Decoding Running Key Ciphers

Sravana Reddy*
Department of Computer Science
The University of Chicago
1100 E. 58th Street
Chicago, IL 60637, USA
sravana@cs.uchicago.edu

Abstract

There has been recent interest in the problem
of decoding letter substitution ciphers using
techniques inspired by natural language pro-
cessing. We consider a different type of classi-
cal encoding scheme known as the running key
cipher, and propose a search solution using
Gibbs sampling with a word language model.
We evaluate our method on synthetic cipher-
texts of different lengths, and find that it out-
performs previous work that employs Viterbi
decoding with character-based models.

1 Introduction

The running key cipher is an encoding scheme that
uses a secret key R that is typically a string of words,
usually taken from a book or other text that is agreed
upon by the sender and receiver. When sending a
plaintext message P, the sender truncates R to the
length of the plaintext. The scheme also relies on
a substitution function f, which is usually publicly
known, that maps a plaintext letter p and key letter
r to a unique ciphertext letter c. The most common
choice for f is the tabula recta, where ¢ = (p +)
mod 26 for letters in the English alphabet, with A
=0,B =1, and so on.

To encode a plaintext with a running key, the
spaces in the plaintext and the key are removed, and
for every 0 < i < |P)|, the ciphertext letter at posi-
tion ¢ is computed to be C; — f(F;, R;). Figure 1
shows an example encoding using the tabula recta.

For a given ciphertext and known f, the plaintext
uniquely determines the running key and vice versa.

*Research conducted while the author was visiting ISI.

80

Kevin Knight
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, CA 90292, USA
knight@isi.edu

Since we know that the plaintext and running key
are both drawn from natural language, our objective
function for the solution plaintext under some lan-
guage model is:

P = argmaxlog Pr(P) Pr(Rpc) (1)
P

where the running key Rp ¢ is the key that corre-
sponds to plaintext P and ciphertext C'.

Note that if Rp ¢ is a perfectly random sequence
of letters, this scheme is effectively a ‘one-time pad’,
which is provably unbreakable (Shannon, 1949).
The knowledge that both the plaintext and the key
are natural language strings is important in breaking
a running key cipher.

The letter-frequency distribution of running key
ciphertexts is notably flatter than than the plaintext
distribution, unlike substitution ciphers where the
frequency profile remains unchanged, modulo letter
substitutions. However, the ciphertext letter distri-
bution is not uniform; there are peaks corresponding
to letters (like I) that are formed by high-frequency
plaintext/key pairs (like E and E).

2 Related Work
2.1 Running Key Ciphers

Bauer and Tate (2002) use letter n-grams (without
smoothing) up to order 6 to find the most probable
plaintext/key character pair at each position in the ci-
phertext. They test their method on 1000-character
ciphertexts produced from plaintexts and keys ex-
tracted from Project Gutenberg. Their accuracies
range from 28.9% to 33.5%, where accuracy is mea-
sured as the percentage of correctly decoded char-

Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 80-84,
Jeju, Republic of Korea, 8-14 July 2012. (©2012 Association for Computational Linguistics

Figure 1: Example of a running key cipher. Note that key is truncated to the length of the plaintext.
Plaintext — linguistics is fun, Running Key — colorless green ideas, tabula recta substitution where C; — (P; + R;) mod 26

Plaintext: L I N G U I T 1 € S I S F U N
RunningKey: |C O L O R L E S S G R E E N I D
Ciphertext: N W Y U L T W L A I J M W S C Q

acters. Such figures are too low to produce read-
able plaintexts, especially if the decoded regions are
not contiguous. Griffing (2006) uses Viterbi decod-
ing and letter 6-grams to improve on the above re-
sult, achieving a median 87% accuracy over several
1000-character ciphertexts. A key shortcoming of
this work is that it requires searching through about
269 states at each position in the ciphertext.

2.2 Letter Substitution Ciphers

Previous work in decipherment of classical ciphers
has mainly focused on letter substitution. These ci-
phers use a substitution table as the secret key. The
ciphertext is generated by substituting each letter of
the plaintext according to the substitution table. The
table may be homophonic; that is, a single plaintext
letter could map to more than one possible cipher-
text letter. Just as in running key ciphers, spaces in
the plaintext are usually removed before encoding.

Proposed decipherment solutions for letter substi-
tution ciphers include techniques that use expecta-
tion maximization (Ravi and Knight, 2008), genetic
algorithms (Oranchak, 2008), integer programming
(Ravi and Knight, 2009), A* decoding (Corlett and
Penn, 2010), and Bayesian learning with Dirichlet
processes (Ravi and Knight, 2011).

2.3 Vigenere Ciphers

A scheme similar to the running key cipher is the Vi-
genere cipher, also known as the periodic key cipher.
Instead of a single long string spanning the length of
the plaintext, the key is a short string — usually but
not always a single word or phrase — repeated to the
length of the plaintext. Figure 2 shows an example
Vigenere cipher encoding. This cipher is less secure
than the running key, since the short length of the
key vastly reduces the size of the search space, and
the periodic repetition of the key leaks information.

Recent work on decoding periodic key ciphers
perform Viterbi search on the key using letter n-
gram models (Olsen et al., 2011), with the assump-

81

tion that the length of the key is known. If unknown,
the key length can be inferred using the Kasiski Test
(Kasiski, 1863) which takes advantage of repeated
plaintext/key character pairs.

3 Solution with Gibbs Sampling

In this paper, we describe a search algorithm that
uses Gibbs Sampling to break a running key cipher.

3.1 Choice of Language Model

The main advantage of a sampling-based approach
over Viterbi decoding is that it allows us to seam-
lessly use word-based language models. Lower or-
der letter n-grams may fail to decipher most cipher-
texts even with perfect search, since an incorrect
plaintext and key could have higher likelihood un-
der a weak language model than the actual message.

3.2 Blocked Sampling

One possible approach is to sample a plaintext letter
at each position in the ciphertext. The limitation of
such a sampler for the running key problem is that
is extremely slow to mix, especially for longer ci-
phertexts: we found that in practice, it does not usu-
ally converge to the optimal solution in a reasonable
number of iterations even with simulated annealing.
We therefore propose a blocked sampling algorithm
that samples words rather than letters in the plain-
text, as follows:

1. Initialize randomly P := p1p2...p|c, fix Ras
the key that corresponds to P, C

2. Repeat for some number of iterations

(a) Sample spaces (word boundaries) in P ac-
cording to Pr(P)

(b) Sample spaces in R according to Pr(R)

(c) Sample each word in P according to
Pr(P) Pr(R), updating R along with P

(d) Sample each word in R according to
Pr(P) Pr(R), updating P along with R

Figure 2: Example of a Vigenere cipher cipher, with a 5-letter periodic key, repeated to the length of the plaintext.
Plaintext — linguistics is fun, Periodic Key — green, tabula recta substitution.

Plaintext: L 1 N G U I S T I € S I S F U N
RunningKey: |G R E E N G R E E N G R E E N G
Ciphertext: R 2z R K H O J X M P Y Z W J H T

3. Remove spaces and return P, R

Note that every time a word in P is sampled, it
induces a change in R that may not be a word or a
sequence of words, and vice versa. Sampling word
boundaries will also produce hypotheses contain-
ing non-words. For this reason, we use a word tri-
gram model linearly interpolated with letter trigrams
(including the space character).! The interpolation
mainly serves to smooth the search space, with the
added benefit of accounting for out-of-vocabulary,
misspelled, or truncated words in the actual plaintext
or key. Table 1 shows an example of one sampling
iteration on the ciphertext shown in Figure 1.

Table 1: First sampling iteration on the ciphertext
NWYULTWLAIIMWSCQ

Generate P, R P: WERGATERYBVIEDOW
with letter trigrams R: RSHOLASUCHOESPOU
Sample spaces in P | P: WERGAT ER YB VIEDOW
Sample spacesin R | R: RS HOLASUCHOES POU
Sample words in P | P: ADJUST AN MY WILLOW
R: NT PATAWYOKNEL HOU
P: NEWNXI ST HE SYLACT
R: AS CHOLESTEROL SAX

Sample words in R

4 Experiments

4.1 Data

We randomly select passages from the Project
Gutenberg and Wall Street Journal Corpus extracts
that are included in the NLTK toolkit (Bird et al.,
2009). The passages are used as plaintext and key
pairs, and combined to generate synthetic ciphertext
data. Unlike previous works which used constant-
length ciphertexts, we study the effect of message
length on decipherment by varying the ciphertext
length (10, 100, and 1000 characters).

Our language model is an interpolation of word
trigrams and letter trigrams trained on the Brown

"Pr(P) = APr(P|word LM) + (1 — \) Pr(P|letter LM),
and similarly for Pr(R).

82

Corpus (Nelson and Kucera, 1979), with Kneser-
Ney smoothing. We fixed the word language model
interpolation weight to A = 0.7.

4.2 Baseline and Evaluation

For comparison with the previous work, we re-
implement Viterbi decoding over letter 6-grams
(Griffing, 2006) trained on the Brown Corpus. In
addition to decipherment accuracy, we compare the
running time in seconds of the two algorithms.
Both decipherment programs were implemented in
Python and run on the same machines. The Gibbs
Sampler was run for 10000 iterations.

As in the Griffing (2006) paper, since the plaintext
and running key are interchangeable, we measure
the accuracy of a hypothesized solution against the
reference as the max of the accuracy between the hy-
pothesized plaintext and the reference plaintext, and
the hypothesized plaintext and the reference key.

4.3 Results

Table 2 shows the average decipherment accuracy of
our algorithm and the baseline on each dataset. Also
shown is the number of times that the Gibbs Sam-
pling search failed — that is, when the algorithm did
not hypothesize a solution that had a probability at
least as high as the reference within 10000 iterations.

It is clear that the Gibbs Sampler is orders of mag-
nitude faster than Viterbi decoding. Performance
on the short (length 10) ciphertexts is poor under
both algorithms. This is expected, since the degree
of message uncertainty, or message equivocation as
defined by Shannon, is high for short ciphertexts:
there are several possible plaintexts and keys be-
sides the original that are likely under an English
language model. Consider the ciphertext WAEEXF-
PROV which was generated by the plaintext seg-
ment ON A REFEREN and key INENTAL AKI.
The algorithm hypothesizes that the plaintext is THE
STRAND S and key DTAME OPELD, which both
receive high language model probability.

Table 2: Decipherment accuracy (proportion of correctly deciphered characters). Plaintext and key sources for the
ciphertext test data were extracted by starting at random points in the corpora, and selecting the following n characters.

Length of | Plaintext and key | # Cipher- | Average Accuracy | Avg. running time (sec) | # Failed Gibbs
ciphertext source texts Viterbi | Gibbs | Viterbi Gibbs searches
10 Project Gutenberg 100 14% 17% 1005 47 5
Wall Street Journal 100 10% 26% 986 38 2
100 Project Gutenberg 100 27% 42% 10212 236 19
Wall Street Journal 100 22% 58% 10433 217 12
1000 Project Gutenberg 100 63% 88% 112489 964 32
Wall Street Journal 100 60% 93% 117303 1025 25

Table 3: Substitution function parameterized by the keyword, CIPHER. f(p,) is the entry in the row corresponding to p and the

column corresponding to 7.

A B C D E F G H 1 J K L M N (o) P Q R S T U \M w X Y YA
A C 1 P H E R A B D F G J K L M N [¢] Q S T U \ W X Y zZ
B 1 P H E R A B D F G J K L M N [¢] Q S T U \ W X Y Y4 C
C P H E R A B D F G] K L M N [¢) Q S T U \ W X Y Z C 1

However, on the long ciphertexts, our algorithm
gets close to perfect decipherment, surpassing the
Viterbi algorithm by a large margin.”> Accuracies on
the Wall Street Journal ciphertexts are higher than on
the Gutenberg ciphertexts for our algorithm, which
may be because the latter is more divergent from the
Brown Corpus language model.

5 Future Work

5.1 Unknown substitution functions

Some running key ciphers also use a secret substi-
tution function f rather than the tabula recta or an-
other known function. In typical cases, these func-
tions are not arbitrary, but are parameterized by a se-
cret keyword that mutates the tabula recta table. For
example, the function with the keyword CIPHER
would be the substitution table shown in Table 3.
Decoding a running key ciphertext under a latent
substitution function is an open line of research. One
possibility is to extend our approach by sampling the
keyword or function in addition to the plaintext.

5.2 Exact search

Since some the errors in Gibbs Sampling decipher-
ment are due to search failures, a natural exten-
sion of this work would be to adapt Viterbi search

>The accuracies that we found for Viterbi decoding are
lower than those reported by Griffing (2006), which might be
because they use an in-domain language model.

83

or other exact decoding algorithms like A* to use
word-level language models. A naive implementa-
tion of Viterbi word-based decoding results in com-
putationally inefficient search spaces for large vo-
cabularies, so more sophisticated methods or heuris-
tics will be required.

5.3 Analysis of Running Key Decipherment

While there has been theoretical and empirical anal-
ysis of the security of letter substitution ciphers
of various lengths under different language models
(Shannon, 1949; Ravi and Knight, 2008), there has
been no similar exposition of running key ciphers,
which we reserve for future work.

6 Conclusion

We propose a decipherment algorithm for running
key ciphers that uses Blocked Gibbs Sampling and
word-based language models, which shows signifi-
cant speed and accuracy improvements over previ-
ous research into this problem.

Acknowledgments

We would like to thank Sujith Ravi for initial exper-
iments using Gibbs sampling, and the anonymous
reviewers. This research was supported in part by
NSF grant 0904684.

References

Craig Bauer and Christian Tate. 2002. A statistical attack
on the running key cipher. Cryptologia, 26(4).

Steven Bird, Edward Loper, and Ewan Klein. 2009. Nat-
ural Language Processing with Python. O’Reilly Me-
dia Inc.

Eric Corlett and Gerald Penn. 2010. An exact A* method
of deciphering letter-substitution ciphers. In Proceed-
ings of ACL.

Alexander Griffing. 2006. Solving the running key ci-
pher with the Viterbi algorithm. Cryptologia, 30(4).
Friedrich Kasiski. 1863. Die Geheimschriften und die

Dechiffrir-Kunst. E. S. Mittler und Sohn.

Francis Nelson and Henry Kucera. 1979. The Brown
Corpus: A Standard Corpus of Present-Day Edited
American English. Brown University.

Peder Olsen, John Hershey, Steven Rennie, and Vaib-
hava Goel. 2011. A speech recognition solution to
an ancient cryptography problem. Technical Report
RC25109 (W1102-005), IBM Research.

David Oranchak. 2008. Evolutionary algorithm for de-
cryption of monoalphabetic homophonic substitution
ciphers encoded as constraint satisfaction problems. In
Proceedings of the Conference on Genetic and Evolu-
tionary Computation.

Sujith Ravi and Kevin Knight. 2008. Attacking deci-
pherment problems optimally with low-order n-gram
models. In Proceedings of EMNLP.

Sujith Ravi and Kevin Knight. 2009. Attacking letter
substitution ciphers with integer programming. Cryp-
tologia, 33(4).

Sujith Ravi and Kevin Knight. 2011. Bayesian inference
for Zodiac and other homophonic ciphers. In Proceed-
ings of ACL.

Claude Shannon. 1949. Communication theory of se-
crecy systems. Bell System Technical Journal, 28(4).

&4

