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Abstract

Unsupervised word representations are very
useful in NLP tasks both as inputs to learning
algorithms and as extra word features in NLP
systems. However, most of these models are
built with only local context and one represen-
tation per word. This is problematic because
words are often polysemous and global con-
text can also provide useful information for
learning word meanings. We present a new
neural network architecture which 1) learns
word embeddings that better capture the se-
mantics of words by incorporating both local
and global document context, and 2) accounts
for homonymy and polysemy by learning mul-
tiple embeddings per word. We introduce a
new dataset with human judgments on pairs of
words in sentential context, and evaluate our
model on it, showing that our model outper-
forms competitive baselines and other neural
language models.

1 Introduction

Vector-space models (VSM) represent word mean-
ings with vectors that capture semantic and syntac-
tic information of words. These representations can
be used to induce similarity measures by computing
distances between the vectors, leading to many use-
ful applications, such as information retrieval (Man-
ning et al., 2008), document classification (Sebas-
tiani, 2002) and question answering (Tellex et al.,
2003).

'The dataset and word vectors can be downloaded at
http://ai.stanford.edu/~ehhuang/.
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Despite their usefulness, most VSMs share a
common problem that each word is only repre-
sented with one vector, which clearly fails to capture
homonymy and polysemy. Reisinger and Mooney
(2010b) introduced a multi-prototype VSM where
word sense discrimination is first applied by clus-
tering contexts, and then prototypes are built using
the contexts of the sense-labeled words. However, in
order to cluster accurately, it is important to capture
both the syntax and semantics of words. While many
approaches use local contexts to disambiguate word
meaning, global contexts can also provide useful
topical information (Ng and Zelle, 1997). Several
studies in psychology have also shown that global
context can help language comprehension (Hess et
al., 1995) and acquisition (Li et al., 2000).

We introduce a new neural-network-based lan-
guage model that distinguishes and uses both local
and global context via a joint training objective. The
model learns word representations that better cap-
ture the semantics of words, while still keeping syn-
tactic information. These improved representations
can be used to represent contexts for clustering word
instances, which is used in the multi-prototype ver-
sion of our model that accounts for words with mul-
tiple senses.

We evaluate our new model on the standard
WordSim-353 (Finkelstein et al., 2001) dataset that
includes human similarity judgments on pairs of
words, showing that combining both local and
global context outperforms using only local or
global context alone, and is competitive with state-
of-the-art methods. However, one limitation of this
evaluation is that the human judgments are on pairs
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Figure 1: An overview of our neural language model. The model makes use of both local and global context to compute
a score that should be large for the actual next word (bank in the example), compared to the score for other words.
When word meaning is still ambiguous given local context, information in global context can help disambiguation.

of words presented in isolation, ignoring meaning
variations in context. Since word interpretation in
context is important especially for homonymous and
polysemous words, we introduce a new dataset with
human judgments on similarity between pairs of
words in sentential context. To capture interesting
word pairs, we sample different senses of words us-
ing WordNet (Miller, 1995). The dataset includes
verbs and adjectives, in addition to nouns. We show
that our multi-prototype model improves upon the
single-prototype version and outperforms other neu-
ral language models and baselines on this dataset.

2 Global Context-Aware Neural Language
Model

In this section, we describe the training objective of
our model, followed by a description of the neural
network architecture, ending with a brief description
of our model’s training method.

2.1 Training Objective

Our model jointly learns word representations while
learning to discriminate the next word given a short
word sequence (local context) and the document
(global context) in which the word sequence occurs.
Because our goal is to learn useful word representa-
tions and not the probability of the next word given
previous words (which prohibits looking ahead), our
model can utilize the entire document to provide
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global context.

Given a word sequence s and document d in
which the sequence occurs, our goal is to discrim-
inate the correct last word in s from other random
words. We compute scores g(s,d) and g(s¥,d)
where s is s with the last word replaced by word w,
and g(-, -) is the scoring function that represents the
neural networks used. We want ¢(s, d) to be larger
than g(s", d) by a margin of 1, for any other word
w in the vocabulary, which corresponds to the train-
ing objective of minimizing the ranking loss for each
(s, d) found in the corpus:

Csa= Z max(0,1 — g(s,d) + g(s*,d)) (1)
weV
Collobert and Weston (2008) showed that this rank-
ing approach can produce good word embeddings
that are useful in several NLP tasks, and allows
much faster training of the model compared to op-
timizing log-likelihood of the next word.

2.2 Neural Network Architecture

We define two scoring components that contribute
to the final score of a (word sequence, document)
pair. The scoring components are computed by two
neural networks, one capturing local context and the
other global context, as shown in Figure 1. We now
describe how each scoring component is computed.

The score of local context uses the local word se-
quence s. We first represent the word sequence s as



an ordered list of vectors z = (x1, x9, ..., ), ) Where
x; is the embedding of word ¢ in the sequence, which
is a column in the embedding matrix L € R™¥IV
where |V/| denotes the size of the vocabulary. The
columns of this embedding matrix L are the word
vectors and will be learned and updated during train-
ing. To compute the score of local context, score;,
we use a neural network with one hidden layer:

ar = f(Wilzi;aa;...
Waa1 + ba

s Tm) +01) (2)

3)

score; =

where [z1;29;...; 2] is the concatenation of the
m word embeddings representing sequence s, f is
an element-wise activation function such as tanh,
ay € R"1 s the activation of the hidden layer with
h hidden nodes, Wy € R"*(m") and W, € RI*%
are respectively the first and second layer weights of
the neural network, and by, by are the biases of each
layer.

For the score of the global context, we represent
the document also as an ordered list of word em-
beddings, d = (dy, da, ..., d)). We first compute the
weighted average of all word vectors in the docu-
ment:

k . .
o= Zz;l w(t;)d; @)
> iz w(ts)

where w(+) can be any weighting function that cap-
tures the importance of word ¢; in the document. We
use idf-weighting as the weighting function.

We use a two-layer neural network to compute the
global context score, score,, similar to the above:

a® = FW ] + 57

W2(9>a§~"> + bgg)

®)
(6)

score; =

where [¢; 2] is the concatenation of the weighted
average document vector and the vector of the last
word in s, al(g) e Rh(g) x1 is the activation of
the hidden layer with h(9) hidden nodes, Wl(g) €
R % (2n) and WQ(g) € R gre respectively the
first and second layer weights of the neural network,
and bgg ) , bgg ) are the biases of each layer. Note that
instead of using the document where the sequence
occurs, we can also specify a fixed k£ > m that cap-
tures larger context.
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The final score is the sum of the two scores:

(7

score = score; + scoreg

The local score preserves word order and syntactic
information, while the global score uses a weighted
average which is similar to bag-of-words features,
capturing more of the semantics and topics of the
document. Note that Collobert and Weston (2008)’s
language model corresponds to the network using
only local context.

2.3 Learning

Following Collobert and Weston (2008), we sample
the gradient of the objective by randomly choosing
a word from the dictionary as a corrupt example for
each sequence-document pair, (s,d), and take the
derivative of the ranking loss with respect to the pa-
rameters: weights of the neural network and the em-
bedding matrix L. These weights are updated via
backpropagation. The embedding matrix L is the
word representations. We found that word embed-
dings move to good positions in the vector space
faster when using mini-batch L-BFGS (Liu and No-
cedal, 1989) with 1000 pairs of good and corrupt ex-
amples per batch for training, compared to stochas-
tic gradient descent.

3 Multi-Prototype Neural Language
Model

Despite distributional similarity models’ successful
applications in various NLP tasks, one major limi-
tation common to most of these models is that they
assume only one representation for each word. This
single-prototype representation is problematic be-
cause many words have multiple meanings, which
can be wildly different. Using one representa-
tion simply cannot capture the different meanings.
Moreover, using all contexts of a homonymous or
polysemous word to build a single prototype could
hurt the representation, which cannot represent any
one of the meanings well as it is influenced by all
meanings of the word.

Instead of using only one representation per word,
Reisinger and Mooney (2010b) proposed the multi-
prototype approach for vector-space models, which
uses multiple representations to capture different
senses and usages of a word. We show how our



model can readily adopt the multi-prototype ap-
proach. We present a way to use our learned
single-prototype embeddings to represent each con-
text window, which can then be used by clustering to
perform word sense discrimination (Schiitze, 1998).

In order to learn multiple prototypes, we first
gather the fixed-sized context windows of all occur-
rences of a word (we use 5 words before and after
the word occurrence). Each context is represented
by a weighted average of the context words’ vectors,
where again, we use idf-weighting as the weighting
function, similar to the document context represen-
tation described in Section 2.2. We then use spheri-
cal k-means to cluster these context representations,
which has been shown to model semantic relations
well (Dhillon and Modha, 2001). Finally, each word
occurrence in the corpus is re-labeled to its associ-
ated cluster and is used to train the word representa-
tion for that cluster.

Similarity between a pair of words (w,w’) us-
ing the multi-prototype approach can be computed
with or without context, as defined by Reisinger and
Mooney (2010b):

AvgSimC(w, w') =

k k
3 0 plew ol !, )iy w), s (w')

i=1 j=1

®)

where p(c,w, 1) is the likelihood that word w is in
its cluster ¢ given context ¢, u;(w) is the vector rep-
resenting the i-th cluster centroid of w, and d(v,v’)
is a function computing similarity between two vec-
tors, which can be any of the distance functions pre-
sented by Curran (2004). The similarity measure can
be computed in absence of context by assuming uni-
form p(c, w, i) over i.

4 Experiments

In this section, we first present a qualitative analysis
comparing the nearest neighbors of our model’s em-
beddings with those of others, showing our embed-
dings better capture the semantics of words, with the
use of global context. Our model also improves the
correlation with human judgments on a word simi-
larity task. Because word interpretation in context is
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important, we introduce a new dataset with human
judgments on similarity of pairs of words in senten-
tial context. Finally, we show that our model outper-
forms other methods on this dataset and also that the
multi-prototype approach improves over the single-
prototype approach.

We chose Wikipedia as the corpus to train all
models because of its wide range of topics and
word usages, and its clean organization of docu-
ment by topic. We used the April 2010 snapshot of
the Wikipedia corpus (Shaoul and Westbury, 2010),
with a total of about 2 million articles and 990 mil-
lion tokens. We use a dictionary of the 30,000 most
frequent words in Wikipedia, converted to lower
case. In preprocessing, we keep the frequent num-
bers intact and replace each digit of the uncommon
numbers to “DG” so as to preserve information such
as it being a year (e.g. “DGDGDGDG”). The con-
verted numbers that are rare are mapped to a NUM-
BER token. Other rare words not in the dictionary
are mapped to an UNKNOWN token.

For all experiments, our models use 50-
dimensional embeddings. We use 10-word windows
of text as the local context, 100 hidden units, and no
weight regularization for both neural networks. For
multi-prototype variants, we fix the number of pro-
totypes to be 10.

4.1 Qualitative Evaluations

In order to show that our model learns more seman-
tic word representations with global context, we give
the nearest neighbors of our single-prototype model
versus C&W'’s, which only uses local context. The
nearest neighbors of a word are computed by com-
paring the cosine similarity between the center word
and all other words in the dictionary. Table 1 shows
the nearest neighbors of some words. The nearest
neighbors of “market” that C&W’s embeddings give
are more constrained by the syntactic constraint that
words in plural form are only close to other words
in plural form, whereas our model captures that the
singular and plural forms of a word are similar in
meaning. Other examples show that our model in-
duces nearest neighbors that better capture seman-
tics.

Table 2 shows the nearest neighbors of our model
using the multi-prototype approach. We see that
the clustering is able to group contexts of different



Center C&W Our Model

Word

markets firms, industries, | market, firms,
stores businesses

American | Australian, U.S., Canadian,
Indian, Italian African

illegal alleged, overseas, | harmful, prohib-
banned ited, convicted

Table 1: Nearest neighbors of words based on cosine sim-
ilarity. Our model is less constrained by syntax and is
more semantic.

Center Word | Nearest Neighbors

bank_1 corporation, insurance, company
bank_2 shore, coast, direction

star_1 movie, film, radio

star_2 galaxy, planet, moon

cell_1 telephone, smart, phone

cell 2 pathology, molecular, physiology
left_1 close, leave, live

left_2 top, round, right

Table 2: Nearest neighbors of word embeddings learned
by our model using the multi-prototype approach based
on cosine similarity. The clustering is able to find the dif-
ferent meanings, usages, and parts of speech of the words.

meanings of a word into separate groups, allowing
our model to learn multiple meaningful representa-
tions of a word.

4.2 WordSim-353

A standard dataset for evaluating vector-space mod-
els is the WordSim-353 dataset (Finkelstein et al.,
2001), which consists of 353 pairs of nouns. Each
pair is presented without context and associated with
13 to 16 human judgments on similarity and re-
latedness on a scale from O to 10. For example,
(cup,drink) received an average score of 7.25, while
(cup,substance) received an average score of 1.92.
Table 3 shows our results compared to previous
methods, including C&W’s language model and the
hierarchical log-bilinear (HLBL) model (Mnih and
Hinton, 2008), which is a probabilistic, linear neu-
ral model. We downloaded these embeddings from
Turian et al. (2010). These embeddings were trained
on the smaller corpus RCV1 that contains one year
of Reuters English newswire, and show similar cor-
relations on the dataset. We report the result of
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Model Corpus | p x 100
Our Model-g Wiki. 22.8
C&W RCV1 29.5
HLBL RCV1 33.2
C&W#* Wiki. 49.8
C&W Wiki. 55.3
Our Model Wiki. 64.2
Our Model* Wiki. 71.3
Pruned #f-idf Wiki. 73.4
ESA Wiki. 75
Tiered Pruned #f-idf | Wiki. 76.9

Table 3: Spearman’s p correlation on WordSim-353,
showing our model’s improvement over previous neural
models for learning word embeddings. C&W* is the
word embeddings trained and provided by C&W. Our
Model* is trained without stop words, while Our Model-
g uses only global context. Pruned #f-idf (Reisinger and
Mooney, 2010b) and ESA (Gabrilovich and Markovitch,
2007) are also included.

our re-implementation of C&W’s model trained on
Wikipedia, showing the large effect of using a dif-
ferent corpus.

Our model is able to learn more semantic word
embeddings and noticeably improves upon C&W'’s
model. Note that our model achieves higher corre-
lation (64.2) than either using local context alone
(C&W: 55.3) or using global context alone (Our
Model-g: 22.8). We also found that correlation can
be further improved by removing stop words (71.3).
Thus, each window of text (training example) con-
tains more information but still preserves some syn-
tactic information as the words are still ordered in
the local context.

4.3 New Dataset: Word Similarity in Context

The many previous datasets that associate human
judgments on similarity between pairs of words,
such as WordSim-353, MC (Miller and Charles,
1991) and RG (Rubenstein and Goodenough, 1965),
have helped to advance the development of vector-
space models. However, common to all datasets is
that similarity scores are given to pairs of words in
isolation. This is problematic because the mean-
ings of homonymous and polysemous words depend
highly on the words’ contexts. For example, in the
two phrases, “he swings the baseball bar” and “the



Word 1

Word 2

Located downtown along the east bank of the Des
Moines River ...

This is the basis of all money laundering , a track record
of depositing clean money before slipping through dirty
money ...

Inside the ruins , there are bats and a bowl with Pokeys
that fills with sand over the course of the race , and the
music changes somewhat while inside ...

An aggressive lower order batsman who usually bats at
No. 11, Muralitharan is known for his tendency to back
away to leg and slog ...

An example of legacy left in the Mideast from these
nobles is the Krak des Chevaliers * enlargement by the
Counts of Tripoli and Toulouse ...

. one should not adhere to a particular explanation ,
only in such measure as to be ready to abandon it if it
be proved with certainty to be false ...

... and Andy ’s getting ready to pack his bags and head
up to Los Angeles tomorrow to get ready to fly back
home on Thursday

. she encounters Ben ( Duane Jones ) , who arrives
in a pickup truck and defends the house against another
pack of zombies ...

In practice , there is an unknown phase delay between
the transmitter and receiver that must be compensated
by ” synchronization ” of the receivers local oscillator

. but Gilbert did not believe that she was dedicated
enough , and when she missed a rehearsal , she was
dismissed ...

Table 4: Example pairs from our new dataset. Note that words in a pair can be the same word and have different parts

of speech.

bat flies”, bat has completely different meanings. It
is unclear how this variation in meaning is accounted
for in human judgments of words presented without
context.

One of the main contributions of this paper is the
creation of a new dataset that addresses this issue.
The dataset has three interesting characteristics: 1)
human judgments are on pairs of words presented in
sentential context, 2) word pairs and their contexts
are chosen to reflect interesting variations in mean-
ings of homonymous and polysemous words, and 3)
verbs and adjectives are present in addition to nouns.
We now describe our methodology in constructing
the dataset.

4.3.1 Dataset Construction

Our procedure of constructing the dataset consists
of three steps: 1) select a list a words, 2) for each
word, select another word to form a pair, 3) for each
word in a pair, find a sentential context. We now
describe each step in detail.

In step 1, in order to make sure we select a diverse
list of words, we consider three attributes of a word:
frequency in a corpus, number of parts of speech,
and number of synsets according to WordNet. For
frequency, we divide words into three groups, top
2,000 most frequent, between 2,000 and 5,000, and
between 5,000 to 10,000 based on occurrences in
Wikipedia. For number of parts of speech, we group
words based on their number of possible parts of

878

speech (noun, verb or adjective), from 1 to 3. We
also group words by their number of synsets: [0,5],
[6,10], [11, 20], and [20, max]. Finally, we sam-
ple at most 15 words from each combination in the
Cartesian product of the above groupings.

In step 2, for each of the words selected in step
1, we want to choose the other word so that the pair
captures an interesting relationship. Similar to Man-
andhar et al. (2010), we use WordNet to first ran-
domly select one synset of the first word, we then
construct a set of words in various relations to the
first word’s chosen synset, including hypernyms, hy-
ponyms, holonyms, meronyms and attributes. We
randomly select a word from this set of words as the
second word in the pair. We try to repeat the above
twice to generate two pairs for each word. In addi-
tion, for words with more than five synsets, we allow
the second word to be the same as the first, but with
different synsets. We end up with pairs of words as
well as the one chosen synset for each word in the
pairs.

In step 3, we aim to extract a sentence from
Wikipedia for each word, which contains the word
and corresponds to a usage of the chosen synset.
We first find all sentences in which the word oc-
curs. We then POS tag? these sentences and filter out
those that do not match the chosen POS. To find the

*We used the MaxEnt Treebank POS tagger in the python
nltk library.



Model p % 100
C&W-S 57.0
Our Model-S 58.6
Our Model-M AvgSim 62.8
Our Model-M AvgSimC 65.7
tf-idf-S 26.3
Pruned #f-idf-S 62.5
Pruned #f-idf-M AvgSim 60.4
Pruned #f-idf-M AvgSimC 60.5

Table 5: Spearman’s p correlation on our new
dataset. Our Model-S uses the single-prototype approach,
while Our Model-M uses the multi-prototype approach.
AvgSim calculates similarity with each prototype con-
tributing equally, while AvgSimC weighs the prototypes
according to probability of the word belonging to that
prototype’s cluster.

word usages that correspond to the chosen synset,
we first construct a set of related words of the chosen
synset, including hypernyms, hyponyms, holonyms,
meronyms and attributes. Using this set of related
words, we filter out a sentence if the document in
which the sentence appears does not include one of
the related words. Finally, we randomly select one
sentence from those that are left.

Table 4 shows some examples from the dataset.
Note that the dataset also includes pairs of the same
word. Single-prototype models would give the max
similarity score for those pairs, which can be prob-
lematic depending on the words’ contexts. This
dataset requires models to examine context when de-
termining word meaning.

Using Amazon Mechanical Turk, we collected 10
human similarity ratings for each pair, as Snow et
al. (2008) found that 10 non-expert annotators can
achieve very close inter-annotator agreement with
expert raters. To ensure worker quality, we only
allowed workers with over 95% approval rate to
work on our task. Furthermore, we discarded all
ratings by a worker if he/she entered scores out of
the accepted range or missed a rating, signaling low-
quality work.

We obtained a total of 2,003 word pairs and their
sentential contexts. The word pairs consist of 1,712
unique words. Of the 2,003 word pairs, 1328 are
noun-noun pairs, 399 verb-verb, 140 verb-noun, 97
adjective-adjective, 30 noun-adjective, and 9 verb-
adjective. 241 pairs are same-word pairs.
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4.3.2 Evaluations on Word Similarity in
Context

For evaluation, we also compute Spearman corre-
lation between a model’s computed similarity scores
and human judgments. Table 5 compares different
models’ results on this dataset. We compare against
the following baselines: tf-idf represents words in
a word-word matrix capturing co-occurrence counts
in all 10-word context windows. Reisinger and
Mooney (2010b) found pruning the low-value #f-idf
features helps performance. We report the result
of this pruning technique after tuning the thresh-
old value on this dataset, removing all but the top
200 features in each word vector. We tried the
same multi-prototype approach and used spherical
k-means’ to cluster the contexts using f-idf repre-
sentations, but obtained lower numbers than single-
prototype (55.4 with AvgSimC). We then tried using
pruned #f-idf representations on contexts with our
clustering assignments (included in Table 5), but still
got results worse than the single-prototype version
of the pruned #f-idf model (60.5 with AvgSimC).
This suggests that the pruned #f-idf representations
might be more susceptible to noise or mistakes in
context clustering.

By utilizing global context, our model outper-
forms C&W’s vectors and the above baselines on
this dataset. ~With multiple representations per
word, we show that the multi-prototype approach
can improve over the single-prototype version with-
out using context (62.8 vs. 58.6). Moreover, using
AvgSimC* which takes contexts into account, the
multi-prototype model obtains the best performance
(65.7).

5 Related Work

Neural language models (Bengio et al., 2003; Mnih
and Hinton, 2007; Collobert and Weston, 2008;
Schwenk and Gauvain, 2002; Emami et al., 2003)
have been shown to be very powerful at language
modeling, a task where models are asked to ac-
curately predict the next word given previously
seen words. By using distributed representations of

3We first tried movMF as in Reisinger and Mooney (2010b),
but were unable to get decent results (only 31.5).

“probability of being in a cluster is calculated as the inverse
of the distance to the cluster centroid.



words which model words’ similarity, this type of
models addresses the data sparseness problem that
n-gram models encounter when large contexts are
used. Most of these models used relative local con-
texts of between 2 to 10 words. Schwenk and Gau-
vain (2002) tried to incorporate larger context by
combining partial parses of past word sequences and
a neural language model. They used up to 3 previ-
ous head words and showed increased performance
on language modeling. Our model uses a similar
neural network architecture as these models and uses
the ranking-loss training objective proposed by Col-
lobert and Weston (2008), but introduces a new way
to combine local and global context to train word
embeddings.

Besides language modeling, word embeddings in-
duced by neural language models have been use-
ful in chunking, NER (Turian et al., 2010), parsing
(Socher et al., 2011b), sentiment analysis (Socher et
al., 2011c) and paraphrase detection (Socher et al.,
2011a). However, they have not been directly eval-
vated on word similarity tasks, which are important
for tasks such as information retrieval and summa-
rization. Our experiments show that our word em-
beddings are competitive in word similarity tasks.

Most of the previous vector-space models use a
single vector to represent a word even though many
words have multiple meanings. The multi-prototype
approach has been widely studied in models of cat-
egorization in psychology (Rosseel, 2002; Griffiths
et al., 2009), while Schiitze (1998) used clustering
of contexts to perform word sense discrimination.
Reisinger and Mooney (2010b) combined the two
approaches and applied them to vector-space mod-
els, which was further improved in Reisinger and
Mooney (2010a). Two other recent papers (Dhillon
et al., 2011; Reddy et al., 2011) present models
for constructing word representations that deal with
context. It would be interesting to evaluate those
models on our new dataset.

Many datasets with human similarity ratings on
pairs of words, such as WordSim-353 (Finkelstein
et al., 2001), MC (Miller and Charles, 1991) and
RG (Rubenstein and Goodenough, 1965), have been
widely used to evaluate vector-space models. Moti-
vated to evaluate composition models, Mitchell and
Lapata (2008) introduced a dataset where an intran-
sitive verb, presented with a subject noun, is com-
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pared to another verb chosen to be either similar or
dissimilar to the intransitive verb in context. The
context is short, with only one word, and only verbs
are compared. Erk and Pad6 (2008), Thater et al.
(2011) and Dinu and Lapata (2010) evaluated word
similarity in context with a modified task where sys-
tems are to rerank gold-standard paraphrase candi-
dates given the SemEval 2007 Lexical Substitution
Task dataset. This task only indirectly evaluates sim-
ilarity as only reranking of already similar words are
evaluated.

6 Conclusion

We presented a new neural network architecture that
learns more semantic word representations by us-
ing both local and global context in learning. These
learned word embeddings can be used to represent
word contexts as low-dimensional weighted average
vectors, which are then clustered to form different
meaning groups and used to learn multi-prototype
vectors. We introduced a new dataset with human
judgments on similarity between pairs of words in
context, so as to evaluate model’s abilities to capture
homonymy and polysemy of words in context. Our
new multi-prototype neural language model outper-
forms previous neural models and competitive base-
lines on this new dataset.
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