
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 296–300,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Heuristic Cube Pruning in Linear Time

Andrea Gesmundo
Department of

Computer Science
University of Geneva

andrea.gesmundo@unige.ch

Giorgio Satta
Department of

Information Engineering
University of Padua

satta@dei.unipd.it

James Henderson
Department of

Computer Science
University of Geneva

james.henderson@unige.ch

Abstract

We propose a novel heuristic algorithm for
Cube Pruning running in linear time in the
beam size. Empirically, we show a gain in
running time of a standard machine translation
system, at a small loss in accuracy.

1 Introduction

Since its first appearance in (Huang and Chiang,
2005), the Cube Pruning (CP) algorithm has quickly
gained popularity in statistical natural language pro-
cessing. Informally, this algorithm applies to sce-
narios in which we have thek-best solutions for two
input sub-problems, and we need to compute thek-
best solutions for the new problem representing the
combination of the two sub-problems.

CP has applications in tree and phrase based ma-
chine translation (Chiang, 2007; Huang and Chi-
ang, 2007; Pust and Knight, 2009), parsing (Huang
and Chiang, 2005), sentence alignment (Riesa and
Marcu, 2010), and in general in all systems combin-
ing inexact beam decoding with dynamic program-
ming under certain monotonic conditions on the def-
inition of the scores in the search space.

Standard implementations of CP run in time
O(k log(k)), with k being the size of the in-
put/output beams (Huang and Chiang, 2005). Ges-
mundo and Henderson (2010) propose Faster CP
(FCP) which optimizes the algorithm but keeps the
O(k log(k)) time complexity. Here, we propose a
novel heuristic algorithm for CP running in time
O(k) and evaluate its impact on the efficiency and
performance of a real-world machine translation
system.

2 Preliminaries

Let L = 〈x0, . . . , xk−1〉 be a list overR, that is,
an ordered sequence of real numbers, possibly with
repetitions. We write|L| = k to denote the length of
L. We say thatL is descending if xi ≥ xj for every
i, j with 0 ≤ i < j < k. Let L1 = 〈x0, . . . , xk−1〉
andL2 = 〈y0, . . . , yk′

−1〉 be two descending lists
overR. We writeL1 ⊕ L2 to denote the descending
list with elementsxi +yj for everyi, j with 0 ≤ i <
k and0 ≤ j < k′.

In cube pruning (CP) we are given as input two
descending listsL1, L2 overR with |L1| = |L2| =
k, and we are asked to compute the descending list
consisting of the firstk elements ofL1 ⊕L2.

A problem related to CP is thek-way merge
problem (Horowitz and Sahni, 1983). Given de-
scending listsLi for every i with 0 ≤ i < k, we
write mergek−1

i=0
Li to denote the “merge” of all the

listsLi, that is, the descending list with all elements
from the listsLi, including repetitions.

For∆ ∈ R we defineshift(L,∆) = L ⊕ 〈∆〉. In
words,shift(L,∆) is the descending list whose ele-
ments are obtained by “shifting” the elements ofL
by ∆, preserving the order. LetL1,L2 be descend-
ing lists of lengthk, with L2 = 〈y0, . . . , yk−1〉.
Then we can express the output of CP onL1,L2 as
the list

mergek−1

i=0
shift(L1, yi) (1)

truncated after the firstk elements. This shows that
the CP problem is a particular instance of thek-way
merge problem, in which all input lists are related by
k independent shifts.

296

Computation of the solution of thek-way merge
problem takes timeO(q log(k)), where q is the
size of the output list. In case each input list has
lengthk this becomesO(k2 log(k)), and by restrict-
ing the computation to the firstk elements, as re-
quired by the CP problem, we can further reduce to
O(k log(k)). This is the already known upper bound
on the CP problem (Huang and Chiang, 2005; Ges-
mundo and Henderson, 2010). Unfortunately, there
seems to be no way to achieve an asymptotically
faster algorithm by exploiting the restriction that the
input lists are all related by some shifts. Nonethe-
less, in the next sections we use the above ideas to
develop a heuristic algorithm running in time linear
in k.

3 Cube Pruning With Constant Slope

Consider listsL1,L2 defined as in section 2. We say
thatL2 hasconstant slope if yi−1− yi = ∆ > 0 for
everyi with 0 < i < k. Throughout this section we
assume thatL2 has constant slope, and we develop
an (exact) linear time algorithm for solving the CP
problem under this assumption.

For eachi ≥ 0, let Ii be the left-open interval
(x0 − (i + 1) · ∆, x0 − i · ∆] of R. Let alsos =
⌊(x0 − xk−1)/∆⌋ + 1. We splitL1 into (possibly
empty) sublistsσi, 0 ≤ i < s, calledsegments, such
that eachσi is the descending sublist consisting of
all elements fromL1 that belong toIi. Thus, moving
down one segment inL1 is the closest equivalent to
moving down one element inL2.

Let t = min{k, s}; we define descending lists
Mi, 0 ≤ i < t, as follows. We setM0 =
shift(σ0, y0), and for1 ≤ i < t we let

Mi = merge{shift(σi, y0), shift(Mi−1,−∆)} (2)

We claim that the ordered concatenation ofM0,
M1, . . . , Mt−1 truncated after the firstk elements
is exactly the output of CP on inputL1,L2.

To prove our claim, it helps to visualize the de-
scending listL1 ⊕ L2 (of sizek2) as ak × k matrix
L whosej-th column isshift(L1, yj), 0 ≤ j < k.
For an intervalI = (x, x′], we defineshift(I, y) =
(x+ y, x′ + y]. Similarly to what we have done with
L1, we can split each column ofL into s segments.
For eachi, j with 0 ≤ i < s and0 ≤ j < k, we de-
fine thei-th segment of thej-th column, writtenσi,j,

as the descending sublist consisting of all elements
of that column that belong toshift(Ii, yj). Then we
haveσi,j = shift(σi, yj).

For any d with 0 ≤ d < t, consider now all
segmentsσi,j with i + j = d, forming a sub-
antidiagonal inL. We observe that these segments
containall and only those elements ofL that belong
to the intervalId. It is not difficult to show by in-
duction that these elements are exactly the elements
that appear in descending order in the listMi defined
in (2).

We can then directly use relation (2) to iteratively
compute CP on two lists of lengthk, under our as-
sumption that one of the two lists has constant slope.
Using the fact that the merge of two lists as in (2) can
be computed in time linear in the size of the output
list, it is not difficult to implement the above algo-
rithm to run in timeO(k).

4 Linear Time Heuristic Solution

In this section we further elaborate on the exact al-
gorithm of section 3 for the constant slope case, and
develop a heuristic solution for the general CP prob-
lem. LetL1,L2, L andk be defined as in sections 2
and 3. Despite the fact thatL2 does not have a con-
stant slope, we can still split each column ofL into
segments, as follows.

Let Ĩi, 0 ≤ i < k − 1, be the left-open interval
(x0 + yi+1, x0 + yi] of R. Note that, unlike the case
of section 3, intervals̃Ii’s are not all of the same size
now. Let alsoĨk−1 = [xk−1 + yk−1, x0 + yk−1].
For eachi, j with 0 ≤ j < k and0 ≤ i < k −
j, we define segment̃σi,j as the descending sublist
consisting of all elements of thej-th column ofL
that belong toĨi+j. In this way, thej-th column
of L is split into segments̃Ij , Ĩj+1, . . . , Ĩk−1, and
we have a variable number of segments per column.
Note that segments̃σi,j with a constant value ofi+j
containall and only those elements ofL that belong
to the left-open interval̃Ii+j .

Similarly to section 3, we define descending lists
M̃i, 0 ≤ i < k, by settingM̃0 = σ̃0,0 and, for
1 ≤ i < k, by letting

M̃i = merge{σ̃i,0 , path(M̃i−1, L)} (3)

Note that the functionpath(M̃i−1, L) should not re-
turn shift(M̃i−1,−∆), for some value∆, as in the

297

1: Algorithm 1 (L1, L2) : L̃⋆

2: L̃⋆.insert(L[0, 0]);
3: referColumn← 0;
4: xfollow ← L[0, 1];
5: xdeviate ← L[1, 0];
6: C ← CircularList([0, 1]);
7: C-iterator← C.begin();
8: while |L̃⋆| < k do
9: if xfollow > xdeviate then

10: L̃⋆.insert(xfollow);
11: if C-iterator.current()=[0, 1] then
12: referColumn++;
13: [i, j]← C-iterator.next();
14: xfollow ← L[i,referColumn+j];
15: else
16: L̃⋆.insert(xdeviate);
17: i← xdeviate .row();
18: C-iterator.insert([i,−referColumn]);
19: xdeviate ← L[i + 1, 0];

case of (2). This is because input listL2 does not
have constant slope in general. In an exact algo-
rithm, path(M̃i−1, L) should return the descending
list L⋆

i−1
= mergei

j=1
σ̃i−j,j: Unfortunately, we do

not know how to compute such ai-way merge with-
out introducing a logarithmic factor.

Our solution is to definepath(M̃i−1, L) in such a
way that it computes a list̃Li−1 which is a permu-
tation of the correct solutionL⋆

i−1. To do this, we
consider the “relative” path starting atx0+yi−1 that
we need to follow inL in order to collect all the el-
ements ofM̃i−1 in the given order. We then apply
such a path starting atx0 + yi and return the list of
collected elements. Finally, we compute the output
list L̃⋆ as the concatenation of all lists̃Mi up to the
first k elements.

It is not difficult to see that whenL2 has constant
slope we havẽMi = Mi for all i with 0 ≤ i < k,
and list L̃⋆ is the exact solution to the CP prob-
lem. WhenL2 does not have a constant slope, list
L̃⋆ might depart from the exact solution in two re-
spects: it might not be a descending list, because
of local variations in the ordering of the elements;
and it might not be a permutation of the exact so-
lution, because of local variations at the end of the
list. In the next section we evaluate the impact that

����� ������

�� ��

��	��
��
�����

� �����

���������

��

����� ������

�����

��

�� ���

����� ������

������

��

�� ��

��

����� ������

������

��

�� ��

��

�� �� ��

��

�� �� ��

��

��

�� �� ��

�� ��

��

�� �� ��

�� ��

��

�

�� �� �� ��

�� ��

��

�

� � � �

��

�

�

�

Figure 1: A running example for Algorithm 1.

our heuristic solution has on the performance of a
real-world machine translation system.

Algorithm 1 implements the idea presented in (3).
The algorithm takes as input two descending lists
L1,L2 of length k and outputs the list̃L⋆ which
approximates the desired solution. ElementL[i, j]
denotes the combined valuexi + yj, and is always
computed on demand.

We encode a relative path (mentioned above) as
a sequence of elements, calleddisplacements, each
of the form[i, δ]. Herei is the index of the next row,
andδ represents therelative displacement needed to
reach the next column, to be summed to a variable
called referColumn denoting the index of the col-
umn of the first element of the path. The reason
why only the second coordinate is a relative value
is that we shift paths only horizontally (row indices
are preserved). The relative path is stored in a circu-
lar list C, with displacement[0, 1] marking the start-
ing point (paths are always shifted one element to
the right). When merging the list obtained through
the path forM̃i−1 with segment̃σi,0, as specified
in (3), we updateC accordingly, so that the new rel-
ative path can be used at the next round forM̃i. The
merge operator is implemented by the while cycle
at lines 8 to 19 of algorithm 1. The if statement at
line 9 tests whether the next step should follow the
relative path for̃Mi−1 stored inC (lines 10 to 14) or

298

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 10 100 1000

sc
or

e
lo

ss
 (

%
)

beam size

Baseline score loss over CP
LCP score loss over CP
FCP score loss over CP

Figure 2: Search-score loss relative to standard CP.

else depart visiting an element from̃σi,0 in the first
column ofL (lines 16 to 19). In the latter case, we
updateC with the new displacement (line 18), where
the function insert() inserts a new element before
the one currently pointed to. The function next() at
line 13 moves the iterator to the next element and
then returns its value.

A running example of algorithm 1 is reported in
Figure 1. The input lists areL1 = 〈12, 7, 5, 0〉,
L2 = 〈9, 6, 3, 0〉. Each of the picture in the sequence
represents the state of the algorithm when the test at
line 9 is executed. The value in the shaded cell in the
first column isxdeviate , while the value in the other
shaded cell isxfollow .

5 Experiments

We implement Linear CP (LCP) on top of Cdec
(Dyer et al., 2010), a widely-used hierarchical MT
system that includes implementations of standard
CP and FCP algorithms. The experiments were ex-
ecuted on the NIST 2003 Chinese-English parallel
corpus. The training corpus contains 239k sentence
pairs. A binary translation grammar was extracted
using a suffix array rule extractor (Lopez, 2007).
The model was tuned using MERT (Och, 2003).
The algorithms are compared on the NIST-03 test
set, which contains 919 sentence pairs. The features
used are basic lexical features, word penalty and a
3-gram Language Model (Heafield, 2011).

Since we compare decoding algorithms on the
same search space, the accuracy comparison is done
in terms of search score. For each algorithm we

 0

 5

 10

 15

 20

 25

 1 10 100 1000

sp
ee

d
ga

in
 (

%
)

beam size

LCP speed gain over CP
LCP speed gain over FCP

Figure 3: Linear CP relative speed gain.

compute the average score of the best translation
found for the test sentences. In Figure 2 we plot
the score-loss relative to standard CP average score.
Note that the FCP loss is always< 3%, and the LCP
loss is always< 7%. The dotted line plots the loss
of a baseline linear time heuristic algorithm which
assumes that both input lists have constant slope,
and that scansL along parallel lines whose steep
is the ratio of the average slope of each input list.
The baseline greatly deteriorates the accuracy: this
shows that finding a reasonable linear time heuristic
algorithm is not trivial. We can assume a bounded
loss in accuracy, because for larger beam size all the
algorithms tend to converge to exhaustive search.

We found that these differences in search score
resulted in no significant variations in BLEU score
(e.g. withk = 30, CP reaches 32.2 while LCP 32.3).

The speed comparison is done in terms of algo-
rithm run-time. Figure 3 plots the relative speed gain
of LCP over standard CP and over FCP. Given the
log-scale used for the beam sizek, the linear shape
of the speed gain over FCP (and CP) in Figure 3 em-
pirically confirms that LCP has alog(k) asymptotic
advantage over FCP and CP.

In addition to Chinese-English, we ran experi-
ments on translating English to French (from Eu-
roparl corpus (Koehn, 2005)), and find that the LCP
score-loss relative to CP is< 9% while the speed
relative advantage of LCP over CP increases in aver-
age by11.4% every time the beam size is multiplied
by 10 (e.g. withk = 1000 the speed advantage is
34.3%). These results confirm the bounded accu-
racy loss andlog(k) speed advantage of LCP.

299

References

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Jonathan
Weese, Hendra Setiawan, Ferhan Ture, Vladimir Ei-
delman, Phil Blunsom, and Philip Resnik. 2010.
cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models.
In ACL ’10: Proceedings of the ACL 2010 System
Demonstrations, Uppsala, Sweden.

Andrea Gesmundo and James Henderson. 2010. Faster
Cube Pruning. InIWSLT ’10: Proceedings of the 7th
International Workshop on Spoken Language Transla-
tion, Paris, France.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. InWMT ’11: Proceedings of
the 6th Workshop on Statistical Machine Translation,
Edinburgh, Scotland, UK.

E. Horowitz and S. Sahni. 1983.Fundamentals of
data structures. Computer software engineering se-
ries. Computer Science Press.

Liang Huang and David Chiang. 2005. Better k-best
parsing. InIWPT ’05: Proceedings of the 9th Interna-
tional Workshop on Parsing Technology, Vancouver,
British Columbia, Canada.

Liang Huang and David Chiang. 2007. Forest rescor-
ing: Faster decoding with integrated language mod-
els. In ACL ’07: Proceedings of the 45th Confer-
ence of the Association for Computational Linguistics,
Prague, Czech Republic.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. InProceedings of the
10th Machine Translation Summit, Phuket, Thailand.

Adam Lopez. 2007. Hierarchical phrase-based transla-
tion with suffix arrays. InEMNLP-CoNLL ’07: Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, Prague, Czech
Republic.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. InACL ’03: Pro-
ceedings of the 41st Conference of the Association for
Computational Linguistics, Sapporo, Japan.

Michael Pust and Kevin Knight. 2009. Faster MT decod-
ing through pervasive laziness. InNAACL ’09: Pro-
ceedings of the 10th Conference of the North American
Chapter of the Association for Computational Linguis-
tics, Boulder, CO, USA.

Jason Riesa and Daniel Marcu. 2010. Hierarchical
search for word alignment. InACL ’10: Proceedings
of the 48th Conference of the Association for Compu-
tational Linguistics, Uppsala, Sweden.

300

