b1, . . . , bn” by simply “binarization”. If C
is such that every grammar from a given grammar
formalism can be encoded as an IRTG in C, this
solves the general rule-by-rule binarization prob-
lem of that grammar formalism.

6 Conclusion

We have presented an algorithm for binarizing
IRTGs rule by rule, with respect to b-rules that
the user specifies for each algebra. This improves
the complexity of parsing and translation with any
monolingual or synchronous grammar that can be
represented as an IRTG. A novel algorithm for
binarizing tree-to-string transducers falls out as a
special case.

In this paper, we have taken the perspective that
the binarized IRTG uses the same algebras as the
original IRTG. Our algorithm extends to gram-
mars of arbitrary fanout (such as synchronous
tree-adjoining grammar (Koller and Kuhlmann,
2012)), but unlike LCFRS-based approaches to bi-
narization, it will not increase the fanout to en-
sure binarizability. In the future, we will ex-
plore IRTG binarization with fanout increase. This
could be done by binarizing into an IRTG with
a more complicated algebra (e.g., of string tu-
ples). We might compute binarizations that are
optimal with respect to some measure (e.g., fanout
(Gomez-Rodriguez et al., 2009) or parsing com-
plexity (Gildea, 2010)) by keeping track of this
measure in the b-rule and taking intersections of
weighted tree automata.

Acknowledgments

We thank the anonymous referees for their insight-
ful remarks, and Sarah Hemmen for implementing
an early version of the algorithm. Matthias Büchse
was financially supported by DFG VO 1011/6-1.

153

References
Alfred V. Aho and Jeffrey D. Ullman. 1969. Syntax

directed translations and the pushdown assembler.
Journal of Computer and System Sciences, 3:37–56.

André Arnold and Max Dauchet. 1976. Bi-
transduction de forêts. In Proc. 3rd Int. Coll. Au-
tomata, Languages and Programming, pages 74–86.
Edinburgh University Press.

Walter S. Brainerd. 1969. Tree generating regular sys-
tems. Information and Control, 14(2):217–231.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2):201–228.

Steve DeNeefe and Kevin Knight. 2009. Synchronous
tree-adjoining machine translation. In Proceedings
of EMNLP, pages 727–736.

Jason Eisner. 2003. Learning non-isomorphic tree
mappings for machine translation. In Proceedings
of the 41st ACL, pages 205–208.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proceedings of HLT/NAACL, pages 273–280.

Michael Galley. 2010. GHKM rule extractor. http:
//www-nlp.stanford.edu/˜mgalley/
software/stanford-ghkm-latest.tar.
gz, retrieved on March 28, 2012.

Ferenc Gécseg and Magnus Steinby. 1997. Tree lan-
guages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, chap-
ter 1, pages 1–68. Springer-Verlag.

Daniel Gildea. 2010. Optimal parsing strategies for
linear context-free rewriting systems. In Proceed-
ings of NAACL HLT.

Joseph A. Goguen, Jim W. Thatcher, Eric G. Wagner,
and Jesse B. Wright. 1977. Initial algebra seman-
tics and continuous algebras. Journal of the ACM,
24:68–95.

Carlos Gomez-Rodriguez, Marco Kuhlmann, Giorgio
Satta, and David Weir. 2009. Optimal reduction of
rule length in linear context-free rewriting systems.
In Proceedings of NAACL HLT.

Jonathan Graehl, Kevin Knight, and Jonathan May.
2008. Training tree transducers. Computational
Linguistics, 34(3):391–427.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of the 9th IWPT, pages 53–
64.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
Statistical syntax-directed translation with extended
domain of locality. In Proceedings of the 7th AMTA,
pages 66–73.

Liang Huang, Hao Zhang, Daniel Gildea, and Kevin
Knight. 2009. Binarization of synchronous
context-free grammars. Computational Linguistics,
35(4):559–595.

Donald E. Knuth. 1977. A generalization of Dijkstra’s
algorithm. Information Processing Letters, 6(1):1–
5.

Alexander Koller and Marco Kuhlmann. 2011. A gen-
eralized view on parsing and translation. In Pro-
ceedings of the 12th IWPT, pages 2–13.

Alexander Koller and Marco Kuhlmann. 2012. De-
composing TAG algorithms using simple alge-
braizations. In Proceedings of the 11th TAG+ Work-
shop, pages 135–143.

Philip M. Lewis and Richard E. Stearns. 1966. Syn-
tax directed transduction. Foundations of Computer
Science, IEEE Annual Symposium on, 0:21–35.

Mark-Jan Nederhof. 2003. Weighted deductive pars-
ing and Knuth’s algorithm. Computational Linguis-
tics, 29(1):135–143.

Rebecca Nesson, Stuart M. Shieber, and Alexander
Rush. 2006. Induction of probabilistic synchronous
tree-insertion grammars for machine translation. In
Proceedings of the 7th AMTA.

Owen Rambow and Giorgio Satta. 1999. Independent
parallelism in finite copying parallel rewriting sys-
tems. Theoretical Computer Science, 223(1–2):87–
120.

David J. Weir. 1988. Characterizing Mildly Context-
Sensitive Grammar Formalisms. Ph.D. thesis, Uni-
versity of Pennsylvania.

Kenji Yamada and Kevin Knight. 2001. A syntax-
based statistical translation model. In Proceedings
of the 39th ACL, pages 523–530.

154

