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Abstract

We propose a probabilistic generative model
for unsupervised semantic role induction,
which integrates local role assignment deci-
sions and a global role ordering decision in a
unified model. The role sequence is divided
into intervals based on the notion ofprimary
roles, and each interval generates a sequence
of secondary roles and syntactic constituents
using local features. The global role ordering
consists of the sequence of primary roles only,
thus making it a partial ordering.

1 Introduction

Unsupervised semantic role induction has gained
significant interest recently (Lang and Lapata,
2011b) due to limited amounts of annotated corpora.
A Semantic Role Labeling (SRL) system should
provide consistent argument labels across different
syntactic realizations of the same verb (Palmer et al.,
2005), as in

(a.) [ Mark ]A0 drove[ the car]A1

(b.) [ The car]A1 was driven by[ Mark ]A0

This simple example also shows that while certain
local syntactic and semantic features could provide
clues to the semantic role label of a constituent, non-
local features such as predicate voice could provide
information about the expected semantic role se-
quence. Sentencea is in active voice with sequence
(A0, PREDICATE, A1) and sentenceb is in passive
voice with sequence(A1, PREDICATE, A0). Addi-
tional global preferences, such as argumentsA0 and
A1 rarely repeat in a frame (as seen in the corpus),
could also be useful in addition to local features.

Supervised SRL systems have mostly used local
classifiers that assign a role to each constituent inde-
pendently of others, and only modeled limited cor-
relations among roles in a sequence (Toutanova et
al., 2008). The correlations have been modeled via
role sets (Gildea and Jurafsky, 2002), role repeti-
tion constraints (Punyakanok et al., 2004), language
model over roles (Thompson et al., 2003; Pradhan
et al., 2005), and global role sequence (Toutanova
et al., 2008). Unsupervised SRL systems have ex-
plored even fewer correlations. Lang and Lapata
(2011a; 2011b) use the relative position (left/right)
of the argument w.r.t. the predicate. Grenager and
Manning (2006) use an ordering of the linking of se-
mantic roles and syntactic relations. However, as the
space of possible linkings is large, language-specific
knowledge is used to constrain this space.

Similar to Toutanova et al. (2008), we propose to
use global role ordering preferences but in a gener-
ative model in contrast to their discriminative one.
Further, unlike Grenager and Manning (2006), we
do not explicitly generate the linking of semantic
roles and syntactic relations, thus keeping the pa-
rameter space tractable. The main contribution of
this work is an unsupervised model that uses global
role ordering and repetition preferences without as-
suming any language-specific constraints.

Following Gildea and Jurafsky (2002), previous
work has typically broken the SRL task into (i) argu-
ment identification, and (ii) argument classification
(Màrquez et al., 2008). The latter is our focus in this
work. Given the dependency parse tree of a sentence
with correctly identified arguments, the aim is to as-
sign a semantic role label to each argument.
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Algorithm 1 Generative process
—————– PARAMETERS —————–
for all predicatep do

for all voicevc ∈ {active, passive} do
drawθorder

p,vc ∼ Dirichlet(αorder)
for all intervalI do

drawθSR
p,I ∼ Dirichlet(αSR)

for all adjacencyadj ∈ {0, 1} do
drawθSTOP

p,I,adj ∼ Beta(αSTOP )
for all roler ∈ PR ∪ SR do

for all feature typef do
drawθF

p,r,f ∼ Dirichlet(αF )
———————– DATA ———————–
given a predicatep with voicevc:
choose an orderingo ∼ Multinomial(θorder

p,vc )
for all intervalI ∈ o do

draw an indicators ∼ Binomial(θSTOP
p,I,0 )

while s 6= STOP do
choose a SRr ∼ Multinomial(θSR

p,I )
draw an indicators ∼ Binomial(θSTOP

p,I,1 )
for all generated rolesr do

for all feature typef do
choose a valuevf ∼ Multinomial(θF

p,r,f )

2 Proposed Model

We assume the roles to be predicate-specific. We
begin by introducing a few terms:

Primary Role (PR) For every predicate, we assume
the existence ofK primary roles (PRs) denoted by
P1, P2, ..., PK. These roles are not allowed to re-
peat in a frame and serve as “anchor points” in the
global role ordering. Intuitively, the model attempts
to choose PRs such that they occur with high fre-
quency, do not repeat, and their ordering influences
the positioning of other roles. Note that a PR may
correspond to either a core role or a modifier role.
For ease of explication, we create3 additional PRs:
START denoting the start of the role sequence,END

denoting its end, andPRED denoting the predicate.

Secondary Role (SR) The roles that are not PRs are
called secondary roles (SRs). GivenN roles in total,
there are(N −K) SRs, denoted byS1, S2, ..., SN−K .
Unlike PRs, SRs are not constrained to occur only
once in a frame and do not participate in the global
role ordering.

Interval An interval is a sequence of SRs bounded
by PRs, for instance(P2, S3, S5, PRED).

Ordering An ordering is the sequence of PRs ob-
served in a frame. For example, if the complete role

Figure 1: Proposed model. Shaded and unshaded
nodes represent visible and hidden variables resp.

sequence is(START ,P2, S1, S1, PRED, S3, END), the
ordering is defined as(START , P2, PRED, END).

Features We have explored 1 frame level (global)
feature (i) voice: active/passive, and 3 argument
level (local) features (i)deprel: dependency relation
of an argument to its head in the dependency parse
tree, (ii) head: head word of the argument, and (iii)
pos-head: Part-of-Speech tag ofhead.

Algorithm 1 describes the generative story of our
model and Figure 1 illustrates it graphically. Given a
predicate and its voice, an ordering is selected from
a multinomial. This ordering gives us the sequence
of PRs(PR1, PR2, ..., PRN ). Each pair of consec-
utive PRs,PRi, PRi+1, in an ordering corresponds
to an intervalIi. For each such interval, we generate
0 or more SRs(SRi1, SRi2, ...SRiM ) as follows.
Generate an indicator variable:CONTINUE/STOP

from a binomial distribution. IfCONTINUE, gen-
erate a SR from the multinomial corresponding to
the interval. Generate another indicator variable and
continue the process till aSTOP has been generated.
In addition to the interval, the indicator variable also
depends on whether we are generating the first SR
(adj = 0) or a subsequent one (adj = 1). For each
role, primary as well as secondary, we now generate
the corresponding constituent by generating each of
its features independently(F1, F2, ..., FT ).

Given a frame instance with predicatep and voice
vc, Figure 2 gives (i) Eq. 1: the joint distribution
of the orderingo, role sequencer, and constituent
sequencef , and (ii) Eq. 2: the marginal distribution
of an instance. The likelihood of the whole corpus
is the product of marginals of individual instances.
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P (o, r, f |p, vc) = P (o|p, vc)
︸ ︷︷ ︸

ordering

∗ Π{ri∈r∩PR}P (fi|ri, p)
︸ ︷︷ ︸

Primary Roles

∗ Π{I∈o}P (r(I), f(I)|I, p)
︸ ︷︷ ︸

Intervals

(1)

where P (r(I), f(I)|I, p) =
∏

ri∈r(I)

P (continue|I, p, adj)
︸ ︷︷ ︸

generate indicator

P (ri|I, p)
︸ ︷︷ ︸

generate SR

P (fi|ri, p)
︸ ︷︷ ︸

generate features

∗ P (stop|I, p, adj)
︸ ︷︷ ︸

end of the interval

and P (fi|ri, p) = ΠtP (fi,t|ri, p)

P (f |p, vc) = ΣoΣ{r∈seq(o)}P (o, r, f |p, vc) whereseq(o) = {role sequences allowed under orderingo} (2)

Figure 2: ri andfi denote the role and features at positioni respectively, andr(I) andf(I) respectively
denote the SR sequence and feature sequence in intervalI. fi,t denotes the value of featuret at positioni.

This particular choice of model is inspired from
different sources. Firstly, making the role order-
ing dependent only on PRs aligns with the obser-
vation by Pradhan et al. (2005) and Toutanova et
al. (2008) that including the ordering information
of only core roles helped improve the SRL perfor-
mance as opposed to the complete role sequence.
Although our assumption here is softer in that we
assume the existence of some roles which define
the ordering which may or may not correspond to
core roles. Secondly, generating the SRs indepen-
dently of each other given the interval is based on
the intuition that knowing the core roles informs
us about the expected non-core roles that occur be-
tween them. This intuition is supported by the statis-
tics in the annotated data, where we found that if we
consider the core roles as PRs, then most of the in-
tervals tend to have only a few types of SRs and a
given SR tends to occur only in a few types of in-
tervals. The concept of intervals is also related to
the linguistic theory of topological fields (Diderich-
sen, 1966; Drach, 1937). This simplifying assump-
tion that given the PRs at the interval boundary, the
SRs in that interval are independent of the other
roles in the sequence, keeps the parameter space lim-
ited, which helps unsupervised learning. Thirdly,
not allowing some or all roles to repeat has been
employed as a useful constraint in previous work
(Punyakanok et al., 2004; Lang and Lapata, 2011b),
which we use here for PRs. Lastly, conditioning the
(STOP/CONTINUE) indicator variable on the adja-
cency value (adj) is inspired from the DMV model
(Klein and Manning, 2004) for unsupervised depen-
dency parsing. We found in the annotated corpus
that if we map core roles to PRs, then most of the
time the intervals do not generate any SRs at all. So,

the probability toSTOP should be very high when
generating the first SR.

We use an EM procedure to train the model. In
the E-step, we calculate the expected counts of all
the hidden variables in our model using the Inside-
Outside algorithm (Baker, 1979). In the M-step, we
add the counts corresponding to the Bayesian priors
to the expected counts and use the resulting counts
to calculate the MAP estimate of the parameters.

3 Experiments

Following the experimental settings of Lang and La-
pata (2011b), we use the CoNLL 2008 shared task
dataset (Surdeanu et al., 2008), only consider ver-
bal predicates, and run unsupervised training on the
standard training set. The evaluation measures are
also the same: (i) Purity (PU) that measures how
well an induced cluster corresponds to a single gold
role, (ii) Collocation (CO) that measures how well
a gold role corresponds to a single induced cluster,
and (iii) F1 which is the harmonic mean of PU and
CO. Final scores are computed by weighting each
predicate by the number of its argument instances.
We chose a uniform Dirichlet prior with concentra-
tion parameter as 0.1 for all the model parameters
in Algorithm 1 (set roughly, without optimization1).
50 training iterations were used.

3.1 Results

Since the dataset has 21 semantic roles in total, we
fix the total number of roles in our model to be 21.
Further, we set the number of PRs to 2 (excluding
START , END andPRED), and SRs to 21-2=19.

1Removing the Bayesian priors completely, resulted in the
EM algorithm getting to a local maxima quite early, giving a
substantially lower performance.
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Model Features PU CO F1
0 Baseline2 d 81.6 78.1 79.8

1a Proposed d 82.3 78.6 80.4
1b Proposed d,h 82.7 77.2 79.9
1c Proposed d,p-h 83.5 78.5 80.9
1d Proposed d,p-h,h 83.2 77.1 80.0

Table 1: Evaluation.d refers todeprel, h refers to
head andp-h refers topos-head.

Table 1 gives the results using different feature
combinations. Line 0 reports the performance of
Lang and Lapata (2011b)’s baseline, which has been
shown difficult to outperform. This baseline maps
20 most frequentdeprel to a role each, and the rest
are mapped to the21st role. By just usingdeprel as
a feature, the proposed model outperforms the base-
line by 0.6 points in terms of F1 score. In this con-
figuration, the only addition over the baseline is the
ordering model. Addinghead as a feature leads to
sparsity, which results in a substantial decrease in
collocation (lines 1b and 1d). However, just adding
pos-head (line 1c) does not cause this problem and
gives the best F1 score. To address sparsity, we in-
duced a distributed hidden representation for each
word via a neural network, capturing the semantic
similarity between words. Preliminary experiments
improved the F1 score when using this word repre-
sentation as a feature instead of the word directly.

Lang and Lapata (2011b) give the results of three
methods on this task. In terms of F1 score, theLa-
tent Logistic andGraph Partitioning methods result
in slight reduction in performance over the baseline,
while theSplit-Merge method results in an improve-
ment of 0.6 points. Table 1, line 1c achieves an im-
provement of 1.1 points over the baseline.

3.2 Further Evaluation

Table 2 shows the variation in performance w.r.t.
the number of PRs3 in the best performing config-
uration (Table 1, line 1c). On one extreme, when
there are 0 PRs, there are only two possible in-
tervals: (START,PRED) and(PRED, END) which
means that the only context information a SR has
is whether it is to the left or right of the predicate.

2The baseline F1 reported by Lang and Lapata (2011b) is
79.5 due to a bug in their system (personal communication).

3Note that the system might not use all available PRs to label
a given frame instance. #PRs refers to the max #PRs.

# PRs PU CO F1
0 81.67 78.07 79.83
1 82.91 78.99 80.90
2 83.54 78.47 80.93
3 83.68 78.23 80.87
4 83.72 78.08 80.80

Table 2: Performance variation with the number of
PRs (excludingSTART , END andPRED)

With only this additional ordering information, the
performance is the same as the baseline. Adding just
1 PR leads to a big increase in both purity and col-
location. Increasing the number of PRs beyond 1
leads to a gradual increase in purity and decline in
collocation, with the best F1 score at 2 PRs. This
behavior could be explained by the fact that increas-
ing the number of PRs also increases the number of
intervals, which makes the probability distributions
more sparse. In the extreme case, where all the roles
are PRs and there are no SRs, the model would just
learn the complete sequence of roles, which would
make the parameter space too large to be tractable.

For calculating purity, each induced cluster (or
role) is mapped to a particular gold role that has
the maximum instances in the cluster. Analyzing the
output of our model (line 1c in Table 1), we found
that about 98% of the PRs and 40% of the SRs got
mapped to the gold core roles (A0,A1, etc.). This
suggests that the model is indeed following the intu-
ition that (i) the ordering of core roles is important
information for SRL systems, and (ii) the intervals
bounded by core roles provide good context infor-
mation for classification of other roles.

4 Conclusions

We propose a unified generative model for unsu-
pervised semantic role induction that incorporates
global role correlations as well as local feature infor-
mation. The results indicate that a small number of
ordered primary roles (PRs) is a good representation
of global ordering constraints for SRL. This repre-
sentation keeps the parameter space small enough
for unsupervised learning.
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