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Abstract

Statistical machine translation is often faced
with the problem of combining training data
from many diverse sources into a single trans-
lation model which then has to translate sen-
tences in a new domain. We propose a novel
approach, ensemble decoding, which com-
bines a number of translation systems dynam-
ically at the decoding step. In this paper,
we evaluate performance on a domain adap-
tation setting where we translate sentences
from the medical domain. Our experimental
results show that ensemble decoding outper-
forms various strong baselines including mix-
ture models, the current state-of-the-art for do-
main adaptation in machine translation.

1 Introduction

Statistical machine translation (SMT) systems re-
quire large parallel corpora in order to be able to
obtain a reasonable translation quality. In statisti-
cal learning theory, it is assumed that the training
and test datasets are drawn from the same distribu-
tion, or in other words, they are from the same do-
main. However, bilingual corpora are only available
in very limited domains and building bilingual re-
sources in a new domain is usually very expensive.
It is an interesting question whether a model that is
trained on an existing large bilingual corpus in a spe-
cific domain can be adapted to another domain for
which little parallel data is present. Domain adap-
tation techniques aim at finding ways to adjust an
out-of-domain (OUT) model to represent a target do-
main (in-domain or IN).

Common techniques for model adaptation adapt
two main components of contemporary state-of-the-
art SMT systems: the language model and the trans-
lation model. However, language model adapta-
tion is a more straight-forward problem compared to
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translation model adaptation, because various mea-
sures such as perplexity of adapted language models
can be easily computed on data in the target domain.
As aresult, language model adaptation has been well
studied in various work (Clarkson and Robinson,
1997; Seymore and Rosenfeld, 1997; Bacchiani and
Roark, 2003; Eck et al., 2004) both for speech recog-
nition and for machine translation. It is also easier to
obtain monolingual data in the target domain, com-
pared to bilingual data which is required for transla-
tion model adaptation. In this paper, we focused on
adapting only the translation model by fixing a lan-
guage model for all the experiments. We expect do-
main adaptation for machine translation can be im-
proved further by combining orthogonal techniques
for translation model adaptation combined with lan-
guage model adaptation.

In this paper, a new approach for adapting the
translation model is proposed. We use a novel sys-
tem combination approach called ensemble decod-
ing in order to combine two or more translation
models with the goal of constructing a system that
outperforms all the component models. The strength
of this system combination method is that the sys-
tems are combined in the decoder. This enables
the decoder to pick the best hypotheses for each
span of the input. The main applications of en-
semble models are domain adaptation, domain mix-
ing and system combination. We have modified
Kriya (Sankaran et al., 2012), an in-house imple-
mentation of hierarchical phrase-based translation
system (Chiang, 2005), to implement ensemble de-
coding using multiple translation models.

We compare the results of ensemble decoding
with a number of baselines for domain adaptation.
In addition to the basic approach of concatenation of
in-domain and out-of-domain data, we also trained
a log-linear mixture model (Foster and Kuhn, 2007)
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as well as the linear mixture model of (Foster et al.,
2010) for conditional phrase-pair probabilities over
IN and OUT. Furthermore, within the framework of
ensemble decoding, we study and evaluate various
methods for combining translation tables.

2 Baselines

The natural baseline for model adaption is to con-
catenate the IN and OUT data into a single paral-
lel corpus and train a model on it. In addition to
this baseline, we have experimented with two more
sophisticated baselines which are based on mixture
techniques.

2.1 Log-Linear Mixture

Log-linear translation model (TM) mixtures are of
the form:

plelf) o exp (iAm k)

where m ranges over IN and OUT, p,, (€| f) is an
estimate from a component phrase table, and each
Am 1s a weight in the top-level log-linear model, set
so as to maximize dev-set BLEU using minimum
error rate training (Och, 2003). We learn separate
weights for relative-frequency and lexical estimates
for both p,,, (€| f) and p,,,(f|€). Thus, for 2 compo-
nent models (from IN and OUT training corpora),
there are 4 * 2 = 8 TM weights to tune. Whenever
a phrase pair does not appear in a component phrase
table, we set the corresponding p,,(€|f) to a small
epsilon value.

2.2 Linear Mixture

Linear TM mixtures are of the form:
M
p(é’f) = Z )\mpm(é|f)
m

Our technique for setting )\, is similar to that
outlined in Foster et al. (2010). We first extract a
joint phrase-pair distribution $(é, f) from the de-
velopment set using standard techniques (HMM
word alignment with grow-diag-and symmeteriza-
tion (Koehn et al., 2003)). We then find the set
of weights )\ that minimize the cross-entropy of the

mixture p(e|f) with respect to p(e, f):
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M
\ = argmax Zﬁ(é, f)log Z Ampm (€] f)

A _
€,

h

For efficiency and stability, we use the EM algo-
rithm to find 5\, rather than L-BFGS as in (Foster et
al., 2010). Whenever a phrase pair does not appear
in a component phrase table, we set the correspond-
ing py, (€| f) to 0; pairs in f(e, f) that do not appear
in at least one component table are discarded. We
learn separate linear mixtures for relative-frequency
and lexical estimates for both p(e|f) and p(fle).
These four features then appear in the top-level
model as usual — there is no runtime cost for the lin-
ear mixture.

3 Ensemble Decoding

Ensemble decoding is a way to combine the exper-
tise of different models in one single model. The
current implementation is able to combine hierar-
chical phrase-based systems (Chiang, 2005) as well
as phrase-based translation systems (Koehn et al.,
2003). However, the method can be easily extended
to support combining a number of heterogeneous
translation systems e.g. phrase-based, hierarchical
phrase-based, and/or syntax-based systems. This
section explains how such models can be combined
during the decoding.

Given a number of translation models which are
already trained and tuned, the ensemble decoder
uses hypotheses constructed from all of the models
in order to translate a sentence. We use the bottom-
up CKY parsing algorithm for decoding. For each
sentence, a CKY chart is constructed. The cells of
the CKY chart are populated with appropriate rules
from all the phrase tables of different components.
As in the Hiero SMT system (Chiang, 2005), the
cells which span up to a certain length (i.e. the max-
imum span length) are populated from the phrase-
tables and the rest of the chart uses glue rules as de-
fined in (Chiang, 2005).

The rules suggested from the component models
are combined in a single set. Some of the rules may
be unique and others may be common with other
component model rule sets, though with different
scores. Therefore, we need to combine the scores
of such common rules and assign a single score to



them. Depending on the mixture operation used for
combining the scores, we would get different mix-
ture scores. The choice of mixture operation will be
discussed in Section 3.1.

Figure 1 illustrates how the CKY chart is filled
with the rules. Each cell, covering a span, is popu-
lated with rules from all component models as well
as from cells covering a sub-span of it.

In the typical log-linear model SMT, the posterior

probability for each phrase pair (€, f) is given by:

ple| P o exp (Zijwm(e, n)

w-

Ensemble decoding uses the same framework for
each individualisystem. Therefore, the score of a
phrase-pair (¢, f) in the ensemble model is:

P(é’f)“exp(wl'% ® wz- ¢y @ >
—— ——
1%t model  27? model

where & denotes the mixture operation between two
or more model scores.

3.1 Mixture Operations

Mixture operations receive two oOr more scores
(probabilities) and return the mixture score (prob-
ability). In this section, we explore different options
for mixture operation and discuss some of the char-
acteristics of these mixture operations.

e Weighted Sum (wsum): in wsum the ensemble
probability is proportional to the weighted sum
of all individual model probabilities (i.e. linear
mixture).

~ M
p(é’f) X Z)\m eXp(Wm‘¢m)

where m denotes the index of component mod-
els, M is the total number of them and J; is the
weight for component .

o Weighted Max (wmax): where the ensemble
score is the weighted max of all model scores.

p(e] f) o« max ()\m exp (wm . (bm))
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e Model Switching (Switch): in model switch-

ing, each cell in the CKY chart gets populated
only by rules from one of the models and the
other models’ rules are discarded. This is based
on the hypothesis that each component model
is an expert on certain parts of sentence. In this
method, we need to define a binary indicator
function &(f, m) for each span and component
model to specify rules of which model to retain
for each span.

1, m = argmax ¢(f,n)
6(f, m) _ neM
0, otherwise

The criteria for choosing a model for each cell,
¥ (f,n), could be based on:

— Max: for each cell, the model that has the
highest weighted best-rule score wins:

¢(f7 n) =X mgax(wn : ¢n(é7 f))

— Sum: Instead of comparing only the
scores of the best rules, the model with
the highest weighted sum of the probabil-
ities of the rules wins. This sum has to
take into account the translation table limit
(t]), on the number of rules suggested by
each model for each cell:

¢(JF7 TL) = A Zexp (Wn : ¢n(éa?))

The probability of each phrase-pair (€, f) is
computed as:

Product (prod): in Product models or Prod-
uct of Experts (Hinton, 1999), the probability
of the ensemble model or a rule is computed as
the product of the probabilities of all compo-
nents (or equally the sum of log-probabilities,
i.e. log-linear mixture). Product models can
also make use of weights to control the contri-
bution of each component. These models are
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Figure 1: The cells in the CKY chart are populated using rules from all component models and sub-span cells.

generally known as Logarithmic Opinion Pools
(LOPs) where:

M
p(é| f) X exp(Z)\m (Wm : ¢m)>

m
Product models have been used in combining
LMs and TMs in SMT as well as some other
NLP tasks such as ensemble parsing (Petrov,
2010).

Each of these mixture operations has a specific
property that makes it work in specific domain adap-
tation or system combination scenarios. For in-
stance, LOPs may not be optimal for domain adapta-
tion in the setting where there are two or more mod-
els trained on heterogeneous corpora. As discussed
in (Smith et al., 2005), LOPs work best when all the
models accuracies are high and close to each other
with some degree of diversity. LOPs give veto power
to any of the component models and this perfectly
works for settings such as the one in (Petrov, 2010)
where a number of parsers are trained by changing
the randomization seeds but having the same base
parser and using the same training set. They no-
ticed that parsers trained using different randomiza-
tion seeds have high accuracies but there are some
diversities among them and they used product mod-
els for their advantage to get an even better parser.
We assume that each of the models is expert in some
parts and so they do not necessarily agree on cor-
rect hypotheses. In other words, product models (or
LOPs) tend to have intersection-style effects while
we are more interested in union-style effects.
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In Section 4.2, we compare the BLEU scores of
different mixture operations on a French-English ex-
perimental setup.

3.2 Normalization

Since in log-linear models, the model scores are
not normalized to form probability distributions, the
scores that different models assign to each phrase-
pair may not be in the same scale. Therefore, mixing
their scores might wash out the information in one
(or some) of the models. We experimented with two
different ways to deal with this normalization issue.
A practical but inexact heuristic is to normalize the
scores over a shorter list. So the list of rules coming
from each model for a cell in CKY chart is normal-
ized before getting mixed with other phrase-table
rules. However, experiments showed changing the
scores with the normalized scores hurts the BLEU
score radically. So we use the normalized scores
only for pruning and the actual scores are intact.
We could also globally normalize the scores to ob-
tain posterior probabilities using the inside-outside
algorithm. However, we did not try it as the BLEU
scores we got using the normalization heuristic was
not promissing and it would impose a cost in de-
coding as well. More investigation on this issue has
been left for future work.

A more principled way is to systematically find
the most appropriate model weights that can avoid
this problem by scaling the scores properly. We
used a publicly available toolkit, CONDOR (Van-
den Berghen and Bersini, 2005), a direct optimizer
based on Powell’s algorithm, that does not require



explicit gradient information for the objective func-
tion. Component weights for each mixture operation
are optimized on the dev-set using CONDOR.

4 Experiments & Results
4.1 Experimental Setup

We carried out translation experiments using the Eu-
ropean Medicines Agency (EMEA) corpus (Tiede-
mann, 2009) as IN, and the Europarl (EP) corpus] as
OUT, for French to English translation. The dev and
test sets were randomly chosen from the EMEA cor-
pus.? The details of datasets used are summarized in
Table 1.

Words
Dataset Sents French ‘ English
EMEA 11770 | 168K 144K
Europarl | 1.3M | 40M 37M
Dev 1533 | 29K 25K
Test 1522 | 29K 25K

Table 1: Training, dev and test sets for EMEA.

For the mixture baselines, we used a standard
one-pass phrase-based system (Koehn et al., 2003),
Portage (Sadat et al., 2005), with the following 7
features: relative-frequency and lexical translation
model (TM) probabilities in both directions; word-
displacement distortion model; language model
(LM) and word count. The corpus was word-aligned
using both HMM and IBM2 models, and the phrase
table was the union of phrases extracted from these
separate alignments, with a length limit of 7. It
was filtered to retain the top 20 translations for each
source phrase using the TM part of the current log-
linear model.

For ensemble decoding, we modified an in-house
implementation of hierarchical phrase-based sys-
tem, Kriya (Sankaran et al., 2012) which uses the
same features mentioned in (Chiang, 2005): for-
ward and backward relative-frequency and lexical
TM probabilities; LM; word, phrase and glue-rules
penalty. GIZA++(Och and Ney, 2000) has been used
for word alignment with phrase length limit of 7.

In both systems, feature weights were optimized
using MERT (Och, 2003) and with a 5-gram lan-

lwww.statmt .org/europarl

Please contact the authors to access the data-sets.

944

guage model and Kneser-Ney smoothing was used
in all the experiments. We used SRILM (Stolcke,
2002) as the langugage model toolkit. Fixing the
language model allows us to compare various trans-
lation model combination techniques.

4.2 Results

Table 2 shows the results of the baselines. The first
group are the baseline results on the phrase-based
system discussed in Section 2 and the second group
are those of our hierarchical MT system. Since the
Hiero baselines results were substantially better than
those of the phrase-based model, we also imple-
mented the best-performing baseline, linear mixture,
in our Hiero-style MT system and in fact it achieves
the hights BLEU score among all the baselines as
shown in Table 2. This baseline is run three times
the score is averaged over the BLEU scores with
standard deviation of 0.34.

Baseline \ PBS \ Hiero ‘
IN 31.84 | 33.69
ouT 24.08 | 25.32
IN +OUT | 31.75 | 33.76
LOGLIN | 32.21 -
LINMIX | 33.81 | 35.57

Table 2: The results of various baselines implemented in
a phrase-based (PBS) and a Hiero SMT on EMEA.

Table 3 shows the results of ensemble decoding
with different mixture operations and model weight
settings. Each mixture operation has been evalu-
ated on the test-set by setting the component weights
uniformly (denoted by uniform) and by tuning the
weights using CONDOR (denoted by tuned) on a
held-out set. The tuned scores (3rd column in Ta-
ble 3) are averages of three runs with different initial
points as in Clark et al. (2011). We also reported the
BLEU scores when we applied the span-wise nor-
malization heuristic. All of these mixture operations
were able to significantly improve over the concate-
nation baseline. In particular, Switching:Max could
gain up to 2.2 BLEU points over the concatenation
baseline and 0.39 BLEU points over the best per-
forming baseline (i.e. linear mixture model imple-
mented in Hiero) which is statistically significant
based on Clark et al. (2011) (p = 0.02).

Prod when using with uniform weights gets the



Mixture Operation \ Uniform \ Tuned \ Norm.
WMAX 35.39 35.47 (s=0.03) | 35.47
WsuM 35.35 35.53 (s=0.04) | 35.45
SWITCHING:MAX | 35.93 35.96 (s=0.01) | 32.62
SWITCHING:SUM 34.90 34.72 (s=0.23) | 34.90
PrROD 33.93 35.24 (s=0.05) | 35.02

Table 3: The results of ensemble decoding on EMEA for Fr2En when using uniform weights, tuned weights and
normalization heuristic. The tuned BLEU scores are averaged over three runs with multiple initial points, as in (Clark

et al., 2011), with the standard deviations in brackets .

lowest score among the mixture operations, how-
ever after tuning, it learns to bias the weights to-
wards one of the models and hence improves by
1.31 BLEU points. Although Switching:Sum outper-
forms the concatenation baseline, it is substantially
worse than other mixture operations. One explana-
tion that Switching:Max is the best performing op-
eration and Switching:Sum is the worst one, despite
their similarities, is that Switching:Max prefers more
peaked distributions while Switching:Sum favours a
model that has fewer hypotheses for each span.

An interesting observation based on the results in
Table 3 is that uniform weights are doing reasonably
well given that the component weights are not opti-
mized and therefore model scores may not be in the
same scope (refer to discussion in §3.2). We suspect
this is because a single LM is shared between both
models. This shared component controls the vari-
ance of the weights in the two models when com-
bined with the standard L-1 normalization of each
model’s weights and hence prohibits models to have
too varied scores for the same input. Though, it may
not be the case when multiple LMs are used which
are not shared.

Two sample sentences from the EMEA test-set
along with their translations by the IN, OUT and En-
semble models are shown in Figure 2. The boxes
show how the Ensemble model is able to use n-
grams from the IN and OUT models to construct
a better translation than both of them. In the first
example, there are two OOVs one for each of the
IN and OUT models. Our approach is able to re-
solve the OOV issues by taking advantage of the
other model’s presence. Similarly, the second exam-
ple shows how ensemble decoding improves lexical
choices as well as word re-orderings.
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5 Related Work
5.1 Domain Adaptation

Early approaches to domain adaptation involved in-
formation retrieval techniques where sentence pairs
related to the target domain were retrieved from the
training corpus using IR methods (Eck et al., 2004;
Hildebrand et al., 2005). Foster et al. (2010), how-
ever, uses a different approach to select related sen-
tences from OUT. They use language model per-
plexities from IN to select relavant sentences from
OUT. These sentences are used to enrich the IN
training set.

Other domain adaptation methods involve tech-
niques that distinguish between general and domain-
specific examples (Daumé and Marcu, 2006). Jiang
and Zhai (2007) introduce a general instance weight-
ing framework for model adaptation. This approach
tries to penalize misleading training instances from
OUT and assign more weight to IN-like instances
than OUT instances. Foster et al. (2010) propose a
similar method for machine translation that uses fea-
tures to capture degrees of generality. Particularly,
they include the output from an SVM classifier that
uses the intersection between IN and OUT as pos-
itive examples. Unlike previous work on instance
weighting in machine translation, they use phrase-
level instances instead of sentences.

A large body of work uses interpolation tech-
niques to create a single TM/LM from interpolating
a number of LMs/TMs. Two famous examples of
such methods are linear mixtures and log-linear mix-
tures (Koehn and Schroeder, 2007; Civera and Juan,
2007; Foster and Kuhn, 2007) which were used as
baselines and discussed in Section 2. Other meth-
ods include using self-training techniques to exploit
monolingual in-domain data (Ueffing et al., 2007;



SOURCE aménorrhée , menstruations irrégulieres

REF amenorrhoea , irregular menstruation

IN Eintensdieeel , menstruations irrégulieres

ouT aménorrhée , | irregular menstruation

ENSEMBLE amenorrhoea‘ irregular menstruation

SOURCE le traitement par naglazyme doit étre supervisé par un médecin ayant I’ expérience de
la prise en charge des patients atteints de mps vi ou d’ une autre maladie métabolique
héréditaire .

REF naglazyme treatment should be supervised by a physician experienced in the manage-
ment of patients with mps vi or other inherited metabolic diseases .

IN naglazyme treatment should be supervis€é by a doctor the with
in the management of patients RSl R R iR i oirwd metabolic disease B

ouT naglazyme ’s treatment must be | supervised | by a doctor with the experience of the care
of patients with mps vi. or another disease hereditary metabolic .

ENSEMBLE naglazyme treatment should be |[supervised| by a physician experienced
ISR EhET G Re gerteiiell with mps vi or other hereditary BiilEelole) e ISR .

Figure 2: Examples illustrating how this method is able to use expertise of both out-of-domain and in-domain systems.

Bertoldi and Federico, 2009). In this approach, a
system is trained on the parallel OUT and IN data
and it is used to translate the monolingual IN data
set. Iteratively, most confident sentence pairs are se-
lected and added to the training corpus on which a
new system is trained.

5.2 System Combination

Tackling the model adaptation problem using sys-
tem combination approaches has been experimented
in various work (Koehn and Schroeder, 2007; Hilde-
brand and Vogel, 2009). Among these approaches
are sentence-based, phrase-based and word-based
output combination methods. In a similar approach,
Koehn and Schroeder (2007) use a feature of the fac-
tored translation model framework in Moses SMT
system (Koehn and Schroeder, 2007) to use multiple
alternative decoding paths. Two decoding paths, one
for each translation table (IN and OUT), were used
during decoding. The weights are set with minimum
error rate training (Och, 2003).

Our work is closely related to Koehn and
Schroeder (2007) but uses a different approach to
deal with multiple translation tables. The Moses
SMT system implements (Koehn and Schroeder,
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2007) and can treat multiple translation tables in
two different ways: intersection and union. In in-
tersection, for each span only the hypotheses would
be used that are present in all phrase tables. For
each set of hypothesis with the same source and
target phrases, a new hypothesis is created whose
feature-set is the union of feature sets of all corre-
sponding hypotheses. Union, on the other hand, uses
hypotheses from all the phrase tables. The feature
set of these hypotheses are expanded to include one
feature set for each table. However, for the corre-
sponding feature values of those phrase-tables that
did not have a particular phrase-pair, a default log
probability value of 0 is assumed (Bertoldi and Fed-
erico, 2009) which is counter-intuitive as it boosts
the score of hypotheses with phrase-pairs that do not
belong to all of the translation tables.

Our approach is different from Koehn and
Schroeder (2007) in a number of ways. Firstly, un-
like the multi-table support of Moses which only
supports phrase-based translation table combination,
our approach supports ensembles of both hierarchi-
cal and phrase-based systems. With little modifica-
tion, it can also support ensemble of syntax-based
systems with the other two state-of-the-art SMT sys-



tems. Secondly, our combining method uses the
union option, but instead of preserving the features
of all phrase-tables, it only combines their scores
using various mixture operations. This enables us
to experiment with a number of different opera-
tions as opposed to sticking to only one combination
method. Finally, by avoiding increasing the number
of features we can add as many translation models
as we need without serious performance drop. In
addition, MERT would not be an appropriate opti-
mizer when the number of features increases a cer-
tain amount (Chiang et al., 2008).

Our approach differs from the model combina-
tion approach of DeNero et al. (2010), a generaliza-
tion of consensus or minimum Bayes risk decoding
where the search space consists of those of multi-
ple systems, in that model combination uses forest
of derivations of all component models to do the
combination. In other words, it requires all compo-
nent models to fully decode each sentence, compute
n-gram expectations from each component model
and calculate posterior probabilities over transla-
tion derivations. While, in our approach we only
use partial hypotheses from component models and
the derivation forest is constructed by the ensemble
model. A major difference is that in the model com-
bination approach the component search spaces are
conjoined and they are not intermingled as opposed
to our approach where these search spaces are inter-
mixed on spans. This enables us to generate new
sentences that cannot be generated by component
models. Furthermore, various combination methods
can be explored in our approach. Finally, main tech-
niques used in this work are orthogonal to our ap-
proach such as Minimum Bayes Risk decoding, us-
ing n-gram features and tuning using MERT.

Finally, our work is most similar to that of
Liu et al. (2009) where max-derivation and max-
translation decoding have been used. Max-
derivation finds a derivation with highest score and
max-translation finds the highest scoring translation
by summing the score of all derivations with the
same yield. The combination can be done in two
levels: translation-level and derivation-level. Their
derivation-level max-translation decoding is similar
to our ensemble decoding with wsum as the mixture
operation. We did not restrict ourself to this par-
ticular mixture operation and experimented with a
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number of different mixing techniques and as Ta-
ble 3 shows we could improve over wsum in our
experimental setup. Liu et al. (2009) used a mod-
ified version of MERT to tune max-translation de-
coding weights, while we use a two-step approach
using MERT for tuning each component model sep-
arately and then using CONDOR to tune component
weights on top of them.

6 Conclusion & Future Work

In this paper, we presented a new approach for do-
main adaptation using ensemble decoding. In this
approach a number of MT systems are combined at
decoding time in order to form an ensemble model.
The model combination can be done using various
mixture operations. We showed that this approach
can gain up to 2.2 BLEU points over its concatena-
tion baseline and 0.39 BLEU points over a powerful
mixture model.

Future work includes extending this approach to
use multiple translation models with multiple lan-
guage models in ensemble decoding. Different
mixture operations can be investigated and the be-
haviour of each operation can be studied in more
details. We will also add capability of support-
ing syntax-based ensemble decoding and experi-
ment how a phrase-based system can benefit from
syntax information present in a syntax-aware MT
system. Furthermore, ensemble decoding can be ap-
plied on domain mixing settings in which develop-
ment sets and test sets include sentences from dif-
ferent domains and genres, and this is a very suit-
able setting for an ensemble model which can adapt
to new domains at test time. In addition, we can
extend our approach by applying some of the tech-
niques used in other system combination approaches
such as consensus decoding, using n-gram features,
tuning using forest-based MERT, among other pos-
sible extensions.
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