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Abstract
Annotating linguistic data is often a com-
plex, time consuming and expensive en-
deavour. Even with strict annotation
guidelines, human subjects often deviate
in their analyses, each bringing different
biases, interpretations of the task and lev-
els of consistency. We present novel tech-
niques for learning from the outputs of
multiple annotators while accounting for
annotator specific behaviour. These tech-
niques use multi-task Gaussian Processes
to learn jointly a series of annotator and
metadata specific models, while explicitly
representing correlations between models
which can be learned directly from data.
Our experiments on two machine trans-
lation quality estimation datasets show
uniform significant accuracy gains from
multi-task learning, and consistently out-
perform strong baselines.

1 Introduction

Most empirical work in Natural Language Pro-
cessing (NLP) is based on supervised machine
learning techniques which rely on human anno-
tated data of some form or another. The annota-
tion process is often time consuming, expensive,
and prone to errors; moreover there is often con-
siderable disagreement amongst annotators.

In general, the predominant perspective to deal
with these data annotation issues in previous work
has been that there is a single underlying ground
truth, and that the annotations collected are noisy
and/or biased samples of this. The challenge is
then one of quality control, in order to process
the data by filtering, averaging or similar to dis-
til the truth. We posit that this perspective is
too limiting, especially with respect to linguis-
tic data, where each individual’s idiolect and lin-
guistic background can give rise to many different

– and yet equally valid – truths. Particularly in
highly subjective annotation tasks, the differences
between annotators cannot be captured by simple
models such as scaling all instances of a certain
annotator by a factor. They can originate from
a number of nuanced aspects. This is the case,
for example, of annotations on the quality of sen-
tences generated using machine translation (MT)
systems, which are often used to build quality es-
timation models (Blatz et al., 2004; Specia et al.,
2009) – our application of interest.

In addition to annotators’ own perceptions and
expectations with respect to translation quality, a
number of factors can affect their judgements on
specific sentences. For example, certain anno-
tators may prefer translations produced by rule-
based systems as these tend to be more grammati-
cal, while others would prefer sentences produced
by statistical systems with more adequate lexical
choices. Likewise, some annotators can be biased
by the complexity of the source sentence: lengthy
sentences are often (subconsciously) assumed to
be of low quality by some annotators. An ex-
treme case is the judgement of quality through
post-editing time: annotators have different typing
speeds, as well as levels of expertise in the task
of post-editing, proficiency levels in the language
pair, and knowledge of the terminology used in
particular sentences. These variations result in
time measurements that are not comparable across
annotators. Thus far, the use of post-editing time
has been done on an per-annotator basis (Specia,
2011), or simply averaged across multiple transla-
tors (Plitt and Masselot, 2010), both strategies far
from ideal.

Overall, these myriad of factors affecting qual-
ity judgements make the modelling of multiple
annotators a very challenging problem. This
problem is exacerbated when annotations are
provided by non-professional annotators, e.g.,
through crowdsourcing – a common strategy used
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to make annotation cheaper and faster, however at
the cost of less reliable outcomes.

Most related work on quality assurance for data
annotation has been developed in the context of
crowdsourcing. Common practices include fil-
tering out annotators who substantially deviate
from a gold-standard set or present unexpected
behaviours (Raykar et al., 2010; Raykar and Yu,
2012), or who disagree with others using, e.g., ma-
jority or consensus labelling (Snow et al., 2008;
Sheng et al., 2008). Another relevant strand of
work aims to model legitimate, systematic biases
in annotators (including both non-experts and ex-
perts), such as the fact that some annotators tend
to be more negative than others, and that some
annotators use a wider or narrower range of val-
ues (Flach et al., 2010; Ipeirotis et al., 2010).
However, with a few exceptions in Computer Vi-
sion (e.g., Whitehill et al. (2009), Welinder et al.
(2010)), existing work disregard metadata and its
impact on labelling.

In this paper we model the task of predicting the
quality of sentence translations using datasets that
have been annotated by several judges with differ-
ent levels of expertise and reliability, containing
translations from a variety of MT systems and on
a range of different types of sentences. We ad-
dress this problem using multi-task learning in
which we learn individual models for each context
(the task, incorporating the annotator and other
metadata: translation system and the source sen-
tence) while also modelling correlations between
tasks such that related tasks can mutually inform
one another. Our use of multi-task learning allows
the modelling of a diversity of truths, while also
recognising that they are rarely independent of one
another (annotators often agree) by explicitly ac-
counting for inter-annotator correlations.

Our approach is based on Gaussian Processes
(GPs) (Rasmussen and Williams, 2006), a ker-
nelised Bayesian non-parametric learning frame-
work. We develop multi-task learning models by
representing intra-task transfer simply and explic-
itly as part of a parameterised kernel function. GPs
are an extremely flexible probabilistic framework
and have been successfully adapted for multi-task
learning in a number of ways, e.g., by learning
multi-task correlations (Bonilla et al., 2008), mod-
elling per-task variance (Groot et al., 2011) or per-
annotator biases (Rogers et al., 2010). Our method
builds on the work of Bonilla et al. (2008) by

explicitly modelling intra-task transfer, which is
learned automatically from the data, in order to ro-
bustly handle outlier tasks and task variances. We
show in our experiments on two translation qual-
ity datasets that these multi-task learning strate-
gies are far superior to training individual per-task
models or a single pooled model, and moreover
that our multi-task learning approach can achieve
similar performance to these baselines using only
a fraction of the training data.

In addition to showing empirical performance
gains on quality estimation applications, an im-
portant contribution of this paper is in introduc-
ing Gaussian Processes to the NLP community,1

a technique that has great potential to further per-
formance in a wider range of NLP applications.
Moreover, the algorithms proposed herein can be
adapted to improve future annotation efforts, and
subsequent use of noisy crowd-sourced data.

2 Quality Estimation

Quality estimation (QE) for MT aims at providing
an estimate on the quality of each translated seg-
ment – typically a sentence – without access to ref-
erence translations. Work in this area has become
increasingly popular in recent years as a conse-
quence of the widespread use of MT among real-
world users such as professional translators. Ex-
amples of applications of QE include improving
post-editing efficiency by filtering out low qual-
ity segments which would require more effort and
time to correct than translating from scratch (Spe-
cia et al., 2009), selecting high quality segments
to be published as they are, without post-editing
(Soricut and Echihabi, 2010), selecting a trans-
lation from either an MT system or a translation
memory for post-editing (He et al., 2010), select-
ing the best translation from multiple MT sys-
tems (Specia et al., 2010), and highlighting sub-
segments that need revision (Bach et al., 2011).

QE is generally addressed as a machine learn-
ing task using a variety of linear and kernel-based
regression or classification algorithms to induce
models from examples of translations described
through a number of features and annotated for
quality. For an overview of various algorithms and
features we refer the reader to the WMT12 shared
task on QE (Callison-Burch et al., 2012).

While initial work used annotations derived
1We are not strictly the first, Polajnar et al. (2011) used

GPs for text classification.
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from automatic MT evaluation metrics (Blatz et
al., 2004) such as BLEU (Papineni et al., 2002)
at training time, it soon became clear that human
labels result in significantly better models (Quirk,
2004). Current work at sentence level is thus based
on some form of human supervision.

As typical of subjective annotation tasks, QE
datasets should contain multiple annotators to lead
to models that are representative. Therefore, work
in QE faces all common issues regarding variabil-
ity in annotators’ judgements. The following are a
few other features that make our datasets particu-
larly interesting:
• In order to minimise annotation costs, trans-

lation instances are often spread among anno-
tators, such that each instance is only labelled
by one or a few judges. In fact, for a sizeable
dataset (thousands of instances), the annota-
tion of a complete dataset by a single judge
may become infeasible.
• It is often desirable to include alternative

translations of source sentences produced by
multiple MT systems, which requires multi-
ple annotators for unbiased judgements, par-
ticularly for labels such as post-editing time
(a translation seen a second time will require
less editing effort).
• For crowd-sourced annotations it is often im-

possible to ensure that the same annotators
will label the same subset of cases.

These features – which are also typical of many
other linguistic annotation tasks – make the learn-
ing process extremely challenging. Learning mod-
els from datasets annotated by multiple annotators
remains an open challenge in QE, as we show in
Section 4. In what follows, we present our QE
datasets in more detail.

2.1 Datasets

We use two freely available QE datasets to experi-
ment with the techniques proposed in this paper:2

WMT12: This dataset was distributed as part of
the WMT12 shared task on QE (Callison-Burch et
al., 2012). It contains 1, 832 instances for train-
ing, and 422 for test. The English source sen-
tences are a subset of WMT09-12 test sets. The
Spanish MT outputs were created using a standard
PBSMT Moses engine. Each instance was anno-
tated with post-editing effort scores from highest

2Both datasets can be downloaded from http://www.
dcs.shef.ac.uk/˜lucia/resources.html.

effort (score 1) to lowest effort (score 5), where
each score identifies an estimated percentage of
the MT output that needs to be corrected. The
post-editing effort scores were produced indepen-
dently by three professional translators based on
a previously post-edited translation by a fourth
translator. In an attempt to accommodate for sys-
tematic biases among annotators, the final effort
score was computed as the weighted average be-
tween the three PE-effort scores, with more weight
given to the judges with higher standard deviation
from their own mean score. This resulted in scores
spread more evenly in the [1, 5] range.

WPTP12: This dataset was distributed by Ko-
ponen et al. (2012). It contains 299 English sen-
tences translated into Spanish using two or more
of eight MT systems randomly selected from all
system submissions for WMT11 (Callison-Burch
et al., 2011). These MT systems range from on-
line and customised SMT systems to commercial
rule-based systems. Translations were post-edited
by humans while time was recorded. The labels
are the number of seconds spent by a translator
editing a sentence normalised by source sentence
length. The post-editing was done by eight na-
tive speakers of Spanish, including five profes-
sional translators and three translation students.
Only 20 translations were edited by all eight an-
notators, with the remaining translations randomly
distributed amongst them. The resulting dataset
contains 1, 624 instances, which were randomly
split into 1, 300 for training and 300 for test. Ac-
cording to the analysis in (Koponen et al., 2012),
while on average certain translators were found to
be faster than others, their speed in post-editing
individual sentences varies considerably, i.e., cer-
tain translators are faster at certain sentences. To
our knowledge, no previous work has managed to
successfully model the prediction of post-editing
time from datasets with multiple annotators.

3 Gaussian Process Regression

Machine learning models for quality estimation
typically treat the problem as regression, seeking
to model the relationship between features of the
text input and the human quality judgement as a
continuous response variable. Popular choices in-
clude Support Vector Machines (SVMs), which
have been shown to perform well for quality es-
timation (Callison-Burch et al., 2012) using non-
linear kernel functions such as radial basis func-
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tions. In this paper we consider Gaussian Pro-
cesses (GP) (Rasmussen and Williams, 2006), a
probabilistic machine learning framework incor-
porating kernels and Bayesian non-parametrics,
widely considered state-of-the-art for regression.
Despite this GPs have not been used widely to date
in statistical NLP. GPs are particularly suitable for
modelling QE for a number of reasons: 1) they
explicitly model uncertainty, which is rife in QE
datasets; 2) they allow fitting of expressive kernels
to data, in order to modulate the effect of features
of varying usefulness; and 3) they can naturally
be extended to model correlated tasks using multi-
task kernels. We now give a brief overview of GPs,
following Rasmussen and Williams (2006).

In our regression task3 the data consists of n
pairs D = {(xi, yi)}, where xi ∈ RF is a F -
dimensional feature vector and yi ∈ R is the re-
sponse variable. Each instance is a translation and
the feature vector encodes its linguistic features;
the response variable is a numerical quality judge-
ment: post editing time or likert score. As usual,
the modelling challenge is to automatically predict
the value of y based on the x for unseen test input.

GP regression assumes the presence of a la-
tent function, f : RF → R, which maps from
the input space of feature vectors x to a scalar.
Each response value is then generated from the
function evaluated at the corresponding data point,
yi = f(xi) + η, where η ∼ N (0, σ2n) is added
white-noise. Formally f is drawn from a GP prior,

f(x) ∼ GP
(
0, k(x,x′)

)
,

which is parameterised by a mean (here, 0) and
a covariance kernel function k(x,x′). The ker-
nel function represents the covariance (i.e., sim-
ilarities in the response) between pairs of data
points. Intuitively, points that are in close proxim-
ity should have high covariance compared to those
that are further apart, which constrains f to be a
smoothly varying function of its inputs. This intu-
ition is embodied in the squared exponential ker-
nel (a.k.a. radial basis function or Gaussian),

k(x,x′) = σ2f exp

(
−1

2
(x− x′)TA−1(x− x′)

)

(1)
where σ2f is a scaling factor describing the overall
levels of variance, and A = diag(a) is a diagonal

3Our approach generalises to classification, ranking (ordi-
nal regression) or various other training objectives, including
mixtures of objectives. In this paper we use regression for
simplicity of exposition and implementation.

matrix of length scales, encoding the smoothness
of functions f with respect to each feature. Non-
uniform length scales allow for different degrees
of smoothness of f in each dimension, such that
e.g., for unimportant features f is relatively flat
whereas for very important features f is jagged,
such that a small change in the feature value has
a large effect. When the values of a are learned
automatically from data, as we do herein, this is
referred to as the automatic relevance determina-
tion (ARD) kernel.

Given the generative process defined above, we
formulate prediction as Bayesian inference under
the posterior, namely

p(y∗|x∗,D) =
∫

f
p(y∗|x∗, f)p(f |D)

where x∗ is a test input and y∗ is its response
value. The posterior p(f |D) reflects our updated
belief over possible functions after observing the
training set D, i.e., f should pass close to the re-
sponse values for each training instance (but need
not fit exactly due to additive noise). This is bal-
anced against the smoothness constraints that arise
from the GP prior. The predictive posterior can be
solved analytically, resulting in

y∗ ∼ N
(
kT
∗ (K + σ2nI)

−1y, (2)

k(x∗,x∗)− kT
∗ (K + σ2nI)

−1k∗
)

where k∗ = [k(x∗,x1) k(x∗,x2) · · · k(x∗,xn)]
T

are the kernel evaluations between the test point
and the training set, and {Kij = k(xi,xj)} is
the kernel (gram) matrix over the training points.
Note that the posterior in Eq. 2 includes not only
the expected response (the mean) but also the vari-
ance, encoding the model’s uncertainty, which is
important for integration into subsequent process-
ing, e.g., as part of a larger probabilistic model.

GP regression also permits an analytic for-
mulation of the marginal likelihood, p(y|X) =∫
f p(y|X, f)p(f), which can be used for model

training (X are the training inputs). Specifically,
we can derive the gradient of the (log) marginal
likelihood with respect to the model hyperparam-
eters (i.e., a, σn, σs etc.) and thereby find the type
II maximum likelihood estimate using gradient as-
cent. Note that in general the marginal likelihood
is non-convex in the hyperparameter values, and
consequently the solutions may only be locally op-
timal. Here we bootstrap the learning of complex
models with many hyperparameters by initialising
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with the (good) solutions found for simpler mod-
els, thereby avoiding poor local optima. We refer
the reader to Rasmussen and Williams (2006) for
further details.

At first glance GPs resemble SVMs, which also
admit kernels such as the popular squared expo-
nential kernel in Eq. 1. The key differences are
that GPs are probabilistic models and support ex-
act Bayesian inference in the case of regression
(approximate inference is required for classifica-
tion (Rasmussen and Williams, 2006)). Moreover
GPs provide greater flexibility in fitting the ker-
nel hyperparameters even for complex composite
kernels. In typical usage, the kernel hyperparam-
eters for an SVM are fit using held-out estima-
tion, which is inefficient and often involves ty-
ing together parameters to limit the search com-
plexity (e.g., using a single scale parameter in
the squared exponential). Multiple-kernel learning
(Gönen and Alpaydın, 2011) goes some way to ad-
dressing this problem within the SVM framework,
however this technique is limited to reweighting
linear combinations of kernels and has high com-
putational complexity.

3.1 Multi-task Gaussian Process Models

Until now we have considered a standard regres-
sion scenario, where each training point is labelled
with a single output variable. In order to model
multiple different annotators jointly, i.e., multi-
task learning, we need to extend the model to han-
dle many tasks. Conceptually, we can consider
the multi-task model drawing a latent function for
each task, fm(x), where m ∈ 1, ...,M is the task
identifier. This function is then used to explain
the response values for all the instances for that
task (subject to noise). Importantly, for multi-task
learning to be of benefit, the prior over {fm} must
correlate the functions over different tasks, e.g., by
imposing similarity constraints between the values
for fm(x) and fm′(x).

We can consider two alternative perspectives
for framing the multi-task learning problem: ei-
ther isotopic where we associate each input point
x with a vector of outputs, y ∈ RM , one for
each of the M tasks; or heterotopic where some
of the outputs are missing, i.e., tasks are not con-
strained to share the same data points (Alvarez et
al., 2011). Given the nature of our datasets, we
opted for the heterotopic approach, which can han-
dle both singly annotated and multiply annotated

data. This can be implemented by augmenting
each input point with an additional task identity
feature, which is paired with a single y response,
and integrated into a GP model with the standard
training and inference algorithms.4

In moving to a task-augmented data representa-
tion, we need to revise our kernel function. We use
a separable multi-task kernel (Bonilla et al., 2008;
Alvarez et al., 2011) of the form

k
(
(x, d), (x′, d′)

)
= kdata(x,x′)Bd,d′ , (3)

where kdata(x,x′) is a standard kernel over the in-
put points, typically a squared exponential (see
Eq. 1), and B ∈ RD×D is a positive semi-definite
matrix encoding task covariances. We develop
a series of increasingly complex choices for B,
which we compare empirically in Section 4.2:

Independent The simplest case is whereB = I ,
i.e., all pairs of different tasks have zero covari-
ance. This corresponds to independent modelling
of each task, although all models share the same
data kernel, so this setting is not strictly equiva-
lent to independent training with independent per-
task data kernels (with different hyperparameters).
Similarly, we might choose to use a single noise
variance, σ2n, or an independent noise variance hy-
perparameter per task.

Pooled Another extreme is B = 1, which ig-
nores the task identity, corresponding to pooling
the multi-task data into one large set. Groot et
al. (2011) present a method for applying GPs for
modelling multi-annotator data using this pool-
ing kernel with independent per-task noise terms.
They show on synthetic data experiments that this
approach works well at extracting the signal from
noise-corrupted inputs.

Combined A simple approach for B is a
weighted combination of Independent and Pool,
i.e., B = 1+ aI , where the hyperparameter a ≥ 0
controls the amount of inter-task transfer between
each task and the global ‘pooled’ task.5 For dis-
similar tasks, a high value of a allows each task to
be modelled independently, while for more simi-
lar tasks low a allows the use of a large pool of

4Note that the separable kernel (Eq. 3) gives rise to block
structured kernel matrices which permit various optimisa-
tions (Bonilla et al., 2008) to reduce the computational com-
plexity of inference, e.g., the matrix inversion in Eq. 2.

5Note that larger values of a need not affect the overall
magnitude of k, which can be down-scaled by the σ2

f factor
in the data kernel (Eq. 1).
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similar data. A scaled version of this kernel has
been shown to correspond to mean regularisation
in SVMs when combined with a linear data ker-
nel (Evgeniou et al., 2006). A similar multi-task
kernel was proposed by Daumé III (2007), using
a linear data kernel and a = 1, which has shown
to result in excellent performance across a range
of NLP problems. In contrast to these earlier ap-
proaches, we learn the hyperparameter a directly,
fitting the relative amounts of inter- versus intra-
task transfer to the dataset.

Combined+ We consider an extension to the
Combined kernel, B = 1 + diag(a), ad ≥ 0
in which each task has a different hyperparameter
modulating its independence from the global pool.
This additional flexibility can be used, e.g., to al-
low individual outlier annotators to be modelled
independently of the others, by assigning a high
value to ad. In contrast, Combined ties together
the parameters for all tasks, i.e., all annotators are
assumed to have similar quality in that they devi-
ate from the mean to the same degree.

3.2 Integrating metadata

The approaches above assume that the data is split
into an unstructured set of M tasks, e.g., by anno-
tator. However, it is often the case that we have
additional information about each data instance in
the form of metadata. In our quality estimation
experiments we consider as metadata the MT sys-
tem which produced the translation, and the iden-
tity of the source sentence being translated. Many
other types of metadata, such as the level of expe-
rience of the annotator, could also be used. One
way of integrating such metadata would be to de-
fine a separate task for every observed combina-
tion of metadata values, in which case we treat the
metadata as a task descriptor. Doing so naively
would however incur a significant penalty, as each
task will have very few training instances result-
ing in inaccurate models, even with the inter-task
kernel approaches defined above.

We instead extend the task-level kernels to use
the task descriptors directly to represent task cor-
relations. Let B(i) be a square covariance matrix
for the ith task descriptor ofM , with a column and
row for each value (e.g., annotator identity, trans-
lation system, etc.). We redefine the task level ker-
nel using paired inputs (x,m), where m are the

task descriptors,

k
(
(x,m), (x′,m′)

)
= kdata(x,x′)

M∏

i=1

B
(i)
mi,m′

i
.

This is equivalent to using a structured task-kernel
B = B(1) ⊗ B(3) ⊗ · · · ⊗ B(M) where ⊗ is the
Kronecker product. Using this formulation we can
consider any of the above choices for B applied
to each task descriptor. In our experiments we
consider the Combined and Combined+ kernels,
which allow the model to learn the relative impor-
tance of each descriptor in terms of independent
modelling versus pooling the data.

4 Multi-task Quality Estimation

4.1 Experimental Setup
Feature sets: In all experiments we use 17 shal-
low QE features that have been shown to perform
well in previous work. These were used by a
highly competitive baseline entry in the WMT12
shared task, and were extracted here using the sys-
tem provided by that shared task.6 They include
simple counts, e.g., the tokens in sentences, as
well as source and target language model proba-
bilities. Each feature was scaled to have zero mean
and unit standard deviation on the training set.

Baselines: The baselines use the SVM regres-
sion algorithm with radial basis function kernel
and parameters γ, ε and C optimised through grid-
search and 5-fold cross validation on the training
set. This is generally a very strong baseline: in
the WMT12 QE shared task, only five out of 19
submissions were able to significantly outperform
it, and only by including many complex additional
features, tree kernels, etc. We also present µ, a
trivial baseline based on predicting for each test
instance the training mean (overall, and for spe-
cific tasks).

GP: All GP models were implemented using the
GPML Matlab toolbox.7 Hyperparameter optimi-
sation was performed using conjugate gradient as-
cent of the log marginal likelihood function, with
up to 100 iterations. The simpler models were ini-
tialised with all hyperparameters set to one, while
more complex models were initialised using the

6The software used to extract these (and other) fea-
tures can be downloaded from http://www.quest.
dcs.shef.ac.uk/

7http://www.gaussianprocess.org/gpml/
code
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Model MAE RMSE

µ 0.8279 0.9899
SVM 0.6889 0.8201

Linear ARD 0.7063 0.8480
Squared exp. Isotropic 0.6813 0.8146

Squared exp. ARD 0.6680 0.8098
Rational quadratic ARD 0.6773 0.8238

Matern(5,2) 0.6772 0.8124
Neural network 0.6727 0.8103

Table 1: Single-task learning results on the
WMT12 dataset, trained and evaluated against
the weighted averaged response variable. µ is a
baseline which predicts the training mean, SVM
uses the same system as the WMT12 QE task, and
the remainder are GP regression models with dif-
ferent kernels (all include additive noise).

solution for a simpler model. For instance, mod-
els using ARD kernels were initialised from an
equivalent isotropic kernel (which ties all the hy-
perparameters together), and independent per-task
noise models were initialised from a single noise
model. This approach was more reliable than ran-
dom restarts in terms of accuracy and runtime ef-
ficiency.

Evaluation: We evaluate predictive accuracy
using two measures: mean absolute error,
MAE = 1

N

∑N
i=1 |yi − ŷi| and root mean square

error, RMSE =
√

1
N

∑N
i=1 (yi − ŷi)2, where yi

are the gold standard response values and ŷi are
the model predictions.

4.2 Results

Our experiments aim to demonstrate the efficacy
of GP regression, both the single task and multi-
task settings, compared to competitive baselines.

WMT12: Single task We start by comparing
GP regression with alternative approaches using
the WMT12 dataset on the standard task of pre-
dicting a weighted mean quality rating (as it was
done in the WMT12 QE shared task). Table 1
shows the results for baseline approaches and the
GP models, using a variety of different kernels
(see Rasmussen and Williams (2006) for details of
the kernel functions). From this we can see that all
models do much better than the mean baseline and
that most of the GP models have lower error than
the state-of-the-art SVM. In terms of kernels, the
linear kernel performs comparatively worse than
non-linear kernels. Overall the squared exponen-

Model MAE RMSE

µ 0.8541 1.0119
Independent SVMs 0.7967 0.9673

EasyAdapt SVM 0.7655 0.9105

Independent 0.7061 0.8534
Pooled 0.7252 0.8754

Pooled & {N} 0.7050 0.8497

Combined 0.6966 0.8448
Combined & {N} 0.6975 0.8476

Combined+ 0.6975 0.8463
Combined+ & {N} 0.7046 0.8595

Table 2: Results on the WMT12 dataset, trained
and evaluated over all three annotator’s judge-
ments. Shown above are the training mean base-
line µ, single-task learning approaches, and multi-
task learning models, with the columns showing
macro average error rates over all three response
values. All systems use a squared exponential
ARD kernel in a product with the named task-
kernel, and with added noise (per-task noise is de-
noted {N}, otherwise has shared noise).

tial ARD kernel has the best performance under
both measures of error, and for this reason we use
this kernel in our subsequent experiments.

WMT12: Multi-task We now turn to the multi-
task setting, where we seek to model each of the
three annotators’ predictions. Table 2 presents
the results. Note that here error rates are mea-
sured over all of the three annotators’ judgements,
and consequently are higher than those measured
against their average response in Table 1. For com-
parison, taking the predictions of the best model,
Combined, in Table 2 and evaluating its averaged
prediction has a MAE of 0.6588 vs. the averaged
gold standard, significantly outperforming the best
model in Table 1.

There are a number of important findings in Ta-
ble 2. First, the independently trained models do
well, outperforming the pooled model with fixed
noise, indicating that naively pooling the data is
counter-productive and that there are annotator-
specific biases. Including per-annotator noise to
the pooled model provides a boost in performance,
however the best results are obtained using the
Combined kernel which brings the strengths of
both the independent and pooled settings. There
are only minor differences between the different
multi-task kernels, and in this case per-annotator
noise made little difference. An explanation for
the contradictory findings about the importance
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of independent noise is that differences between
annotators can already be explained by the MTL
model using the multi-task kernel, and need not be
explained as noise.

The GP models significantly improve over
the baselines, including an SVM trained inde-
pendently and using the EasyAdapt method for
multi-task learning (Daumé III, 2007). While
EasyAdapt showed an improvement over the in-
dependent SVM, it was a long way short of the
GP models. A possible explanation is that in
EasyAdapt the multi-task sharing parameter is set
at a = 1, which may not be appropriate for the
task. In contrast the Combined GP model learned
a value of a = 0.01, weighting the value of pool-
ing much more highly than independent training.

A remaining question is how these approaches
cope with smaller datasets, where issues of data
sparsity become more prevalent. To test this, we
trained single-task, pooled and multi-task models
on randomly sub-sampled training sets of differ-
ent sizes, and plot their error rates in Figure 1.
As expected, for very small datasets pooling out-
performs single task learning, however for modest
sized datasets of ≥ 90 training instances pooling
was inferior. For all dataset sizes multi-task learn-
ing is superior to the other approaches, making
much better use of small and large training sets.
The MTL model trained on 500 samples had an
MAE of 0.7082± 0.0042, close to the best results
from the full dataset in Table 2, despite using 1

9
as much data: here we use 1

3 as many training
instances where each is singly (cf. triply) anno-
tated. The same experiments run with multiply-
annotated instances showed much weaker perfor-
mance, presumably due to the more limited sam-
ple of input points and poorer fit of the ARD ker-
nel hyperparameters. This finding suggests that
our multi-task learning approach could be used to
streamline annotation efforts by reducing the need
for extensive multiple annotations.

WPTP12 This dataset involves predicting the
post-editing time for eight annotators, where we
seek to test our model’s capability to use addi-
tional metadata. We model the logarithm of the
per-word post-editing time, in order to make the
response variable more comparable between an-
notators and across sentences, and generally more
Gaussian in shape. In Table 3 immediately we
can see that the baseline of predicting the train-
ing mean is very difficult to beat, and the trained
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Figure 1: Learning curve comparing MAE for dif-
ferent training methods on the WMT12 dataset,
all using a squared exponential ARD data kernel
and tied noise parameter. The MTL model uses the
Combined task kernel. Each point is the average
of 5 runs, and the error bars show ±1 s.d.

systems often do worse. Partitioning the data
by annotator (µA) gives the best baseline result,
while there is less information from the MT sys-
tem or sentence identity. Single-task learning per-
forms only a little better than these baselines, al-
though some approaches such as the naive pool-
ing perform terribly. This suggests that the tasks
are highly different to one another. Interestingly,
adding the per-task noise models to the pooling ap-
proach greatly improves its performance.

The multi-task learning methods performed best
when using the annotator identity as the task de-
scriptor, and less well for the MT system and sen-
tence pair, where they only slightly improved over
the baseline. However, making use of all these lay-
ers of metadata together gives substantial further
improvements, reaching the best result with Com-
binedA,S,T . The effect of adding per-task noise to
these models was less marked than for the pooled
models, as in the WMT12 experiments. Inspecting
the learned hyperparameters, the combined mod-
els learned a large bias towards independent learn-
ing over pooling, in contrast to the WMT12 exper-
iments. This may explain the poor performance of
EasyAdapt on this dataset.

5 Conclusion

This paper presented a novel approach for learning
from human linguistic annotations by explicitly
training models of individual annotators (and pos-
sibly additional metadata) using multi-task learn-
ing. Our method using Gaussian Processes is flex-
ible, allowing easy learning of inter-dependences
between different annotators and other task meta-

39



Model MAE RMSE

µ 0.5596 0.7053
µA 0.5184 0.6367
µS 0.5888 0.7588
µT 0.6300 0.8270

Pooled SVM 0.5823 0.7472
IndependentA SVM 0.5058 0.6351

EasyAdapt SVM 0.7027 0.8816

SINGLE-TASK LEARNING

IndependentA 0.5091 0.6362
IndependentS 0.5980 0.7729

Pooled 0.5834 0.7494
Pooled & {N} 0.4932 0.6275

MULTI-TASK LEARNING: Annotator

CombinedA 0.4815 0.6174
CombinedA & {N} 0.4909 0.6268

Combined+A 0.4855 0.6203
Combined+A & {N} 0.4833 0.6102

MULTI-TASK LEARNING: Translation system

CombinedS 0.5825 0.7482

MULTI-TASK LEARNING: Sentence pair

CombinedT 0.5813 0.7410

MULTI-TASK LEARNING: Combinations

CombinedA,S 0.4988 0.6490
CombinedA,S & {NA,S} 0.4707 0.6003

Combined+A,S 0.4772 0.6094
CombinedA,S,T 0.4588 0.5852

CombinedA,S,T & {NA,S} 0.4723 0.6023

Table 3: Results on the WPTP12 dataset, using
the log of the post-editing time per word as the
response variable. Shown above are the training
mean and SVM baselines, single-task learning and
multi-task learning results (micro average). The
subscripts denote the task split: annotator (A), MT
system (S) and sentence identity (T).

data. Our experiments showed how our approach
outperformed competitive baselines on two ma-
chine translation quality regression problems, in-
cluding the highly challenging problem of predict-
ing post-editing time.

In future work we plan to apply these techniques
to new datasets, particularly noisy crowd-sourced
data with much large numbers of annotators, as
well as a wider range of task types and mixtures
thereof (regression, ordinal regression, ranking,
classification). We also have preliminary positive
results for more advanced multi-task kernels, e.g.,
general dense matrices, which can induce clusters
of related tasks.

Our multi-task learning approach has much
wider application. Models of individual annota-
tors could be used to train machine translation
systems to optimise an annotator-specific quality
measure, or in active learning for corpus annota-
tion, where the model can suggest the most ap-
propriate instances for each annotator or the best
annotator for a given instance. Further, our ap-
proach contributes to work based on cheap and fast
crowdsourcing of linguistic annotation by min-
imising the need for careful data curation and
quality control.
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