
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 105–109,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Robust Conversion of CCG Derivations to Phrase Structure Trees

Jonathan K. Kummerfeld† Dan Klein† James R. Curran‡

†Computer Science Division ‡ e-lab, School of IT
University of California, Berkeley University of Sydney

Berkeley, CA 94720, USA Sydney, NSW 2006, Australia
{jkk,klein}@cs.berkeley.edu james@it.usyd.edu.au

Abstract

We propose an improved, bottom-up method
for convertingCCG derivations intoPTB-style
phrase structure trees. In contrast with past
work (Clark and Curran, 2009), which used
simple transductions on category pairs, our ap-
proach uses richer transductions attached to
single categories. Our conversion preserves
more sentences under round-trip conversion
(51.1% vs. 39.6%) and is more robust. In par-
ticular, unlike past methods, ours does not re-
quire ad-hoc rules over non-local features, and
so can be easily integrated into a parser.

1 Introduction

Converting the Penn Treebank (PTB, Marcus et al.,
1993) to other formalisms, such asHPSG (Miyao
et al., 2004),LFG (Cahill et al., 2008),LTAG (Xia,
1999), andCCG (Hockenmaier, 2003), is a com-
plex process that renders linguistic phenomena in
formalism-specific ways. Tools for reversing these
conversions are desirable for downstream parser use
and parser comparison. However, reversing conver-
sions is difficult, as corpus conversions may lose in-
formation or smooth overPTB inconsistencies.

Clark and Curran (2009) developed aCCG to PTB

conversion that treats theCCG derivation as a phrase
structure tree and applies hand-crafted rules to ev-
ery pair of categories that combine in the derivation.
Because their approach does not exploit the gener-
alisations inherent in theCCG formalism, they must
resort to ad-hoc rules over non-local features of the
CCGconstituents being combined (when a fixed pair
of CCG categories correspond to multiplePTB struc-
tures). Even with such rules, they correctly convert
only 39.6% of gold CCGbank derivations.

Our conversion assigns a set of bracket instruc-
tions to each word based on itsCCG category, then
follows the CCG derivation, applying and combin-
ing instructions at each combinatory step to build a
phrase structure tree. This requires specific instruc-
tions for each category (not all pairs), and generic
operations for each combinator. We cover all cate-
gories in the development set and correctly convert
51.1% of sentences. Unlike Clark and Curran’s ap-
proach, we require no rules that consider non-local
features of constituents, which enables the possibil-
ity of simple integration with aCKY-based parser.

The most common errors our approach makes in-
volve nodes for clauses and rare spans such as QPs,
NXs, and NACs. Many of these errors are inconsis-
tencies in the originalPTB annotations that are not
recoverable. These issues make evaluating parser
output difficult, but our method does enable an im-
proved comparison ofCCG andPTB parsers.

2 Background

There has been extensive work on converting parser
output for evaluation, e.g. Lin (1998) and Briscoe et
al. (2002) proposed using underlying dependencies
for evaluation. There has also been work on conver-
sion to phrase structure, from dependencies (Xia and
Palmer, 2001; Xia et al., 2009) and from lexicalised
formalisms, e.g.HPSG(Matsuzaki and Tsujii, 2008)
andTAG (Chiang, 2000; Sarkar, 2001). Our focus is
onCCG to PTB conversion (Clark and Curran, 2009).

2.1 Combinatory Categorial Grammar (CCG)

The lower half of Figure 1 shows aCCG derivation
(Steedman, 2000) in which each word is assigned a
category, andcombinatory rulesare applied to ad-
jacent categories until only one remains. Categories

105



JJ NNS

PRP$ NN DT NN

NP NP

VBD S

NP VP

S

Italian magistrates labeled his death a suicide
N /N N ((S [dcl ]\NP)/NP)/NP NP [nb]/N N NP [nb]/N N

> > >

N NP NP
>

NP (S [dcl ]\NP)/NP
>

S [dcl ]\NP
<

S [dcl ]

Figure 1: A crossing constituents example:his . . . suicide
(PTB) crosseslabeled . . . death(CCGbank).

Categories Schema

N create an NP
((S [dcl ]\NP)/NP)/NP create a VP
N /N + N place left under right
NP [nb]/N + N place left under right
((S [dcl ]\NP)/NP)/NP + NP place right under left
(S [dcl ]\NP)/NP + NP place right under left
NP + S [dcl ]\NP place both under S

Table 1: Example C&C-CONV lexical and rule schemas.

can be atomic, e.g. theN assigned tomagistrates,
or complex functions of the formresult / arg, where
resultandarg are categories and the slash indicates
the argument’s directionality. Combinators define
how adjacent categories can combine. Figure 1 uses
function application, where a complex category con-
sumes an adjacent argument to form its result, e.g.
S [dcl ]\NP combines with theNP to its left to form
anS [dcl ]. More powerful combinators allow cate-
gories to combine with greater flexibility.

We cannot form aPTB tree by simply relabeling
the categories in aCCG derivation because the map-
ping to phrase labels is many-to-many,CCG deriva-
tions contain extra brackets due to binarisation, and
there are cases where the constituents in thePTB tree
and theCCG derivation cross (e.g. in Figure 1).

2.2 Clark and Curran (2009)

Clark and Curran (2009), hereafterC&C-CONV, as-
sign aschemato each leaf (lexical category) and rule
(pair of combining categories) in theCCGderivation.
The PTB tree is constructed from theCCG bottom-
up, creating leaves with lexical schemas, then merg-
ing/adding sub-trees using rule schemas at each step.

The schemas for Figure 1 are shown in Table 1.
These apply to create NPs overmagistrates, death,
andsuicide, and a VP overlabeled, and then com-

bine the trees by placing one under the other at each
step, and finally create an S node at the root.

C&C-CONV has sparsity problems, requiring
schemas for all valid pairs of categories — at a
minimum, the 2853 unique category combinations
found in CCGbank. Clark and Curran (2009) create
schemas for only 776 of these, handling the remain-
der with approximate catch-all rules.

C&C-CONV only specifies one simple schema for
each rule (pair of categories). This appears reason-
able at first, but frequently causes problems, e.g.:

(N /N )/(N /N ) + N /N
“more than” + “30” (1)
“relatively” + “small” (2)

Here either a QP bracket (1) or an ADJP bracket
(2) should be created. Since both examples involve
the same rule schema,C&C-CONV would incorrectly
process them in the same way. To combat the most
glaring errors,C&C-CONV manipulates thePTB tree
with ad-hoc rules based on non-local features over
the CCG nodes being combined — an approach that
cannot be easily integrated into a parser.

These disadvantages are a consequence of failing
to exploit the generalisations thatCCG combinators
define. We return to this example below to show how
our approach handles both cases correctly.

3 Our Approach

Our conversion assigns a set of instructions to each
lexical category and defines generic operations for
each combinator that combine instructions. Figure 2
shows a typical instruction, which specifies the node
to create and where to place thePTB trees associated
with the two categories combining. More complex
operations are shown in Table 2. Categories with
multiple arguments are assigned one instruction per
argument, e.g.labeledhas three. These are applied
one at a time, as each combinatory step occurs.

For the example from the previous section we be-
gin by assigning the instructions shown in Table 3.
Some of these can apply immediately as they do not
involve an argument, e.g.magistrateshas (NP f).

One of the more complex cases in the example is
Italian, which is assigned (NP f{a}). This creates
a new bracket, inserts the functor’s tree, and flattens
and inserts the argument’s tree, producing:

(NP (JJ Italian) (NNS magistrates))

106



((S\NP)/NP)/NP NP

f a

(S\NP)/NP

f a

VP

Figure 2: An example function application. Top row:
CCG rule. Bottom row: applying instruction (VP f a).

Symbol Meaning Example

(X f a) Add an X bracket around (VP f a)
functor and argument

{ } Flatten enclosed node (N f{a})
X* Use same label as arg. (S* f{a})

or default to X
fi Place subtrees (PP f0 (S f1..k a))

Table 2: Types of operations in instructions.

For the complete example the final tree is almost
correct but omits the S bracket around the final two
NPs. To fix our example we could have modified our
instructions to use the final symbol in Table 2. The
subscripts indicate which subtrees to place where.
However, for this particular construction thePTB an-
notations are inconsistent, and so we cannot recover
without introducing more errors elsewhere.

For combinators other than function application,
we combine the instructions in various ways. Ad-
ditionally, we vary the instructions assigned based
on the POS tag in 32 cases, and for the wordnot,
to recover distinctions not captured by CCGbank
categories alone. In 52 cases the later instruc-
tions depend on the structure of the argument being
picked up. We have sixteen special cases for non-
combinatory binary rules and twelve special cases
for non-combinatory unary rules.

Our approach naturally handles our QP vs. ADJP
example because the two cases have different lexical
categories:((N /N )/(N /N ))\(S [adj ]\NP) on than
and (N /N )/(N /N ) on relatively. This lexical dif-
ference means we can assign different instructions to
correctly recover the QP and ADJP nodes, whereas
C&C-CONV applies the same schema in both cases
as the categories combining are the same.

4 Evaluation

Using sections 00-21 of the treebanks, we hand-
crafted instructions for 527 lexical categories, a pro-
cess that took under 100 hours, and includes all the
categories used by theC&C parser. There are 647
further categories and 35 non-combinatory binary
rules in sections 00-21 that we did not annotate. For

Category Instruction set

N (NP f)
N /N1 (NP f {a})
NP [nb]/N1 (NP f {a})
((S [dcl ]\NP3 )/NP2 )/NP1 (VP f a)

(VP {f} a)
(S a f)

Table 3: Instruction sets for the categories in Figure 1.

System Data P R F Sent.

00 (all) 95.37 93.67 94.51 39.6
C&C 00 (len≤ 40) 95.85 94.39 95.12 42.1
CONV 23 (all) 95.33 93.95 94.64 39.7

23 (len≤ 40) 95.44 94.04 94.73 41.9
00 (all) 96.69 96.58 96.63 51.1

This 00 (len≤ 40) 96.98 96.77 96.87 53.6
Work 23 (all) 96.49 96.11 96.30 51.4

23 (len≤ 40) 96.57 96.21 96.39 53.8

Table 4:PARSEVAL Precision, Recall, F-Score, and exact
sentence match for converted goldCCG derivations.

unannotated categories, we use the instructions of
the result category with an added instruction.

Table 4 compares our approach withC&C-CONV

on gold CCG derivations. The results shown are as
reported byEVALB (Abney et al., 1991) using the
Collins (1997) parameters. Our approach leads to in-
creases on all metrics of at least 1.1%, and increases
exact sentence match by over 11% (both absolute).

Many of the remaining errors relate to missing
and extra clause nodes and a range of rare structures,
such as QPs, NACs, and NXs. The only other promi-
nent errors are single word spans, e.g. extra or miss-
ing ADVPs. Many of these errors are unrecover-
able from CCGbank, either because inconsistencies
in thePTB have been smoothed over or because they
are genuine but rare constructions that were lost.

4.1 Parser Comparison

When we convert the output of aCCGparser, thePTB

trees that are produced will contain errors created by
our conversion as well as by the parser. In this sec-
tion we are interested in comparing parsers, so we
need to factor out errors created by our conversion.

One way to do this is to calculate a projected score
(PROJ), as the parser result over the oracle result, but
this is a very rough approximation. Another way is
to evaluate only on the 51% of sentences for which
our conversion from goldCCG derivations is perfect
(CLEAN). However, even on this set our conversion

107



0

20

40

60

80

100

0 20 40 60 80 100C
on

ve
rt

ed
C

&
C

,E
V

A
L

B

Converted Gold,EVALB

0

20

40

60

80

100

0 20 40 60 80 100

N
at

iv
e

C
&

C
,l

de
ps

Converted Gold,EVALB

Figure 3: For each sentence in the treebank, we plot
the converted parser output against gold conversion (left),
and the original parser evaluation against gold conversion
(right). Left: Most points lie below the diagonal, indicat-
ing that the quality of converted parser output (y) is upper
bounded by the quality of conversion on gold parses (x).
Right: No clear correlation is present, indicating that the
set of sentences that are converted best (on the far right),
are not necessarily easy to parse.

introduces errors, as the parser output may contain
categories that are harder to convert.

Parser F-scores are generally higher onCLEAN,
which could mean that this set is easier to parse, or it
could mean that these sentences don’t contain anno-
tation inconsistencies, and so the parsers aren’t in-
correct for returning the true parse (as opposed to
the one in thePTB). To test this distinction we look
for correlation between conversion quality and parse
difficulty on another metric. In particular, Figure 3
(right) showsCCG labeled dependency performance
for theC&C parser vs. CCGbank conversionPARSE-
VAL scores. The lack of a strong correlation, and the
spread on the linex = 100, supports the theory that
these sentences are not necessarily easier to parse,
but rather have fewer annotation inconsistencies.

In the left plot, the y-axis isPARSEVAL on con-
vertedC&C parser output. Conversion quality essen-
tially bounds the performance of the parser. The few
points above the diagonal are mostly short sentences
on which theC&C parser uses categories that lead
to one extra correct node. The main constructions
on which parse errors occur, e.g. PP attachment, are
rarely converted incorrectly, and so we expect the
number of errors to be cumulative. Some sentences
are higher in the right plot than the left because there
are distinctions inCCG that are not always present in
thePTB, e.g. the argument-adjunct distinction.

Table 5 presents F-scores for threePTB parsers
and threeCCG parsers (with their output converted
by our method). One interesting comparison is be-
tween thePTB parser of Petrov and Klein (2007) and

Sentences CLEAN ALL PROJ

Converted goldCCG

CCGbank 100.0 96.3 –
ConvertedCCG

Clark and Curran (2007) 90.9 85.588.8
Fowler and Penn (2010) 90.9 86.089.3
Auli and Lopez (2011) 91.7 86.2 89.5
NativePTB

Klein and Manning (2003) 89.8 85.8 –
Petrov and Klein (2007) 93.6 90.1 –
Charniak and Johnson (2005) 94.8 91.5 –

Table 5: F-scores on section 23 forPTB parsers and
CCG parsers with their output converted by our method.
CLEAN is only on sentences that are converted perfectly
from goldCCG (51%).ALL is over all sentences.PROJis
a projected F-score (ALL result / CCGbankALL result).

the CCG parser of Fowler and Penn (2010), which
use the same underlying parser. The performance
gap is partly due to structures in thePTB that are not
recoverable from CCGbank, but probably also indi-
cates that the split-merge model is less effective in
CCG, which has far more symbols than thePTB.

It is difficult to make conclusive claims about
the performance of the parsers. As shown earlier,
CLEAN does not completely factor out the errors in-
troduced by our conversion, as the parser output may
be more difficult to convert, and the calculation of
PROJonly roughly factors out the errors. However,
the results do suggest that the performance of the
CCGparsers is approaching that of the Petrov parser.

5 Conclusion

By exploiting the generalised combinators of the
CCG formalism, we have developed a new method
of convertingCCG derivations intoPTB-style trees.
Our system, which is publicly available1, is more
effective than previous work, increasing exact sen-
tence match by more than 11% (absolute), and can
be directly integrated with aCCG parser.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful suggestions. This research was
supported by a General Sir John Monash Fellow-
ship, the Office of Naval Research under MURI
Grant No. N000140911081, ARC Discovery grant
DP1097291, and the Capital Markets CRC.

1http://code.google.com/p/berkeley-ccg2pst/

108



References

S. Abney, S. Flickenger, C. Gdaniec, C. Grishman,
P. Harrison, D. Hindle, R. Ingria, F. Jelinek, J. Kla-
vans, M. Liberman, M. Marcus, S. Roukos, B. San-
torini, and T. Strzalkowski. 1991. Procedure for quan-
titatively comparing the syntactic coverage of english
grammars. InProceedings of the workshop on Speech
and Natural Language, pages 306–311.

Michael Auli and Adam Lopez. 2011. A comparison of
loopy belief propagation and dual decomposition for
integrated ccg supertagging and parsing. InProceed-
ings of ACL, pages 470–480.

Ted Briscoe, John Carroll, Jonathan Graham, and Ann
Copestake. 2002. Relational evaluation schemes. In
Proceedings of the Beyond PARSEVAL Workshop at
LREC, pages 4–8.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Stefan
Riezler, Josef van Genabith, and Andy Way. 2008.
Wide-coverage deep statistical parsing using auto-
matic dependency structure annotation.Computa-
tional Linguistics, 34(1):81–124.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of ACL, pages 173–180.

David Chiang. 2000. Statistical parsing with an
automatically-extracted tree adjoining grammar. In
Proceedings of ACL, pages 456–463.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics,
33(4):493–552.

Stephen Clark and James R. Curran. 2009. Comparing
the accuracy of CCG and penn treebank parsers. In
Proceedings of ACL, pages 53–56.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. InProceedings of ACL,
pages 16–23.

Timothy A. D. Fowler and Gerald Penn. 2010. Accu-
rate context-free parsing with combinatory categorial
grammar. InProceedings of ACL, pages 335–344.

Julia Hockenmaier. 2003.Data and models for statis-
tical parsing with Combinatory Categorial Grammar.
Ph.D. thesis, School of Informatics, The University of
Edinburgh.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. InProceedings of ACL, pages
423–430.

Dekang Lin. 1998. A dependency-based method for
evaluating broad-coverage parsers.Natural Language
Engineering, 4(2):97–114.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: the penn treebank.Computational Lin-
guistics, 19(2):313–330.

Takuya Matsuzaki and Jun’ichi Tsujii. 2008. Com-
parative parser performance analysis across grammar
frameworks through automatic tree conversion using
synchronous grammars. InProceedings of Coling,
pages 545–552.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsujii.
2004. Corpus-oriented grammar development for ac-
quiring a head-driven phrase structure grammar from
the penn treebank. InProceedings of IJCNLP, pages
684–693.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. InProceedings of NAACL,
pages 404–411.

Anoop Sarkar. 2001. Applying co-training methods to
statistical parsing. InProceedings of NAACL, pages
1–8.

Mark Steedman. 2000.The Syntactic Process. MIT
Press.

Fei Xia and Martha Palmer. 2001. Converting depen-
dency structures to phrase structures. InProceedings
of HLT, pages 1–5.

Fei Xia, Owen Rambow, Rajesh Bhatt, Martha Palmer,
and Dipti Misra Sharma. 2009. Towards a multi-
representational treebank. InProceedings of the 7th
International Workshop on Treebanks and Linguistic
Theories, pages 159–170.

Fei Xia. 1999. Extracting tree adjoining grammars from
bracketed corpora. InProceedings of the Natural Lan-
guage Processing Pacific Rim Symposium, pages 398–
403.

109


