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Abstract 

Many machine translation (MT) evaluation 

metrics have been shown to correlate better 

with human judgment than BLEU. In 

principle, tuning on these metrics should 

yield better systems than tuning on BLEU. 

However, due to issues such as speed, 

requirements for linguistic resources, and 

optimization difficulty, they have not been 

widely adopted for tuning. This paper 

presents PORT
1
, a new MT  evaluation 

metric which combines precision, recall 

and an ordering metric and which is 

primarily designed for tuning MT systems. 

PORT does not require external resources 

and is quick to compute. It has a better 

correlation with human judgment than 

BLEU. We compare PORT-tuned MT 

systems to BLEU-tuned baselines in five 

experimental conditions involving four 

language pairs. PORT tuning achieves 

consistently better performance than BLEU 

tuning, according to four automated 

metrics (including BLEU) and to human 

evaluation: in comparisons of outputs from 

300 source sentences, human judges 

preferred the PORT-tuned output 45.3% of 

the time (vs. 32.7% BLEU tuning  

preferences and 22.0% ties).  

1 Introduction 

Automatic evaluation metrics for machine 

translation (MT) quality are a key part of building 

statistical MT (SMT) systems. They play two 

                                                           
1 PORT: Precision-Order-Recall Tunable metric. 

roles: to allow rapid (though sometimes inaccurate) 

comparisons between different systems or between 

different versions of the same system, and to 

perform tuning of parameter values during system 

training. The latter has become important since the 

invention of minimum error rate training (MERT) 

(Och, 2003) and related tuning methods. These 

methods perform repeated decoding runs with 

different system parameter values, which are tuned 

to optimize the value of the evaluation metric over 

a development set with reference translations. 

MT evaluation metrics fall into three groups:  

• BLEU (Papineni et al., 2002), NIST 

(Doddington, 2002), WER, PER, TER 

(Snover et al., 2006), and LRscore (Birch and 

Osborne, 2011) do not use external linguistic 

information; they are fast to compute (except 

TER).  

• METEOR (Banerjee and Lavie, 2005), 

METEOR-NEXT (Denkowski and Lavie 

2010), TER-Plus (Snover et al., 2009), 

MaxSim (Chan and Ng, 2008), TESLA (Liu 

et al., 2010), AMBER (Chen and Kuhn, 2011) 

and MTeRater (Parton et al., 2011) exploit 

some limited linguistic resources, such as 

synonym dictionaries, part-of-speech tagging, 

paraphrasing tables or word root lists.  

• More sophisticated metrics such as RTE 

(Pado et al., 2009), DCU-LFG (He et al., 

2010) and MEANT (Lo and Wu, 2011) use 

higher level syntactic or semantic analysis to 

score translations. 

Among these metrics, BLEU is the most widely 

used for both evaluation and tuning. Many of the 

metrics correlate better with human judgments of 

translation quality than BLEU, as shown in recent 

WMT Evaluation Task reports (Callison-Burch et 
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al., 2010; Callison-Burch et al., 2011). However, 

BLEU remains the de facto standard tuning metric, 

for two reasons. First, there is no evidence that any 

other tuning metric yields better MT systems. Cer 

et al. (2010) showed that BLEU tuning is more 

robust than tuning with other metrics (METEOR, 

TER, etc.), as gauged by both automatic and 

human evaluation. Second, though a tuning metric 

should correlate strongly with human judgment, 

MERT (and similar algorithms) invoke the chosen 

metric so often that it must be computed quickly.  

Liu et al. (2011) claimed that TESLA tuning 

performed better than BLEU tuning according to 

human judgment. However, in the WMT 2011 

“tunable metrics” shared pilot task, this did not 

hold (Callison-Burch et al., 2011). In (Birch and 

Osborne, 2011), humans preferred the output from 

LRscore-tuned systems 52.5% of the time, versus 

BLEU-tuned system outputs 43.9% of the time. 

In this work, our goal is to devise a metric that, 

like BLEU, is computationally cheap and 

language-independent, but that yields better MT 

systems than BLEU when used for tuning. We 

tried out different combinations of statistics before 

settling on the final definition of our metric.  The 

final version, PORT, combines precision, recall, 

strict brevity penalty (Chiang et al., 2008) and 

strict redundancy penalty (Chen and Kuhn, 2011) 

in a quadratic mean expression. This expression is 

then further combined with a new measure of word 

ordering, v, designed to reflect long-distance as 

well as short-distance word reordering (BLEU only 

reflects short-distance reordering). In a later 

section, 3.3, we describe experiments that vary 

parts of the definition of PORT.  

Results given below show that PORT correlates 

better with human judgments of translation quality 

than BLEU does, and sometimes outperforms 

METEOR in this respect, based on data from 

WMT (2008-2010). However, since PORT is 

designed for tuning, the most important results are 

those showing that PORT tuning yields systems 

with better translations than those produced by 

BLEU tuning – both as determined by automatic 

metrics (including BLEU), and according to 

human judgment, as applied to five data conditions 

involving four language pairs. 

2 BLEU and PORT 

First, define n-gram precision p(n) and recall r(n): 
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where T = translation, R = reference. Both BLEU 

and PORT are defined on the document-level, i.e. 

T and R are whole texts. If there are multiple 

references, we use closest reference length for each 

translation hypothesis to compute the numbers of 

the reference n-grams. 

2.1 BLEU 

BLEU is composed of precision Pg(N) and brevity 

penalty BP: 

BPNPBLEU g ×= )(                 (3)  

where Pg(N) is the geometric average of n-gram 

precisions 
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The BLEU brevity penalty punishes the score if 

the translation length len(T) is shorter than the 

reference length len(R); it is: 

( ))(/)(1,0.1min TlenRleneBP −=         (5) 

2.2 PORT 

PORT has five components: precision, recall, strict 

brevity penalty (Chiang et al., 2008), strict 

redundancy penalty (Chen and Kuhn, 2011) and an 

ordering measure v. The design of PORT is based 

on exhaustive experiments on a development data 

set. We do not have room here to give a rationale 

for all the choices we made when we designed 

PORT. However, a later section (3.3) reconsiders 

some of these design decisions.  

2.2.1 Precision and Recall 

The average precision and average recall used in 

PORT (unlike those used in BLEU) are the 

arithmetic average of n-gram precisions Pa(N) and 

recalls Ra(N): 
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We use two penalties to avoid too long or too 

short MT outputs. The first, the strict brevity 

penalty (SBP), is proposed in (Chiang et al., 2008). 

Let ti be the translation of input sentence i, and let 

ri be its reference. Set 
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The second is the strict redundancy penalty (SRP), 

proposed in (Chen and Kuhn, 2011): 
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To combine precision and recall, we tried four 

averaging methods: arithmetic (A), geometric (G), 

harmonic (H), and quadratic (Q) mean. If all of the 

values to be averaged are positive, the order is 

maxQAGHmin ≤≤≤≤≤ , with equality 

holding if and only if all the values being averaged 

are equal. We chose the quadratic mean to 

combine precision and recall, as follows: 

2
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2.2.2 Ordering Measure 

Word ordering measures for MT compare two 

permutations of the original source-language word 

sequence: the permutation represented by the 

sequence of corresponding words in the MT 

output, and the permutation in the reference. 

Several ordering measures have been integrated 

into MT evaluation metrics recently. Birch and 

Osborne (2011) use either Hamming Distance or 

Kendall’s τ Distance (Kendall, 1938) in their 

metric LRscore, thus obtaining two versions of 

LRscore. Similarly, Isozaki et al. (2011) adopt 

either Kendall’s τ Distance or Spearman’s ρ 

(Spearman, 1904) distance in their metrics.  

Our measure, v, is different from all of these. 

We use word alignment to compute the two 

permutations (LRscore also uses word alignment). 

The word alignment between the source input and 

reference is computed using GIZA++ (Och and 

Ney, 2003) beforehand with the default settings, 

then is refined with the heuristic grow-diag-final-

and; the word alignment between the source input 

and the translation is generated by the decoder with 

the help of word alignment inside each phrase pair. 

PORT uses permutations. These encode one-to-

one relations but not one-to-many, many-to-one, 

many-to-many or null relations, all of which can 

occur in word alignments. We constrain the 

forbidden types of relation to become one-to-one, 

as in (Birch and Osborne, 2011). Thus, in a one-to-

many alignment, the single source word is forced 

to align with the first target word; in a many-to-one 

alignment, monotone order is assumed for the 

target words; and source words originally aligned 

to null are aligned to the target word position just 

after the previous source word’s target position.  

After the normalization above, suppose we have 

two permutations for the same source n-word 

input. E.g., let P1 = reference, P2 = hypothesis: 

P1: 
1

1p  
2

1p  
3

1p  
4

1p  … 
i

p1  … 
n

p1  

 P2: 
1

2p  
2

2p  
3

2p  
4

2p  … 
i

p2  … 
n

p2  

Here, each
j

ip is an integer denoting position in the 

original source (e.g., 1

1p = 7 means that the first 

word in P1 is the 7
th
 source word). 

The ordering metric v is computed from two 

distance measures. The first is absolute 

permutation distance:
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v1 ranges from 0 to 1; a larger value means more 

similarity between the two permutations. This 

metric is similar to Spearman’s ρ (Spearman, 

1904). However, we have found that ρ punishes 

long-distance reorderings too heavily. For instance, 

1ν is more tolerant than ρ of the movement of 

“recently” in this example:  

Ref: Recently, I visited Paris 

Hyp: I visited Paris recently  

Inspired by HMM word alignment (Vogel et al., 

1996), our second distance measure is based on 

jump width. This punishes a sequence of words 

that moves a long distance with its internal order 

conserved, only once rather than on every word. In 

the following, only two groups of words have 

moved, so the jump width punishment is light: 

Ref: In the winter of 2010, I visited Paris 

Hyp: I visited Paris in the winter of 2010  

So the second distance measure is 
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As with v1, v2 is also from 0 to 1, and larger values 

indicate more similar permutations. The ordering 

measure vs is the harmonic mean of v1 and v2:  

)/1/1/(2 21 vvvs +=

 

.                     (15) 

 vs in (15) is computed at segment level. For 

multiple references, we compute vs for each, and 

then choose the biggest one as the segment level 

ordering similarity. We compute document level 

ordering with a weighted arithmetic mean:  
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where l is the number of segments of the 

document, and len(R) is the length of the reference. 

2.2.3 Combined Metric 

Finally, Qmean(N) (Eq. (10) and the word ordering 

measure v are combined in a harmonic mean: 

α
vNQmean

PORT
/1)(/1

2

+
=           (17) 

Here α  is a free parameter that is tuned on held-

out data. As it increases, the importance of the 

ordering measure v goes up. For our experiments, 

we tuned α  on Chinese-English data, setting it to 

0.25 and keeping this value for the other language 

pairs. The use of v means that unlike BLEU, PORT 

requires word alignment information. 

 
3 Experiments 

3.1 PORT as an Evaluation Metric 

We studied PORT as an evaluation metric on 

WMT data; test sets include WMT 2008, WMT 

2009, and WMT 2010 all-to-English, plus 2009, 

2010 English-to-all submissions. The languages 

“all” (“xx” in Table 1) include French, Spanish, 

German and Czech. Table 1 summarizes the test 

set statistics. In order to compute the v part of 

PORT, we require source-target word alignments 

for the references and MT outputs. These aren’t 

included in WMT data, so we compute them with 

GIZA++. 

We used Spearman’s rank correlation coefficient 

ρ to measure correlation of the metric with system-

level human judgments of translation. The human 

judgment score is based on the “Rank” only, i.e., 

how often the translations of the system were rated 

as better than those from other systems (Callison-

Burch et al., 2008). Thus, BLEU, METEOR, and 

PORT were evaluated on how well their rankings 

correlated with the human ones. For the segment 

level, we follow (Callison-Burch et al., 2010) in 

using Kendall’s rank correlation coefficient τ.  

As shown in Table 2, we compared PORT with 

smoothed BLEU (mteval-v13a), and METEOR 

v1.0. Both BLEU and PORT perform matching of 

n-grams up to n = 4. 

 
Set Year Lang. #system #sent-pair 

Test1 2008 xx-en 43 7,804 

Test2 2009 xx-en 45 15,087 

Test3 2009 en-xx 40 14,563 

Test4 2010 xx-en 53 15,964 

Test5 2010 en-xx 32 18,508 

Table 1: Statistics of the WMT dev and test sets. 

 

 
 

Metric 

Into-En Out-of-En 

sys.  seg. sys.  seg. 

BLEU 0.792 0.215 0.777 0.240 

METEOR 0.834 0.231 0.835 0.225 

PORT 0.801 0.236 0.804 0.242 

Table 2: Correlations with human judgment on WMT 

 

PORT achieved the best segment level 

correlation with human judgment on both the “into 

English” and “out of English” tasks. At the system 

level, PORT is better than BLEU, but not as good 

as METEOR.  This is because we designed PORT 

to carry out tuning; we did not optimize its 

performance as an evaluation metric, but rather, to 

optimize system tuning performance. There are 

some other possible reasons why PORT did not 

outperform METEOR v1.0 at system level. Most 

WMT submissions involve language pairs with 

similar word order, so the ordering factor v in 

PORT won’t play a big role. Also, v depends on 

source-target word alignments for reference and 

test sets. These alignments were performed by 

GIZA++ models trained on the test data only.  
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3.2 PORT as a Metric for Tuning 

3.2.1 Experimental details 

The first set of experiments to study PORT as a 

tuning metric involved Chinese-to-English (zh-en); 

there were two data conditions. The first is the 

small data condition where FBIS
2
 is used to train 

the translation and reordering models. It contains 

10.5M target word tokens. We trained two 

language models (LMs), which were combined 

loglinearly. The first is a 4-gram LM which is 

estimated on the target side of the texts used in the 

large data condition (below). The second is a 5-

gram LM estimated on English Gigaword.  

The large data condition uses training data from 

NIST
3
 2009 (Chinese-English track). All allowed 

bilingual corpora except UN, Hong Kong Laws and 

Hong Kong Hansard were used to train the 

translation model and reordering models. There are 

about 62.6M target word tokens. The same two 

LMs are used for large data as for small data, and 

the same development (“dev”) and test sets are also 

used. The dev set comprised mainly data from the 

NIST 2005 test set, and also some balanced-genre 

web-text from NIST. Evaluation was performed on 

NIST 2006 and 2008. Four references were 

provided for all dev and test sets. 

The third data condition is a French-to-English 

(fr-en). The parallel training data is from Canadian 

Hansard data, containing 59.3M word tokens. We 

used two LMs in loglinear combination: a 4-gram 

LM trained on the target side of the parallel 

training data, and the English Gigaword 5-gram 

LM. The dev set has 1992 sentences; the two test 

sets have 2140 and 2164 sentences respectively. 

There is one reference for all dev and test sets.  

The fourth and fifth conditions involve German-

-English Europarl data. This parallel corpus 

contains 48.5M German tokens and 50.8M English 

tokens. We translate both German-to-English (de-

en) and English-to-German (en-de). The two 

conditions both use an LM trained on the target 

side of the parallel training data, and de-en also 

uses the English Gigaword 5-gram LM. News test 

2008 set is used as dev set; News test 2009, 2010, 

2011 are used as test sets. One reference is 

provided for all dev and test sets. 

                                                           
2 LDC2003E14 
3 http://www.nist.gov/speech/tests/mt 

All experiments were carried out with α  in Eq. 

(17) set to 0.25, and involved only lowercase 

European-language text. They were performed 

with MOSES (Koehn et al., 2007), whose decoder 

includes lexicalized reordering, translation models, 

language models, and word and phrase penalties.  

Tuning was done with n-best MERT, which is 

available in MOSES. In all tuning experiments, 

both BLEU and PORT performed lower case 

matching of n-grams up to n = 4. We also 

conducted experiments with tuning on a version of 

BLEU that incorporates SBP (Chiang et al., 2008) 

as a baseline. The results of original IBM BLEU 

and BLEU with SBP were tied; to save space, we 

only report results for original IBM BLEU here. 

3.2.2 Comparisons with automatic metrics 

First, let us see if BLEU-tuning and PORT-tuning 

yield systems with different translations for the 

same input. The first row of Table 3 shows the 

percentage of identical sentence outputs for the 

two tuning types on test data. The second row 

shows the similarity of the two outputs at word-

level (as measured by 1-TER): e.g., for the two zh-

en tasks, the two tuning types give systems whose 

outputs are about 25-30% different at the word 

level. By contrast, only about 10% of output words 

for fr-en differ for BLEU vs. PORT tuning.  
 

 zh-en 

small 

zh-en 

large 

fr-en 

Hans 

de-en 

WMT 

en-de 

WMT 

Same sent.  17.7% 13.5% 56.6% 23.7% 26.1% 

1-TER 74.2 70.9 91.6 87.1 86.6 

Table 3: Similarity of BLEU-tuned and PORT-tuned 

system outputs on test data. 

 

 

Task 

 

Tune 

Evaluation metrics (%) 

BLEU MTR 1-TER PORT 

zh-en 

small 

BLEU 

PORT 

26.8  

27.2* 

55.2 

55.7 

38.0 

38.0 

49.7 

50.0 

zh-en 

large 

BLEU 

PORT 

29.9  

30.3*  

58.4 

59.0 

41.2 

42.0 

53.0 

53.2 

fr-en 

Hans 

BLEU 

PORT 

38.8  

38.8  

69.8 

69.6 

54.2 

54.6 

57.1 

57.1 

de-en 

WMT 

BLEU 

PORT 

20.1  

20.3 

55.6 

56.0 

38.4 

38.4 

39.6 

39.7 

en-de 

WMT 

BLEU 

PORT 

13.6 

13.6 

43.3 

43.3 

30.1 

30.7 

31.7 

31.7 

Table 4: Automatic evaluation scores on test data. 

 * indicates the results are significantly better than the 

baseline (p<0.05). 
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Table 4 shows translation quality for BLEU- and 

PORT-tuned systems, as assessed by automatic 

metrics. We employed BLEU4, METEOR (v1.0), 

TER (v0.7.25), and the new metric PORT. In the 

table, TER scores are presented as 1-TER to ensure 

that for all metrics, higher scores mean higher 

quality. All scores are averages over the relevant 

test sets. There are twenty comparisons in the 

table. Among these, there is one case (French-

English assessed with METEOR) where BLEU 

outperforms PORT, there are seven ties, and there 

are twelve cases where PORT is better. Table 3 

shows that fr-en outputs are very similar for both 

tuning types, so the fr-en results are perhaps less 

informative than the others. Overall, PORT tuning 

has a striking advantage over BLEU tuning.  

Both (Liu et al., 2011) and (Cer et al., 2011) 

showed that with MERT, if you want the best 

possible score for a system’s translations according 

to metric M, then you should tune with M. This 

doesn’t appear to be true when PORT and BLEU 

tuning are compared in Table 4. For the two 

Chinese-to-English tasks in the table, PORT tuning 

yields a better BLEU score than BLEU tuning, 

with significance at p < 0.05. We are currently 

investigating why PORT tuning gives higher 

BLEU scores than BLEU tuning for Chinese-

English and German-English. In internal tests we 

have found no systematic difference in dev-set 

BLEUs, so we speculate that PORT’s emphasis on 

reordering yields models that generalize better for 

these two language pairs. 

3.2.3 Human Evaluation 

We conducted a human evaluation on outputs from 

BLEU- and PORT-tuned systems. The examples 

are randomly picked from all “to-English” 

conditions shown in Tables 3 & 4 (i.e., all 

conditions except English-to-German).  

We performed pairwise comparison of the 

translations produced by the system types as in 

(Callison-Burch et al., 2010; Callison-Burch et al., 

2011). First, we eliminated examples where the 

reference had fewer than 10 words or more than 50 

words, or where outputs of the BLEU-tuned and 

PORT-tuned systems were identical. The 

evaluators (colleagues not involved with this 

paper) objected to comparing two bad translations, 

so we then selected for human evaluation only 

translations that had high sentence-level (1-TER) 

scores. To be fair to both metrics, for each 

condition, we took the union of examples whose 

BLEU-tuned output was in the top n% of BLEU 

outputs and those whose PORT-tuned output was 

in the top n% of PORT outputs (based on (1-

TER)). The value of n varied by condition: we 

chose the top 20% of zh-en small, top 20% of en-

de, top 50% of fr-en and top 40% of zh-en large. 

We then randomly picked 450 of these examples to 

form the manual evaluation set. This set was split 

into 15 subsets, each containing 30 sentences. The 

first subset was used as a common set; each of the 

other 14 subsets was put in a separate file, to which 

the common set is added.  Each of the 14 

evaluators received one of these files, containing 

60 examples (30 unique examples and 30 examples 

shared with the other evaluators). Within each 

example, BLEU-tuned and PORT-tuned outputs 

were presented in random order. 

After receiving the 14 annotated files, we 

computed Fleiss’s Kappa (Fleiss, 1971) on the 

common set to measure inter-annotator agreement, 

allκ . Then, we excluded annotators one at a time 

to compute iκ (Kappa score without i-th annotator, 

i.e., from the other 13). Finally, we filtered out the 

files from the 4 annotators whose answers were 

most different from everybody else’s: i.e., 

annotators with the biggest 
i

all κκ −  values. 

This left 10 files from 10 evaluators. We threw 

away the common set in each file, leaving 300 

pairwise comparisons. Table 5 shows that the 

evaluators preferred the output from the PORT-

tuned system 136 times, the output from the 

BLEU-tuned one 98 times, and had no preference 

the other 66 times. This indicates that there is a 

human preference for outputs from the PORT-

tuned system over those from the BLEU-tuned 

system at the p<0.01 significance level (in cases 

where people prefer one of them). 

PORT tuning seems to have a bigger advantage 

over BLEU tuning when the translation task is 

hard. Of the Table 5 language pairs, the one where 

PORT tuning helps most has the lowest BLEU in 

Table 4 (German-English); the one where it helps 

least in Table 5 has the highest BLEU in Table 4 

(French-English). (Table 5 does not prove BLEU is 

superior to PORT for French-English tuning: 

statistically, the difference between 14 and 17 here 

is a tie). Maybe by picking examples for each 

condition that were the easiest for the system to 

translate (to make human evaluation easier), we 
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mildly biased the results in Table 5 against PORT 

tuning. Another possible factor is reordering. 

PORT differs from BLEU partly in modeling long-

distance reordering more accurately; English and 

French have similar word order, but the other two 

language pairs don’t. The results in section 3.3 

(below) for Qmean, a version of PORT without 

word ordering factor v, suggest v may be defined 

suboptimally for French-English.  

 
 PORT win BLEU win equal total 

zh-en 

small 

19 

38.8% 

18 

36.7% 

12 

24.5% 

49 

zh-en 

large 

69 

45.7% 

46 

30.5% 

36 

23.8% 

151 

fr-en 

Hans 

14 

32.6% 
17 

39.5% 

12 

27.9% 

43 

de-en 

WMT 

34 

59.7% 

17 

29.8% 

6 

10.5% 

57 

All 136 

45.3% 

98 

32.7% 

66 

22.0% 

300 

Table 5: Human preference for outputs from PORT-

tuned vs. BLEU-tuned system. 

3.2.4 Computation time  

A good tuning metric should run very fast; this is 

one of the advantages of BLEU. Table 6 shows the 

time required to score the 100-best hypotheses for 

the dev set for each data condition during MERT 

for BLEU and PORT in similar implementations. 

The average time of each iteration, including 

model loading, decoding, scoring and running 

MERT
4
, is in brackets. PORT takes roughly 1.5 – 

2.5 as long to compute as BLEU, which is 

reasonable for a tuning metric.  
 

 zh-en 

small 

zh-en 

large 

fr-en 

Hans 

de-en 

WMT 

en-de 

WMT 

BLEU 3 (13)  3 (17) 2 (19) 2 (20) 2 (11) 

PORT 5 (21) 5 (24) 4 (28) 5 (28) 4 (15) 

Table 6: Time to score 100-best hypotheses (average 

time per iteration) in minutes.  

3.2.5 Robustness to word alignment errors 

PORT, unlike BLEU, depends on word 

alignments. How does quality of word alignment 

between source and reference affect PORT tuning? 

We created a dev set from Chinese Tree Bank 

                                                           
4 Our experiments are run on a cluster. The average time for 

an iteration includes queuing, and the speed of each node is 

slightly different, so bracketed times are only for reference. 

(CTB) hand-aligned data. It contains 588 sentences 

(13K target words), with one reference. We also 

ran GIZA++ to obtain its automatic word 

alignment, computed on CTB and FBIS.  The AER 

of the GIZA++ word alignment on CTB is 0.32.  

In Table 7, CTB is the dev set. The table shows 

tuning with BLEU, PORT with human word 

alignment (PORT + HWA), and PORT with 

GIZA++ word alignment (PORT + GWA); the 

condition is zh-en small. Despite the AER of 0.32 

for automatic word alignment, PORT tuning works 

about as well with this alignment as for the gold 

standard CTB one. (The BLEU baseline in Table 7 

differs from the Table 4 BLEU baseline because 

the dev sets differ).  

 
Tune BLEU MTR 1-TER PORT 

BLEU 25.1 53.7 36.4 47.8 

PORT + HWA 25.3 54.4 37.0 48.2 

PORT + GWA 25.3 54.6 36.4 48.1 

Table 7: PORT tuning - human & GIZA++ alignment 

 

Task Tune BLEU MTR 1-TER PORT 

zh-en 

small 

BLEU 

PORT 

Qmean 

26.8 

27.2 

26.8 

55.2 

55.7 

55.3 

38.0 

38.0 

38.2 

49.7 

50.0 

49.8 

zh-en 

large 

BLEU 

PORT 

Qmean 

29.9 

30.3 

30.2 

58.4 

59.0 

58.5 

41.2 

42.0 

41.8 

53.0 

53.2 

53.1 

fr-en 

Hans 

BLEU 

PORT 

Qmean 

38.8 

38.8 

38.8 

69.8 

69.6 

69.8 

54.2 

54.6 

54.6 

57.1 

57.1 

57.1 

de-en 

WMT 

BLEU 

PORT 

Qmean 

20.1 

20.3 

20.3 

55.6 

56.0 

56.3 

38.4 

38.4 
38.1 

39.6 

39.7 

39.7 

en-de 

WMT 

BLEU 

PORT 

Qmean 

13.6 

13.6 

13.6 

43.3 

43.3 

43.4 

30.1 

30.7 

30.3 

31.7 

31.7 

31.7 

Table 8: Impact of ordering measure v on PORT 

3.3 Analysis 

Now, we look at the details of PORT to see which 

of them are the most important. We do not have 

space here to describe all the details we studied, 

but we can describe some of them. E.g., does the 

ordering measure v help tuning performance? To 

answer this, we introduce an intermediate metric. 

This is Qmean as in Eq. (10): PORT without the 

ordering measure. Table 8 compares tuning with 

BLEU, PORT, and Qmean.  PORT outperforms 

Qmean on seven of the eight automatic scores 

shown for small and large Chinese-English. 
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However, for the European language pairs, PORT 

and Qmean seem to be tied. This may be because 

we optimized α  in Eq. (18) for Chinese-English, 

making the influence of word ordering measure v 

in PORT too strong for the European pairs, which 

have similar word order.  

Measure v seems to help Chinese-English 

tuning. What would results be on that language 

pair if we were to replace v in PORT with another 

ordering measure? Table 9 gives a partial answer, 

with Spearman’s ρ and Kendall’s τ replacing v 

with ρ or τ in PORT for the zh-en small condition 

(CTB with human word alignment is the dev set). 

The original definition of PORT seems preferable. 

 
Tune BLEU METEOR 1-TER 

BLEU 25.1 53.7 36.4 

PORT(v) 25.3 54.4 37.0 

PORT(ρ) 25.1 54.2 36.3 

PORT(τ) 25.1 54.0 36.0 

Table 9: Comparison of the ordering measure: replacing 

ν with ρ or τ in PORT. 

 

 

Task 

 

Tune 

ordering measures 

ρ τ v 

NIST06 BLEU 

PORT 

0.979 

0.979 

0.926 

0.928 

0.915 

0.917 

NIST08 BLEU 

PORT 

0.980 

0.981 

0.926 

0.929 

0.916 

0.918 

CTB BLEU 

PORT 

0.973 

0.975 

0.860 

0.866 

0.847 

0.853 

Table 10: Ordering scores (ρ, τ and v) for test sets NIST 

2006, 2008 and CTB. 

 

A related question is how much word ordering 

improvement we obtained from tuning with PORT. 

We evaluate Chinese-English word ordering with 

three measures: Spearman’s ρ, Kendall’s τ distance  

as applied to two permutations (see section 2.2.2) 

and our own measure v. Table 10 shows the effects 

of BLEU and PORT tuning on these three 

measures, for three test sets in the zh-en large 

condition. Reference alignments for CTB were 

created by humans, while the NIST06 and NIST08 

reference alignments were produced with GIZA++. 

A large value of ρ, τ, or v implies outputs have 

ordering similar to that in the reference. From the 

table, we see that the PORT-tuned system yielded 

better word order than the BLEU-tuned system in 

all nine combinations of test sets and ordering 

measures. The advantage of PORT tuning is 

particularly noticeable on the most reliable test set: 

the hand-aligned CTB data.  

What is the impact of the strict redundancy 

penalty on PORT? Note that in Table 8, even 

though Qmean has no ordering measure, it 

outperforms BLEU. Table 11 shows the BLEU 

brevity penalty (BP) and (number of matching 1- 

& 4- grams)/(number of total 1- & 4- grams) for 

the translations. The BLEU-tuned and Qmean-

tuned systems generate similar numbers of 

matching n-grams, but Qmean-tuned systems 

produce fewer n-grams (thus, shorter translations). 

E.g., for zh-en small, the BLEU-tuned system 

produced 44,677 1-grams (words), while the 

Qmean-trained system one produced 43,555 1-

grams; both have about 32,000 1-grams matching 

the references. Thus, the Qmean translations have 

higher precision. We believe this is because of the 

strict redundancy penalty in Qmean. As usual, 

French-English is the outlier: the two outputs here 

are typically so similar that BLEU and Qmean 

tuning yield very similar n-gram statistics. 

 
Task Tune 1-gram 4-gram BP 

zh-en 

small 

BLEU 

Qmean 

32055/44677 

31996/43555 

4603/39716 

4617/38595 

0.967 

0.962 

zh-en 

large 

BLEU 

Qmean 

34583/45370 

34369/44229 

5954/40410 

5987/39271 

0.972 

0.959 

fr-en 

Hans 

BLEU 

Qmean 

28141/40525 

28167/40798 

8654/34224 

8695/34495 

0.983 

0.990 

de-en 

WMT 

BLEU 

Qmean 

42380/75428 

42173/72403 

5151/66425 

5203/63401 

1.000 

0.968 

en-de 

WMT 

BLEU 

Qmean 

30326/62367 

30343/62092 

2261/54812 

2298/54537 

1.000 

0.997 

Table 11: #matching-ngram/#total-ngram and BP score  

4 Conclusions 

In this paper, we have proposed a new tuning 

metric for SMT systems.  PORT incorporates 

precision, recall, strict brevity penalty and strict 

redundancy penalty, plus a new word ordering 

measure v.  As an evaluation metric, PORT 

performed better than BLEU at the system level 

and the segment level, and it was competitive with 

or slightly superior to METEOR at the segment 

level. Most important, our results show that PORT-

tuned MT systems yield better translations  than  

BLEU-tuned systems on several language pairs, 

according both to automatic metrics and human 

evaluations. In future work, we plan to tune the 

free parameter α for each language pair. 
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