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Abstract

All types of part-of-speech (POS) tagging er-
rors have been equally treated by existing tag-
gers. However, the errors are not equally im-
portant, since some errors affect the perfor-
mance of subsequent natural language pro-
cessing (NLP) tasks seriously while others do
not. This paper aims to minimize these serious
errors while retaining the overall performance
of POS tagging. Two gradient loss functions
are proposed to reflect the different types of er-
rors. They are designed to assign a larger cost
to serious errors and a smaller one to minor
errors. Through a set of POS tagging exper-
iments, it is shown that the classifier trained
with the proposed loss functions reduces se-
rious errors compared to state-of-the-art POS
taggers. In addition, the experimental result
on text chunking shows that fewer serious er-
rors help to improve the performance of sub-
sequent NLP tasks.
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2001). Among the types of machine learning ap-
proaches, supervised machine learning techniques
were commonly used in early studies on POS tag-
ging. With the characteristics of a language (Rat-
naparkhi, 1996; Kudo et al., 2004) and informa-
tive features for POS tagging (Toutanova and Man-
ning, 2000), the state-of-the-art supervised POS tag-
ging achieves over 97% of accuracy (Shen et al.,
2007; Manning, 2011). This performance is gen-
erally regarded as the maximum performance that
can be achieved by supervised machine learning
techniques. There have also been many studies on
POS tagging with semi-supervised (Subramanya et
al., 2010; Sggaard, 2011) or unsupervised machine
learning methods (Berg-Kirkpatrick et al., 2010;
Das and Petrov, 2011) recently. However, there still
exists room to improve supervised POS tagging in
terms of error differentiation.

It should be noted that not all errors are equally
important in POS tagging. Let us consider the parse
trees in Figure 1 as an example. In Figure 1(a),
the word ‘plans’ is mistagged as a noun where it
should be a verb. This error results in a wrong parse

Part-of-speech (POS) tagging is needed as a preee that is severely different from the correct tree
processor for various natural language processirghown in Figure 1(b). The verb phrase of the verb
(NLP) tasks such as parsing, named entity recogriiplans’ in Figure 1(b) is discarded in Figure 1(a)
tion (NER), and text chunking. Since POS tagging iand the whole sentence is analyzed as a single noun
normally performed in the early step of NLP tasksphrase. Figure 1(c) and (d) show another tagging er-
the errors in POS tagging are critical in that theyor and its effect. In Figure 1(c), a noun is tagged as
affect subsequent steps and often lower the overalINNS (plural noun) where its correct tag is NN (sin-
performance of NLP tasks. gular or mass noun). However, the error in Figure
Previous studies on POS tagging have showi(c) affects only locally the noun phrase to which
high performance with machine learning technique$physics belongs. As a result, the general structure
(Ratnaparkhi, 1996; Brants, 2000; Lafferty et al.pf the parse tree in Figure 1(c) is nearly the same as
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The treasury The treasury plans °

DT NNP DT NNP

O
TO
raise 150 billion in cash. raise 150 billion in cash.
VB CD CD INNN VB CD CD IN NN
(a) A parse tree with a serious error. (b) The correct parse tree of the senteénte treasury

plans...”.

altered
VBN

altered

PRP VBN PRP

the chemistry and physics of the atmosphere the chemistry and physics of the atmosphere
DT NN CC INDT NN DT NN CC INDT NN
(c) A parse tree with a minor error. (d) The correct parse tree of the sentefiée altered

Figure 1: An example of POS tagging errors

the correct one in Figure 1(d). That is, a sentencef-the-art POS tagger, but the serious errors are sig-

analyzed with this type of error would yield a cor-nificantly reduced with the proposed method. The

rect or near-correct result in many NLP tasks suchffect of the fewer serious errors is shown by apply-

as machine translation and text chunking. ing it to the well-known NLP task of text chunking.
The goal of this paper is to differentiate the seriExperimental results show that the proposed method

ous POS tagging errors from the minor errors. PO8chieves a higher F1-score compared to other POS

tagging is generally regarded as a classification tastgggers.

and zero-one loss is commonly used in learning clas- The rest of the paper is organized as follows. Sec-

sifiers (Altun et al., 2003). Since zero-one loss contion 2 reviews the related studies on POS tagging. In

siders all errors equally, it can not distinguish erroSection 3, serious and minor errors are defined, and

types. Therefore, a new loss is required to incorpat is shown that both errors are observable in a gen-

rate different error types into the learning machinessral corpus. Section 4 proposes two new loss func-
This paper proposes two gradient loss functions ttoons for discriminating the error types in POS tag-

reflect differences among POS tagging errors. Thging. Experimental results are presented in Section

functions assign relatively small cost to minor erb. Finally, Section 6 draws some conclusions.

rors, while larger cost is given to serious errors.

They are applied to learning multiclass support veq2 Reated Wor k

tor machines (Tsochantaridis et al., 2004) which is

trained to minimize the serious errors. Overall accuthe POS tagging problem has generally been solved

racy of this SVM is not improved against the stateby machine learning methods for sequential label-
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Tag category POS tags
Substantive NN, NNS, NNP, NNPS, CD, PRP, PRP$
Predicate VB, VBD, VBG, VBN, VBP, VBZ, MD, JJ, JJR, JJS
Adverbial RB, RBR, RBS, RP, UH, EX, WP, WP$, WRB, CC, IN, TO
Determiner DT, PDT, WDT
Etc FW, SYM, POS, LS

Table 1: Tag categories and POS tags in Penn Tree Bank tag set

ing. In early studies, rich linguistic features and suapproaches based on a single evaluation measure,
pervised machine learning techniques are applied laccuracy However, with a different viewpoint for
using annotated corpora like the Wall Street Journ@rrors on POS tagging, there is still some room to
corpus (Marcus et al., 1994). For instance, Ratnamprove the performance of POS tagging for subse-
parkhi (1996) used a maximum entropy model foquent NLP tasks, even though the overall accuracy
POS tagging. In this study, the features for rarelgan not be much improved.

appearing words in a corpus are expanded to im- In ordinary studies on POS tagging, costs of er-
prove the overall performance. Following this directors are equally assigned. However, with respect
tion, various studies have been proposed to extend the performance of NLP tasks relying on the re-
informative features for POS tagging (Toutanovault of POS tagging, errors should be treated differ-
and Manning, 2000; Toutanova et al., 2003; Manently. In the machine learning community, cost sen-
ning, 2011). In addition, various supervised methsitive learning has been studied to differentiate costs
ods such as HMMs and CRFs are widely applied tamong errors. By adopting different misclassifica-
POS tagging. Lafferty et al. (2001) adopted CRFsion costs for each type of errors, a classifier is op-
to predict POS tags. The methods based on CRHEmized to achieve the lowest expected cost (Elkan,
not only have all the advantages of the maximur@001; Cai and Hofmann, 2004; Zhou and Liu, 2006).
entropy markov models but also resolve the well-

known problem of label bias. Kudo et al. (2004)3 Error Analysisof Existing POS Tagger
modified CRFs for non-segmented languages like
Japanese which have the problem of word boundal
ambiguity.

e effects of POS tagging errors to subsequent

LP tasks vary according to their type. Some errors
are serious, while others are not. In this paper, the

As a result of these efforts, the performance o$eriousness of tagging errors is determined by cat-
state-of-the-art supervised POS tagging shows ovegorical structures of POS tags. Table 1 shows the
97% of accuracy (Toutanova et al., 2003; GiméneRenn tree bank POS tags and their categories. There
and Marquez, 2004; Tsuruoka and Tsujii, 2005are five categories in this tablesubstantive pred-
Shen et al., 2007; Manning, 2011). Due to the higcate adverbial determiner andetc. Serious tag-
accuracy of supervised approaches for POS tagginging errors are defined as misclassifications among
it has been deemed that there is no room to inthe categories, while minor errors are defined as mis-
prove the performance on POS tagging in supervisedassifications within a category. This definition fol-
manner. Thus, recent studies on POS tagging focl@ws the fact that POS tags in the same category
on semi-supervised (Spoustova et al., 2009; Sullerm similar syntax structures in a sentence (Zhao
ramanya et al., 2010; Sggaard, 2011) or unsupexnd Marcus, 2009). That is, inter-category errors are
vised approaches (Haghighi and Klein, 2006; Goldtreated as serious errors, while intra-category errors
water and Griffiths, 2007; Johnson, 2007; Graca etre treated as minor errors.
al., 2009; Berg-Kirkpatrick et al., 2010; Das and Table 2 shows the distribution of inter-category
Petrov, 2011). Most previous studies on POS tagnd intra-category errors observed in section 22—
ging have focused on how to extract more linguisti4 of the WSJ corpus (Marcus et al., 1994) that is
features or how to adopt supervised or unsupervisedgged by the Stanford Log-linear Part-Of-Speech
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Predicted category
Substantive  Predicate  Adverbial Determiner Etc
Substantive 614 479 32 10 15
Predicate 585 743 107 2 14
True category| Adverbial 41 156 500 42 2
Determiner 13 7 47 24 0
Etc 23 11 3 1 0

Table 2: The distribution of tagging errors on WSJ corpus tanfard Part-Of-Speech Tagger.

Tagger (Manning, 2011) (trained with WSJ sectionsatisfying
00-18). In this table, bold numbers denote inter-
category errors while all other numbers show intra- ri-w+b>+1 for y;=+1,
category errors. The number of total errors is 3,471 zi-w+b< -1 for y, =-1,
out of 129,654 words. Among them, 1,881 errors
(54.19%) are intra-category, while 1,590 of the erwherew andb are parameters to be estimated from
rors (45.81%) are inter-category. If we can reductfaining dataD. To estimate the parameters, SVMs
these inter-category errors under the cost of minminimizes a hinge loss defined as
mally increasing intra-category errors, the tagging
results would improve in quality. i = Lhinge(yi,w - i +b)
Generally in POS tagging, all tagging errors are = max{0,1 —y;- (w-z; +b)}.
regarded equally in importance. However, inter- i ) )
category and intra-category errors should be distinith regularizerjw|* to control model complexity,
guished. Since a machine learning method is opti€ OPtimization problem of SVMs is defined as
mized by a loss function, inter-category errors can !
be efficiently reduced if a loss func_tion is designed mianwHQ + CZ &,
to handle both types of errors with different cost. We wé 2 i—1
propose two loss functions for POS tagging and they
are applied to multiclass Support Vector Machines SUPject to

4 Learning SYMswith Class Similarity vilwi-w+b) 21—, andg; 2 0 Vi,

. . where(C'is a user parameter to penalize errors.
POS tagging has been solved as a sequential labelin rammer et al. (2002) expanded the binary-class

aﬁvarzrwgIcggsszrez:eupeenq&?ng;; Teosnguvgﬁr%M for multiclass classifications. In multiclass
oY Piing seq Ms, by considering all classes the optimization

POS_ tags of previous .Wprds, the dependency can 0 S\/M is generalized as
partially resolved. If it is assumed that words are
independent of one another, POS tagging can be re-

l
garded as a multiclass classification problem. One min_ D lwelP+CY &
of the best solutions for this problem is by using an wé 2 keK i=1
SVM.

with constraints

41 Training SYMswith Loss Function
g (wy, - d(xi,y5)) — (W - Pz, k) > 1 =&,

Assume that a training data setD = & >0 Vi, Yk e K\ yi,

{(xlv y1)7 (.’13‘2, y2)7 cey ('Th yl)} is given where

r; € R%is an instance vector ang € {+1,—1} whereg(z;,;) is a combined feature representation
is its class label. SVM finds an optimal hyperplanef x; andy;, andK is the set of classes.
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Figure 2: A tree structure of POS tags.

Since both binary and multiclass SVMs adopt avith constraints
hinge loss, the errors between classes have the same k., ,
cost. To assign different cost to different errors® > 0 and Z m <C, Vi=1,---,1,
Tsochantaridis et al. (2004) proposed an efficient ReK\y 7
way to adopt arbitrary loss functiof,(y;, y,;) which
returns zero ify; = y;, otherwiseL(y;,y;) > 0
Then, the hinge losg; is re-scaled with the inverse J(xi, i, ki) = dlxi, i) — o, ks).
of the additional loss between two classes. By scal-
ing slack variables with the inverse loss, margin vi4.2 LossFunctionsfor POStagging
olation with high lossL(y;, y;) is more severely re- To design a loss function for POS tagging, this paper
stricted than that with low loss. Thus, the optimizaadopts categorical structures of POS tags. The sim-

whereJ (z;, y;, k;) is defined as

tion problem withZ(y;, y;) is given as plest way to reflect the structure of POS tags shown
} in Table 1 is to assign larger cost to inter-category
1 i -
min= Z HwkHz T CZ&’ 1) error; than to intra category errors. T'hus, the Iqss
w2 e — function with the categorical structure in Table 1 is
defined as

with constraints _
. 0 if yi =yj,
&i

(wy, - (xi,5:)) — (wp, - i, k) > 1 — —— v ) o ify; #y; butthey belong
L(y;, k) Le(yiryj) = to the same POS category,

£ >0 Vi, Yk e K\ y;, 1 otherwise,

)

With the Lagrange multiplier, the optimization - \yhere( < § < 1 is a constant to reduce the value of
problem in Equation (1) is easily converted to theLc(yi,yj) wheny; andy; are similar. As shown in

following dual quadratic problem. this equation, inter-category errors have larger cost
L than intra-category errors. This lods.(y;,y;) is
min YYD aigag, x named asategory loss ' |
ij kieK\y; kjeK\y; The loss functionL.(y;, y;) is designed to reflect
! the categories in Table 1. However, the structure
J (i, yis ki) T (2, Y5, kj) — Z Z Qi oy of POS tags can be represented as a more complex
i keRK\yi structure. Let us consider the categgoyedicate.
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(a) Multiclass SVMs with hinge loss (b) Multiclass SVMs with the proposed loss

function

Figure 3: Effect of the proposed loss function in multicl88&Ms

This category has ten POS tags, and can be furthgeingle £ is applied for the margin violation among
categorized into two sub-categoriegerb andad- all classes. Figure 3(b) also presents the decision
ject. Figure 2 represents a categorical structure dfoundary of NN, but it is determined with the pro-
POS tags as a tree with five categories of POS tagesed loss function. In this figure, the margin vio-
and their seven sub-categories. lation is applied differently to inter-category (NN to
To express the tree structure of Figure 2 as a losgB) and intra-category (NN to NNS) errors. It re-
another loss functiod (y;, y;) is defined as sults in reducing errors between NN and VB even if
the errors between NN and NNS could be slightly
Lt(lyi’ vi) = increased.
§[Di5t(Pz',j,yz’) + Dist(Pj,y5)] < v, (3) 5 Experiments
where P, ; denotes the nearest common parent 05f1 Exoerimental Setti
both y; andy;, and the functionDist(P; ;,y;) re- = xperimen 'n9
turns the number of steps froM ; to y;. The user Experiments are performed with a well-known stan-
parametery is a scaling factor of a unit loss for a dard data set, the Wall Street Journal (WSJ) corpus.
single step. This los&,(y;, y;) returns large value The data is divided into training, development and
if the distance betweep; andy; is far in the tree test sets as in (Toutanova et al., 2003; Tsuruoka and
structure, and it is named &®e loss Tsuijii, 2005; Shen et al., 2007). Table 3 shows some
As shown in Equation (1), two proposed losssimple statistics of these data sets. As shown in
functions adjust margin violation between classeghis table, training data contains 38,219 sentences
They basically assign less value for intra-categoryith 912,344 words. In the development data set,
errors than inter-category errors. Thus, a classihere are 5,527 sentences with about 131,768 words,
fier is optimized to strictly keep inter-category er-those in the test set are 5,462 sentences and 129,654
rors within a smaller boundary. Figure 3 shows avords. The development data set is used only to se-
simple example. In this figure, there are three PO®ct ¢ in Equation (2) andy in Equation (3).
tags and two categories. NN (singular or mass noun) Table 4 shows the feature set for our experiments.
and NNS (plural noun) belong to the same catehn this table,w; andt; denote the lexicon and POS
gory, while VB (verb, base form) is in another cat-tag for thei-th word in a sentence respectively. We
egory. Figure 3(a) shows the decision boundary afse almost the same feature set as used in (Tsuruoka
NN based on hinge loss. As shown in this figure, and Tsuijii, 2005) including word features, tag fea-
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Training Develop Test Error # of Intra # of Inter
Section 0-18 19-21 22-24 (%)  error error
# of sentences 38,219 5,527 5,462 (Giménez and Méquuez,2 a4 1,995 1,692
#ofterms | 912,344 131,768 129,654 2004) % (54.11%) (45.89%)
(Tsuruoka and Tsuijii
) o ) 285 - -
Table 3: Simple statistics of experimental data 2009)
1,856 1,612
(Shen et al., 2007) 2.67 ' ,
Feature Name | Description (5352%) (46.48%)
Wi Wi 1. Wir Wit Wi (Manning, 2011) 2.68 1,881 1,590
Word features w“‘Q’ w—lw " i1 Wit2 ’ OF (54.19%) (45.81%)
7—1 " Wy, Wy = Wi41 1,916 1'567
TP P R T CL-MSVM (6 = 0.4) 269 (i 019%) (44.99%)
ti—o - ti—1,tit1 - tita 1,904 1,574
Tag features ! ‘ N - ' '
g timg - tim1 - tigr, im1 - tigr - i TL-MSVM (7 = 0.6) 2.68 (54.74%) (45.26%)

ti—o-ti1-tit1-tiya

Tag/Word bimg Wiy bi1 Wi, Big1 Wi, by Wi Table 5: Comparison with the previous works
combination Lim1 - tig1 - Wy
Prefix features | prefixes ofw; (up to length 9)

Suffix features | suffixes ofw; (up to length 9)
whetherw; contains capitals
whetherw; has a number
whetherw; has a hyphen
whetherw; is all capital
whetherw; starts with capital and

locates at the middle of sentence

achieve an error rate of 2.69% and 2.68% respec-
tively. Although overall error rates of CL-MSVM
and TL-MSVM are not improved compared to the
previous state-of-the-art methods, they show reason-
able performance.

For inter-category error, CL-MSVM achieves the
best performance. The number of inter-category er-
ror is 1,567, which shows 23 errors reduction com-
pared to previous best inter-category result by (Man-
ning, 2011). TL-MSVM also makes 16 less inter-
tures, word/tag combination features, prefix and sutategory errors than Manning’s tagger. When com-
fix features as well as lexical features. The POS tagsared with Shen’s tagger, both CL-MSVM and TL-
for words are obtained from a two-pass approacfiSVM make far less inter-category errors even if
proposed by Nakagawa et al. (2001). their overall performance is slightly lower than that

In the experiments, two multiclass SVMs with theof Shen’s tagger. However, the intra-category er-
proposed loss functions are used. One is CL-MSVNor rate of the proposed methods has some slight
with category loss and the other is TL-MSVM withincreases. The purpose of proposed methods is to
tree loss. A linear kernel is used for both SVMs.  minimize inter-category errors but preserving over-
all performance. From these results, it can be found
that the proposed methods which are trained with the
CL-MSVM with § = 0.4 shows the best overall per- Proposed loss functions do differentiate serious and
formance on the development data where its erréRinor POS tagging errors.
rate is as low as 2.71%35 = 0.4 implies that the ) )
cost of intra-category errors is set to 40% of that of-3 Chunking Experiments
inter-category errors. The error rate of TL-MSVMThe task of chunking is to identify the non-recursive
is 2.69% wheny is 0.6. § = 0.4 andy = 0.6 are set cores for various types of phrases. In chunking, the
in the all experiments below. POS information is one of the most crucial aspects in

Table 5 gives the comparison with the previousdentifying chunks. Especially inter-category POS
work and proposed methods on the test data. As carors seriously affect the performance of chunking
be seen from this table, the best performing algdsecause they are more likely to mislead the chunk
rithms achieve near 2.67% error rate (Shen et akpmpared to intra-category errors.

2007; Manning, 2011). CL-MSVM and TL-MSVM  Here, chunking experiments are performed with

Lexical features

Table 4: Feature template for experiments

5.2 Experimental Results
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POS tagger | Accuracy (%)] Precision] Recall| F1-score 6§  Conclusion

(Shen et al., 2007) 96.08 94.03 | 93.75| 93.89

(Manning, 2(011) ) 96.08 94 938 | 939 In this paper, we have shown that supervised POS
CL-MSVM (6 = 0.4 96.13 94.1 93.9 94.00 . . . .. . .
TLMSVM (7 —0.6) 9612 %l 930 9100 t29ging can be improved by discriminating inter-

category errors from intra-category ones. An inter-
Table 6: The experimental results for chunking ~ category error occurs by mislabeling a word with
a totally different tag, while an intra-category error
is caused by a similar POS tag. Therefore, inter-
category errors affect the performances of subse-
a data set provided for the CoNLL-2000 shareduent NLP tasks far more than intra-category errors.
task. The training data contains 8,936 sentencashis implies that different costs should be consid-
with 211,727 words obtained from sections 15-18red in training POS tagger according to error types.
of the WSJ. The test data consists of 2,012 sentencesAs a solution to this problem, we have proposed
and 47,377 words in section 20 of the WSJ. In ordefivo gradient loss functions which reflect different
to represent chunks, an IOB model is used, whegosts for two error types. The cost of an error type is
every word is tagged with a chunk label extendedet according to (i) categorical difference or (ii) dis-
with B (the beginning of a chunk), I (inside a chunk),tance in the tree structure of POS tags. Our POS
and O (outside a chunk). First, the POS informaexperiment has shown that if these loss functions
tion in test data are replaced to the result of our PO&re applied to multiclass SVMs, they could signif-
tagger. Then it is evaluated using trained chunkingantly reduce inter-category errors. Through the
model. Since CRFs (Conditional Random Fieldsjext chunking experiment, it is shown that the multi-
has been shown near state-of-the-art performancedrss SVMs trained with the proposed loss functions
text chunking (Fei Sha and Fernando Pereira, 200@ihich generate fewer inter-category errors achieve
Sun et al., 2008), we use CRF++, an open sourggigher performance than existing POS taggers.
CRF implementation by Kudo (2005), with default e have shown that cost sensitive learning can be
feature template and parameter settings of the packpplied to POS tagging only with multiclass SVMs.
age. For simplicity in the experiments, the valuegiowever, the proposed loss functions are general
of ¢ in Equation (2) andy in Equation (3) are set enough to be applied to other existing POS taggers.
to be 0.4 and 0.6 respectively which are same as thvgost supervised machine learning techniques are
previous section. optimized on their loss functions. Therefore, the
Performance of POS taggers based on supervised

Table 6 gives the experimental results of teXmachine learning technigues can be improved by ap-
chunking according to the kinds of POS taggers in- g d P yap

cluding two previous works, CL-MSVM, and TL- EII]}I/;nrg the proposed loss functions to learn their clas-

MSVM. Shen’s tagger and Manning's tagger show '

nearly the same performance. They achieve an agcknowledgments

curacy of 96.08% and around 93.9 F1-score. On the

other hand, CL-MSVM achieves 96.13% accuracy NiS research was supported by the Converg-
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