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Abstract 

This paper brings a marriage of two seemly 

unrelated topics, natural language 

processing (NLP) and social network 

analysis (SNA). We propose a new task in 

SNA which is to predict the diffusion of a 

new topic, and design a learning-based 

framework to solve this problem. We 

exploit the latent semantic information 

among users, topics, and social connections 

as features for prediction. Our framework is 

evaluated on real data collected from public 

domain. The experiments show 16% AUC 

improvement over baseline methods. The 

source code and dataset are available at 

http://www.csie.ntu.edu.tw/~d97944007/dif

fusion/ 

1 Background 

The diffusion of information on social networks 

has been studied for decades. Generally, the 

proposed strategies can be categorized into two 

categories, model-driven and data-driven. The 

model-driven strategies, such as independent 

cascade model (Kempe et al., 2003), rely on 

certain manually crafted, usually intuitive, models 

to fit the diffusion data without using diffusion 

history. The data-driven strategies usually utilize 

learning-based approaches to predict the future 

propagation given historical records of prediction 

(Fei et al., 2011; Galuba et al., 2010; Petrovic et al., 

2011).  Data-driven strategies usually perform 

better than model-driven approaches because the 

past diffusion behavior is used during learning 

(Galuba et al., 2010). 

Recently, researchers started to exploit content 

information in data-driven diffusion models (Fei et 

al., 2011; Petrovic et al., 2011; Zhu et al., 2011). 

However, most of the data-driven approaches 

assume that in order to train a model and predict 

the future diffusion of a topic, it is required to 

obtain historical records about how this topic has 

propagated in a social network (Petrovic et al., 

2011; Zhu et al., 2011). We argue that such 

assumption does not always hold in the real-world 

scenario, and being able to forecast the propagation 

of novel or unseen topics is more valuable in 

practice. For example, a company would like to 

know which users are more likely to be the source 

of ‘viva voce’ of a newly released product for 

advertising purpose. A political party might want 

to estimate the potential degree of responses of a 

half-baked policy before deciding to bring it up to 

public. To achieve such goal, it is required to 

predict the future propagation behavior of a topic 

even before any actual diffusion happens on this 

topic (i.e., no historical propagation data of this 

topic are available). Lin et al. also propose an idea 

aiming at predicting the inference of implicit 

diffusions for novel topics (Lin et al., 2011). The 

main difference between their work and ours is that 

they focus on implicit diffusions, whose data are 

usually not available. Consequently, they need to 

rely on a model-driven approach instead of a data-

driven approach. On the other hand, our work 

focuses on the prediction of explicit diffusion 

behaviors. Despite the fact that no diffusion data of 

novel topics is available, we can still design a data-

driven approach taking advantage of some explicit 

diffusion data of known topics. Our experiments 

show that being able to utilize such information is 

critical for diffusion prediction. 

2 The Novel-Topic Diffusion Model 

We start by assuming an existing social network G 

= (V, E), where V is the set of nodes (or user) v, 

and E is the set of link e. The set of topics is 
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denoted as T. Among them, some are considered as 

novel topics (denoted as N), while the rest (R) are 

used as the training records.  We are also given a 

set of diffusion records D = {d | d = (src, dest, t)}, 

where src is the source node (or diffusion source), 

dest is the destination node, and t is the topic of the 

diffusion that belongs to R but not N. We assume 

that diffusions cannot occur between nodes without 

direct social connection; any diffusion pair implies 

the existence of a link e = (src, dest ∈)  E. Finally, 

we assume there are sets of keywords or tags that 

relevant to each topic (including existing and novel 

topics). Note that the set of keywords for novel 

topics should be seen in that of existing topics. 

From these sets of keywords, we construct a topic-

word matrix TW = (P(wordj | topici))i,j of which the 

elements stand for the conditional probabilities that 

a word appears in the text of a certain topic. 

Similarly, we also construct a user-word matrix 

UW= (P(wordj | useri))i,j from these sets of 

keywords. Given the above information, the goal is 

to predict whether a given link is active (i.e., 

belongs to a diffusion link) for topics in N. 

2.1 The Framework 

The main challenge of this problem lays in that the 

past diffusion behaviors of new topics are missing. 

To address this challenge, we propose a supervised 

diffusion discovery framework that exploits the 

latent semantic information among users, topics, 

and their explicit / implicit interactions. Intuitively, 

four kinds of information are useful for prediction: 

• Topic information: Intuitively, knowing the 

signatures of a topic (e.g., is it about politics?) 

is critical to the success of the prediction. 

• User information: The information of a user 

such as the personality (e.g., whether this user 

is aggressive or passive) is generally useful. 

• User-topic interaction: Understanding the users' 

preference on certain topics can improve the 

quality of prediction. 

• Global information: We include some global 

features (e.g., topology info) of social network. 

Below we will describe how these four kinds of 

information can be modeled in our framework. 

2.2 Topic Information 

We extract hidden topic category information to 

model topic signature. In particular, we exploit the 

Latent Dirichlet Allocation (LDA) method (Blei et 

al., 2003), which is a widely used topic modeling 

technique, to decompose the topic-word matrix TW 

into hidden topic categories:  

                        TW = TH * HW 

, where TH is a topic-hidden matrix, HW is hidden-

word matrix, and h is the manually-chosen 

parameter to determine the size of hidden topic 

categories. TH indicates the distribution of each 

topic to hidden topic categories, and HW indicates 

the distribution of each lexical term to hidden topic 

categories. Note that TW and TH include both 

existing and novel topics.  We utilize THt,*, the row 

vector of the topic-hidden matrix TH for a topic t, 

as a feature set. In brief, we apply LDA to extract 

the topic-hidden vector THt,* to model topic 

signature (TG) for both existing and novel topics. 

Topic information can be further exploited. To 

predict whether a novel topic will be propagated 

through a link, we can first enumerate the existing 

topics that have been propagated through this link. 

For each such topic, we can calculate its similarity 

with the new topic based on the hidden vectors 

generated above (e.g., using cosine similarity 

between feature vectors). Then, we sum up the 

similarity values as a new feature: topic similarity 

(TS). For example, a link has previously 

propagated two topics for a total of three times 

{ACL, KDD, ACL}, and we would like to know 

whether a new topic, EMNLP, will propagate 

through this link. We can use the topic-hidden 

vector to generate the similarity values between 

EMNLP and the other topics (e.g., {0.6, 0.4, 0.6}), 

and then sum them up (1.6) as the value of TS. 

2.3 User Information 

Similar to topic information, we extract latent 

personal information to model user signature (the 

users are anonymized already). We apply LDA on 

the user-word matrix UW: 

UW = UM * MW 

, where UM is the user-hidden matrix, MW is the 

hidden-word matrix, and m is the manually-chosen 

size of hidden user categories. UM indicates the 

distribution of each user to the hidden user 

categories (e.g., age). We then use UMu,*, the row 

vector of UM for the user u, as a feature set. In 

brief, we apply LDA to extract the user-hidden 

vector UMu,* for both source and destination nodes 

of a link to model user signature (UG). 
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2.4 User-Topic Interaction 

Modeling user-topic interaction turns out to be 

non-trivial. It is not useful to exploit latent 

semantic analysis directly on the user-topic matrix 

UR = UQ * QR , where UR represents how many 

times each user is diffused for existing topic R (R 

∈ T), because UR does not contain information of 

novel topics, and neither do UQ and QR. Given no 

propagation record about novel topics, we propose 

a method that allows us to still extract implicit 

user-topic information. First, we extract from the 

matrix TH (described in Section 2.2) a subset RH 

that contains only information about existing topics. 

Next we apply left division to derive another user-

hidden matrix UH: 

UH = (RH \ UR
T
)

T
 = ((RH

T 
RH )

-1
 RH

T 
UR

T
)

T
 

Using left division, we generate the UH matrix 

using existing topic information. Finally, we 

exploit UHu,*, the row vector of the user-hidden 

matrix UH for the user u, as a feature set. 

Note that novel topics were included in the 

process of learning the hidden topic categories on 

RH; therefore the features learned here do 

implicitly utilize some latent information of novel 

topics, which is not the case for UM. Experiments 

confirm the superiority of our approach. 

Furthermore, our approach ensures that the hidden 

categories in topic-hidden and user-hidden 

matrices are identical. Intuitively, our method 

directly models the user’s preference to topics’ 

signature (e.g., how capable is this user to 

propagate topics in politics category?). In contrast, 

the UM mentioned in Section 2.3 represents the 

users’ signature (e.g., aggressiveness) and has 

nothing to do with their opinions on a topic. In 

short, we obtain the user-hidden probability vector 

UHu,* as a feature set, which models user 

preferences to latent categories (UPLC). 

2.5 Global Features 

Given a candidate link, we can extract global 

social features such as in-degree (ID) and out-

degree (OD). We tried other features such as 

PageRank values but found them not useful. 

Moreover, we extract the number of distinct topics 

(NDT) for a link as a feature. The intuition behind 

this is that the more distinct topics a user has 

diffused to another, the more likely the diffusion 

will happen for novel topics. 

2.6 Complexity Analysis 

The complexity to produce each feature is as below: 

(1) Topic information: O(I * |T| * h * Bt) for LDA 

using Gibbs sampling, where I is # of the 

iterations in sampling, |T| is # of topics, and Bt 

is the average # of tokens in a topic. 

(2) User information: O(I * |V| * m * Bu) , where 

|V| is # of users, and Bu is the average # of 

tokens for a user. 

(3) User-topic interaction: the time complexity is 

O(h
3
 + h

2
 * |T| + h * |T| * |V|). 

(4) Global features: O(|D|), where |D| is # of 

diffusions. 

3 Experiments 

For evaluation, we try to use the diffusion records 

of old topics to predict whether a diffusion link 

exists between two nodes given a new topic.  

3.1 Dataset and Evaluation Metric 

We first identify 100 most popular topic (e.g., 

earthquake) from the Plurk micro-blog site 

between 01/2011 and 05/2011. Plurk is a popular 

micro-blog service in Asia with more than 5 

million users (Kuo et al., 2011). We manually 

separate the 100 topics into 7 groups. We use 

topic-wise 4-fold cross validation to evaluate our 

method, because there are only 100 available 

topics. For each group, we select 3/4 of the topics 

as training and 1/4 as validation. 

The positive diffusion records are generated 

based on the post-response behavior. That is, if a 

person x posts a message containing one of the 

selected topic t, and later there is a person y 

responding to this message, we consider a 

diffusion of t has occurred from x to y (i.e., (x, y, t) 

is a positive instance). Our dataset contains a total 

of 1,642,894 positive instances out of 100 distinct 

topics; the largest and smallest topic contains 

303,424 and 2,166 diffusions, respectively. Also, 

the same amount of negative instances for each 

topic (totally 1,642,894) is sampled for binary 

classification (similar to the setup in KDD Cup 

2011 Track 2). The negative links of a topic t are 

sampled randomly based on the absence of 

responses for that given topic. 

The underlying social network is created using 

the post-response behavior as well. We assume 

there is an acquaintance link between x and y if and 
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only if x has responded to y (or vice versa) on at 

least one topic. Eventually we generated a social 

network of 163,034 nodes and 382,878 links. 

Furthermore, the sets of keywords for each topic 

are required to create the TW and UW matrices for 

latent topic analysis; we simply extract the content 

of posts and responses for each topic to create both 

matrices. We set the hidden category number h = m 

= 7, which is equal to the number of topic groups. 

We use area under ROC curve (AUC) to 

evaluate our proposed framework (Davis and 

Goadrich, 2006); we rank the testing instances 

based on their likelihood of being positive, and 

compare it with the ground truth to compute AUC. 

3.2 Implementation and Baseline 

After trying many classifiers and obtaining similar 

results for all of them, we report only results from 

LIBLINEAR with c=0.0001 (Fan et al., 2008) due 

to space limitation. We remove stop-words, use 

SCWS (Hightman, 2012) for tokenization, and  

MALLET (McCallum, 2002) and GibbsLDA++ 

(Phan and Nguyen, 2007) for LDA. 

There are three baseline models we compare the 

result with. First, we simply use the total number 

of existing diffusions among all topics between 

two nodes as the single feature for prediction. 

Second, we exploit the independent cascading 

model (Kempe et al., 2003), and utilize the 

normalized total number of diffusions as the 

propagation probability of each link. Third, we try 

the heat diffusion model (Ma et al., 2008), set 

initial heat proportional to out-degree, and tune the 

diffusion time parameter until the best results are 

obtained. Note that we did not compare with any 

data-driven approaches, as we have not identified 

one that can predict diffusion of novel topics.  

3.3 Results 

The result of each model is shown in Table 1. All 

except two features outperform the baseline. The 

best single feature is TS. Note that UPLC performs 

better than UG, which verifies our hypothesis that 

maintaining the same hidden features across 

different LDA models is better. We further conduct 

experiments to evaluate different combinations of 

features (Table 2), and found that the best one (TS 

+ ID + NDT) results in about 16% improvement 

over the baseline, and outperforms the combination 

of all features. As stated in (Witten et al., 2011), 

adding useless features may cause the performance 

of classifiers to deteriorate. Intuitively, TS captures 

both latent topic and historical diffusion 

information, while ID and NDT provide 

complementary social characteristics of users. 

 
Table 1: Single-feature results. 

 
Table 2: Feature combination results. 

4 Conclusions 

The main contributions of this paper are as below: 

1. We propose a novel task of predicting the 

diffusion of unseen topics, which has wide 

applications in real-world.  

2. Compared to the traditional model-driven or 

content-independent data-driven works on 

diffusion analysis, our solution demonstrates 

how one can bring together ideas from two 

different but promising areas, NLP and SNA, 

to solve a challenging problem. 

3. Promising experiment result (74% in AUC) 

not only demonstrates the usefulness of the 

proposed models, but also indicates that 

predicting diffusion of unseen topics without 

historical diffusion data is feasible. 
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Method Feature AUC

Baseline

Existing Diffusion 58.25%

Independent Cascade 51.53%

Heat Diffusion 56.08%

Learning

Topic Signature (TG) 50.80%

Topic Similarity (TS) 69.93%

User Signature (UG) 56.59%

User Preferences to

Latent Categories (UPLC)
61.33%

In-degree (ID) 65.55%

Out-degree (OD) 59.73%

Number of Distinct Topics (NDT) 55.42%

Method Feature AUC

Baseline Existing Diffusion 58.25%

Learning

ALL 65.06%

TS + UPLC + ID + NDT 67.67%

TS + UPLC + ID 64.80%

TS + UPLC + NDT 66.01%

TS + ID + NDT 73.95%

UPLC + ID + NDT 67.24%
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