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Abstract

The named entity disambiguation task is to re-

solve the many-to-many correspondence be-

tween ambiguous names and the unique real-

world entity. This task can be modeled as a

classification problem, provided that positive

and negative examples are available for learn-

ing binary classifiers. High-quality sense-

annotated data, however, are hard to be ob-

tained in streaming environments, since the

training corpus would have to be constantly

updated in order to accomodate the fresh data

coming on the stream. On the other hand, few

positive examples plus large amounts of un-

labeled data may be easily acquired. Produc-

ing binary classifiers directly from this data,

however, leads to poor disambiguation per-

formance. Thus, we propose to enhance the

quality of the classifiers using finer-grained

variations of the well-known Expectation-

Maximization (EM) algorithm. We conducted

a systematic evaluation using Twitter stream-

ing data and the results show that our clas-

sifiers are extremely effective, providing im-

provements ranging from 1% to 20%, when

compared to the current state-of-the-art biased

SVMs, being more than 120 times faster.

1 Introduction

Human language is not exact. For instance, an en-

tity1 may be referred by multiple names (i.e., poly-

semy), and also the same name may refer to different

entities depending on the surrounding context (i.e.,

1The term entity refers to anything that has a distinct, sepa-

rate (materialized or not) existence.

homonymy). The task of named entity disambigua-

tion is to identify which names refer to the same en-

tity in a textual collection (Sarmento et al., 2009;

Yosef et al., 2011; Hoffart et al., 2011). The emer-

gence of new communication technologies, such as

micro-blog platforms, brought a humongous amount

of textual mentions with ambiguous entity names,

raising an urgent need for novel disambiguation ap-

proaches and algorithms.

In this paper we address the named entity disam-

biguation task under a particularly challenging sce-

nario. We are given a stream of messages from a

micro-blog channel such as Twitter2 and a list of

names n1, n2, . . . , nN used for mentioning a spe-

cific entity e. Our problem is to monitor the stream

and predict whether an incoming message contain-

ing ni indeed refers to e (positive example) or not

(negative example). This scenario brings challenges

that must be overcome. First, micro-blog messages

are composed of a small amount of words and they

are written in informal, sometimes cryptic style.

These characteristics make hard the identification of

entities and the semantics of their relationships (Liu

et al., 2011). Further, the scarcity of text in the mes-

sages makes it even harder to properly characterize a

common context for the entities. Second, as we need

to monitor messages that keep coming at a fast pace,

we cannot afford to gather information from external

sources on-the-fly. Finally, fresh data coming in the

stream introduces new patterns, quickly invalidating

static disambiguation models.

2Twitter is one of the fastest-growing micro-blog channels,

and an authoritative source for breaking news (Jansen et al.,

2009).
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We hypothesize that the lack of information in

each individual message and from external sources

can be compensated by using information obtained

from the large and diverse amount of text in a stream

of messages taken as a whole, that is, thousands of

messages per second coming from distinct sources.

The information embedded in such a stream of

messages may be exploited for entity disambigua-

tion through the application of supervised learning

methods, for instance, with the application of bi-

nary classifiers. Such methods, however, suffer from

a data acquisition bottleneck, since they are based

on training datasets that are built by skilled hu-

man annotators who manually inspect the messages.

This annotation process is usually lengthy and la-

borious, being clearly unfeasible to be adopted in

data streaming scenarios. As an alternative to such

manual process, a large amount of unlabeled data,

augmented with a small amount of (likely) posi-

tive examples, can be collected automatically from

the message stream (Liu et al., 2003; Denis, 1998;

Comité et al., 1999; Letouzey et al., 2000).

Binary classifiers may be learned from such data

by considering unlabeled data as negative examples.

This strategy, however, leads to classifiers with poor

disambiguation performance, due to a potentially

large number of false-negative examples. In this pa-

per we propose to refine binary classifiers iteratively,

by performing Expectation-Maximization (EM) ap-

proaches (Dempster et al., 1977). Basically, a partial

classifier is used to evaluate the likelihood of an un-

labeled example being a positive example or a nega-

tive example, thus automatically and (continuously)

creating a labeled training corpus. This process con-

tinues iteratively by changing the label of some ex-

amples (an operation we call label-transition), so

that, after some iterations, the combination of la-

bels is expected to converge to the one for which

the observed data is most likely. Based on such an

approach, we introduce novel disambiguation algo-

rithms that differ among themselves on the granu-

larity in which the classifier is updated, and on the

label-transition operations that are allowed.

An important feature of the proposed approach is

that, at each iteration of the EM-process, a new clas-

sifier (an improved one) is produced in order to ac-

count for the current set of labeled examples. We

introduce a novel strategy to maintain the classifiers

up-to-date incrementally after each iteration, or even

after each label-transition operation. Indeed, we the-

oretically show that our classifier needs to be up-

dated just partially and we are able to determine ex-

actly which parts must be updated, making our dis-

ambiguation methods extremely fast.

To evaluate the effectiveness of the proposed al-

gorithms, we performed a systematic set of ex-

periments using large-scale Twitter data containing

messages with ambiguous entity names. In order

to validate our claims, disambiguation performance

is investigated by varying the proportion of false-

negative examples in the unlabeled dataset. Our

algorithms are compared against a state-of-the-art

technique for named entity disambiguation based

on classifiers, providing performance gains ranging

from 1% to 20% and being roughly 120 times faster.

2 Related Work

In the context of databases, traditional entity dis-

ambiguation methods rely on similarity functions

over attributes associated to the entities (de Car-

valho et al., 2012). Obviously, such an approach

is unfeasible for the scenario we consider here.

Still on databases, Bhattacharya and Getoor (2007)

and Dong et. al (2005) propose graph-based dis-

ambiguation methods that generate clusters of co-

referent entities using known relationships between

entities of several types. Methods to disambiguate

person names in e-mail (Minkov et al., 2006) and

Web pages (Bekkerman and McCallum, 2005; Wan

et al., 2005) have employed similar ideas. In e-

mails, information taken from the header of the mes-

sages leads to establish relationships between users

and building a co-reference graph. In Web pages,

reference information come naturally from links.

Such graph-based approach could hardly be applied

to the context we consider, in which the implied re-

lationships between entities mentioned in a given

micro-blog message are not clearly defined.

In the case of textual corpora, traditional disam-

biguation methods represent entity names and their

context (Hasegawa et al., 2004) (i.e., words, phrases

and other names occurring near them) as weighted

vectors (Bagga and Baldwin, 1998; Pedersen et al.,

2005). To evaluate whether two names refer to

the same entity, these methods compute the similar-
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ity between these vectors. Clusters of co-referent

names are then built based on such similarity mea-

sure. Although effective for the tasks considered in

these papers, the simplistic BOW-based approaches

they adopt are not suitable for cases in which the

context is harder to capture due to the small num-

ber of terms available or to informal writing style.

To address these problems, some authors argue that

contextual information may be enriched with knowl-

edge from external sources, such as search results

and the Wikipedia (Cucerzan, 2007; Bunescu and

Pasca, 2006; Han and Zhao, 2009). While such a

strategy is feasible in an off-line setting, two prob-

lems arise when monitoring streams of micro-blog

messages. First, gathering information from exter-

nal sources through the Internet can be costly and,

second, informal mentions to named entities make it

hard to look for related information in such sources.

The disambiguation methods we propose fall into

a learning scenario known as PU (positive and un-

labeled) learning (Liu et al., 2003; Denis, 1998;

Comité et al., 1999; Letouzey et al., 2000), in which

a classifier is built from a set of positive examples

plus unlabeled data. Most of the approaches for PU

learning, such as the biased-SVM approach (Li and

Liu, 2003), are based on extracting negative exam-

ples from unlabeled data. We notice that existing ap-

proaches for PU learning are not likely to scale given

the restrictions imposed by streaming data. Thus,

we propose highly incremental approaches, which

are able to process large-scale streaming data.

3 Disambiguation in Streaming Data

Consider a stream of messages from a micro-blog

channel such as Twitter and let n1, n2, . . . , nN be

names used for mentioning a specific entity e in

these messages. Our problem is to continually moni-

tor the stream and predict whether an incoming mes-

sage containing ni indeed refers to e or not.

This task may be accomplished through the appli-

cation of classification techniques. In this case, we

are given an input data set called the training cor-

pus (denoted as D) which consists of examples of

the form <e, m, c>, where e is the entity, m is a

message containing the entity name (i.e., any ni),

and c ∈ {�, �} is a binary variable that specifies

whether or not the entity name in m refers to the

desired real-world entity e. The training corpus is

used to produce a classifier that relates textual pat-

terns (i.e., terms and sets of terms) in m to the value

of c. The test set (denoted as T ) consists of a set

of records of the form <e, m, ?>, and the classifier

is used to indicate which messages in T refer to (or

not) the desired entity.

Supervised classifiers, however, are subject to a

data acquisition bottleneck, since the creation of a

training corpus requires skilled human annotators to

manually inspect the messages. The cost associ-

ated with this annotation process may render vast

amounts of examples unfeasible. In many cases,

however, the acquisition of some positive examples

is relatively inexpensive. For instance, as we are

dealing with messages collected from micro-blog

channels, we may exploit profiles (or hashtags) that

are known to be strongly associated with the desired

entity. Let us consider, as an illustrative example,

the profile associated with a company (i.e., @bayer).

Although the entity name is ambiguous, the sense of

messages that are posted in this profile is biased to-

wards the entity as being a company. Clearly, other

tricks like this one can be used, but, unfortunately,

they do not guarantee the absence of false-positives,

and they are not complete since the majority of mes-

sages mentioning the entity name may appear out-

side its profile. Thus, the collected examples are

not totally reliable, and disambiguation performance

would be seriously compromised if classifiers were

built upon these uncertain examples directly.

3.1 Expectation-Maximization Approach

In this paper we hypothesize that it is worthwhile

to enhance the reliability of unlabeled examples,

provided that this type of data is inexpensive and

the enhancement effort will be then rewarded with

an improvement in disambiguation performance.

Thus, we propose a new approach based on the

Expectation-Maximization (EM) algorithm (Demp-

ster et al., 1977). We assume two scenarios:

• the training corpusD is composed of a small set

of truly positive examples plus a large amount

of unlabeled examples.

• the training corpus D is composed of a small

set of potentially positive examples plus a large

amount of unlabeled examples.
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In both scenarios, unlabeled examples are ini-

tially treated as negative ones, so that classifiers can

be built from D. Therefore, in both scenarios, D
may contain false-negatives. In the second scenario,

however, D may also contain false-positives.

Definition 3.1: The label-transition operation

x�→� turns a negative example x� ∈ D into a

positive one x�. The training corpus D becomes

{(D − x�) ∪ x�}. Similarly, the label-transition

operation x�→�, turns a positive example x� ∈ D
into a negative one x�. The training corpus D be-

comes {(D − x�) ∪ x�}.

Our Expectation Maximization (EM) methods

employ a classifier which assigns to each example

x ∈ D a probability α(x, �) of being negative.

Then, as illustrated in Algorithm 1, label-transition

operations are performed, so that, in the end of the

process, it is expected that the assigned labels con-

verge to the combination for which the data is most

likely. In the first scenario only operations x�→�

are allowed, while in the second scenario operations

x�→� are also allowed. In both cases, a crucial issue

that affects the effectiveness of our EM-based meth-

ods concerns the decision of whether or not perform-

ing the label-transition operation. Typically, a tran-

sition threshold αmin is employed, so that a label-

transition operation x�→� is always performed if x

is a negative example and α(x, �) ≤ αmin. Simi-

larly, operation x�→� is always performed if x is a

positive example and α(x, �) > αmin.

Algorithm 1 Expectation-Maximization Approach.

Given:

D: training corpus

R: a binary classifier learned from D
Expectation step:

perform transition operations on examples in D
Maximization step:

update R and α(x, �) ∀x ∈ D

The optimal value for αmin is not known in ad-

vance. Fortunately, data distribution may provide

hints about proper values for αmin. In our ap-

proach, instead of using a single value for αmin,

which would be applied to all examples indistinctly,

we use a specific αx
min threshold for each exam-

ple x ∈ D. Based on such an approach, we in-

troduce fine-grained EM-based methods for named

entity disambiguation under streaming data. A spe-

cific challenge is that the proposed methods perform

several transition operations during each EM itera-

tion, and each transition operation may invalidate

parts of the current classifier, which must be prop-

erly updated. We take into consideration two possi-

ble update granularities:

• the classifier is updated after each EM iteration.

• the classifier is updated after each label-

transition operation.

Incremental Classifier: As already discussed, the

classifier must be constantly updated during the EM

process. In this case, well-established classifiers,

such as SVMs (Joachims, 2006), have to be learned

entirely from scratch, replicating work by large.

Thus, we propose as an alternative the use of Lazy

Associative Classifiers (Veloso et al., 2006).

Definition 3.2: A classification rule is a specialized

association rule {X −→ c} (Agrawal et al., 1993),

where the antecedent X is a set of terms (i.e., a

termset), and the consequent c indicates if the pre-

diction is positive or negative (i.e., c ∈ {�, �}).

The domain for X is the vocabulary of D. The car-

dinality of rule {X → c} is given by the number of

terms in the antecedent, that is |X |. The support of

X is denoted as σ(X ), and is the number of exam-

ples in D having X as a subset. The confidence of

rule {X → c} is denoted as θ(X −→ c), and is the

conditional probability of c given the termsetX , that

is, θ(X −→ c) = σ(X∪c)
σ(X ) .

In this context, a classifier is denoted as R, and

it is composed of a set of rules {X −→ c} ex-

tracted from D. Specifically, R is represented as

a pool of entries with the form <key, properties>,

where key={X , c} and properties={σ(X ), σ(X ∪
c), θ(X → c)}. Each entry in the pool corresponds

to a rule, and the key is used to facilitate fast access

to rule properties.

Once the classifier R is extracted from D, rules

are collectively used to approximate the likelihood

of an arbitrary example being positive (�) or neg-

ative (�). Basically, R is interpreted as a poll, in

which each rule {X → c} ∈ R is a vote given by X
for � or �. Given an example x, a rule {X → c} is

only considered a valid vote if it is applicable to x.
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Definition 3.3: A rule {X → c} ∈ R is said to be

applicable to example x ifX ⊆ x, that is, if all terms

in X are present in example x.

We denote as Rx the set of rules in R that are ap-

plicable to example x. Thus, only and all the rules in

Rx are considered as valid votes when classifying x.

Further, we denote as Rc
x the subset of Rx contain-

ing only rules predicting c. Votes in Rc
x have differ-

ent weights, depending on the confidence of the cor-

responding rules. Weighted votes for c are averaged,

giving the score for c with regard to x (Equation 1).

Finally, the likelihood of x being a negative example

is given by the normalized score (Equation 2).

s(x, c) =
∑ θ(X → c)

|Rc
x|

, with c ∈ {�, �} (1)

α(x, �) =
s(x, �)

s(x, �) + s(x, �)
(2)

Training Projection and Demand-Driven Rule

Extraction: Demand-driven rule extraction (Veloso

et al., 2006) is a recent strategy used to avoid the

huge search space for rules, by projecting the train-

ing corpus according to the example being pro-

cessed. More specifically, rule extraction is delayed

until an example x is given for classification. Then,

terms in x are used as a filter that configures the

training corpus D so that just rules that are appli-

cable to x can be extracted. This filtering process

produces a projected training corpus, denoted asDx,

which contains only terms that are present in x. As

shown in (Silva et al., 2011), the number of rules ex-

tracted using this strategy grows polynomially with

the size of the vocabulary.

Extending the Classifier Dynamically: With

demand-driven rule extraction, the classifierR is ex-

tended dynamically as examples are given for clas-

sification. Initially R is empty; a subset Rxi
is ap-

pended to R every time an example xi is processed.

Thus, after processing a sequence of m examples

{x1, x2, . . . , xm}, R = {Rx1
∪Rx2

∪ . . . ∪Rxm
}.

Before extracting rule {X → c}, it is checked

whether this rule is already in R. In this case, while

processing an example x, if an entry is found with

a key matching {X , c}, then the rule in R is used

instead of extracting it from Dx. Otherwise, the rule

is extracted from Dx and then it is inserted into R.

Incremental Updates: Entries in R may become

invalid when D is modified due to a label-transition

operation. Given thatD has been modified, the clas-

sifier R must be updated properly. We propose to

maintain R up-to-date incrementally, so that the up-

dated classifier is exactly the same one that would

be obtained by re-constructing it from scratch.

Lemma 3.1: Operation x�→� (or x�→�) does not

change the value of σ(X ), for any termset X .

Proof: The operation x�→� changes only the label

associated with x, but not its terms. Thus, the num-

ber of examples in D having X as a subset is essen-

tially the same as in {(D − x�) ∪ x�. The same

holds for operation x�→�. �

Lemma 3.2: Operation x�→� (or x�→�) changes

the value of σ(X ∪ c) iff termset X ⊂ x.

Proof: For operation x�→�, if X ⊂ x, then {X ∪
�} appears once less in {(D − x�) ∪ x�} than in

D. Similarly, {X ∪�} appears once more in {(D−
x�)∪x�} than inD. Clearly, if X 6⊂ x, the number

of times {X ∪�} (and {X ∪�}) appears in {(D −
x�)∪x�} remains the same as inD. The same holds

for operation x�→�. �

Lemma 3.3: Operation x�→� (or x�→�) changes

the value of θ(X → c) iff termset X ⊂ x.

Proof: Comes directly from Lemmas 3.1 and 3.2. �

From Lemmas 3.1 to 3.3, the number of rules that

have to be updated due to a label-transition operation

is bounded by the number of possible termsets in x.

The following theorem states exactly the rules in R
that have to be updated due to a transition operation.

Theorem 3.4: All rules in R that must be updated

due to x�→� (or x�→�) are those in Rx.

Proof: From Lemma 3.3, all rules {X −→ c} ∈ R
that have to be updated due to operation x�→� (or

x�→�) are those for which X ⊆ x. By definition,

Rx contains only and all such rules. �

Updating θ(X → �) and θ(X → �) is straight-

forward. For operation x�→�, it suffices to iterate

on Rx, incrementing σ(X ∪ �) and decrementing

σ(X ∪ �). Similarly, for operation x�→�, it suf-

fices to iterate on Rx, incrementing σ(X ∪ �) and

decrementing σ(X ∪�). The corresponding values

for θ(X → �) and θ(X → �) are simply obtained

by computing
σ(X∪�)

σ(X ) and
σ(X∪�)

σ(X ) , respectively.

819



3.2 Best Entropy Cut Method

In this section we propose a method for finding the

activation threshold, αx
min, which is a fundamental

step of our Expectation-Maximization approach.

Definition 3.4: Let cy ∈ {�, �} be the label asso-

ciated with an example y ∈ Dx. Consider N�(Dx)
the number of examples inDx for which cy=�. Sim-

ilarly, consider N�(Dx) the number of examples in

Dx for which cy=�.

Entropy Minimization: Our method searches for a

threshold αx
min that provides the best entropy cut in

the probability space induced by Dx. Specifically,

given examples {y1, y2, . . . , yk} in Dx, our method

first calculates α(yi, �) for all yi ∈ Dx. Then, the

values for α(yi, �) are sorted in ascending order. In

an ideal case, there is a cut αx
min such that:

cyi =

{

� if α(yi, �) ≤ αx
min

� otherwise

However, there are more difficult cases, for which

it is not possible to obtain a perfect separation in the

probability space. Thus, we propose a more general

method to find the best cut in the probability space.

The basic idea is that any value for αx
min induces two

partitions over the space of values for α(yi, �) (i.e.,

one partition with values that are lower than αx
min,

and another partition with values that are higher than

αx
min). Our method sets αx

min to the value that min-

imizes the average entropy of these two partitions.

Once αx
min is calculated, it can be used to activate a

label-transition operation. Next we present the basic

definitions in order to detail this method.

Definition 3.5: Consider a list of pairs O =
{. . . , <cyi , α(yi, �)>, <cyj , α(yj , �)>, . . .}, such

that α(yi, �) ≤ α(yj , �). Also, consider f a candi-

date value for αx
min. In this case,Of (≤) is a sub-list

of O, that is, Of (≤)={. . ., <cy, α(yi, �)>, . . .},

such that for all pairs in Of (≤), α(y, �) ≤ f . Sim-

ilarly, Of (>)={. . ., <cy, α(y, �)>, . . .}, such that

for all pairs inOf (>), α(y, �) > f . In other words,

Of (≤) andOf (>) are partitions ofO induced by f .

Our method works as follows. Firstly, it calculates

the entropy in O, as shown in Equation 3. Then,

it calculates the sum of the entropies in each par-

tition induced by f , according to Equation 4. Fi-

nally, it sets αx
min to the value of f that minimizes

E(O)−E(Of ), as illustrated in Figure 1.
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�
)

α
(y

4 ,
�
)

α
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�
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� � � � � �

low
entropy

high
entropy

0.00 1.00
� � � � � �

high
entropy

low
entropy

0.00 1.00
� � � � � �

low
entropy

low
entropy
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Figure 1: Looking for the minimum entropy cut point.

E(O) = −

(

N�(O)

|O|
× log

N�(O)

|O|

)

−

(

N�(O)

|O|
× log

N�(O)

|O|

)

(3)

E(Of ) =
|Of (≤)|

|O|
× E(Of (≤)) +

|Of (>)|

|O|
× E(Of (>)) (4)

3.3 Disambiguation Algorithms

In this section we discuss four algorithms based

on our incremental EM approach and following our

Best Entropy Cut method. They differ among them-

selves on the granularity in which the classifier is up-

dated and on the label-transition operations allowed:

• A1: the classifier is updated incrementally after

each EM iteration (which may comprise sev-

eral label-transition operations). Only opera-

tion x�→� is allowed.

• A2: the classifier is updated incrementally after

each EM iteration. Both operations x�→� and

x�→� are allowed.

• A3: the classifier is updated incrementally after

each label-transition operation. Only operation

x�→� is allowed.

• A4: the classifier is updated incrementally af-

ter each label-transition operation. Both opera-

tions x�→� and x�→� are allowed.
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4 Experimental Evaluation

In this section we analyze our algorithms using

standard measures such as AUC values. For each

positive+unlabeled (PU) corpus used in our evalu-

ation we randomly selected x% of the positive ex-

amples (P) to become unlabeled ones (U). This pro-

cedure enables us to control the uncertainty level

of the corpus. For each level we have a different

TPR-FPR combination, enabling us to draw ROC

curves.We repeated this procedure five times, so that

five executions were performed for each uncertainty

level. Tables 2–5 show the average for the five

runs. Wilcoxon significance tests were performed

(p<0.05) and best results, including statistical ties,

are shown in bold.

4.1 Baselines and Collections

Our baselines include namely SVMs (Joachims,

2006) and Biased SVMs (B-SVM (Liu et al., 2003)).

Although the simple SVM algorithm does not adapt

itself with unlabeled data, we decided to use it in

order to get a sense of the performance achieved

by simple baselines (in this case, unlabeled data is

simply used as negative examples). The B-SVM al-

gorithm uses a soft-margin SVM as the underlying

classifier, which is re-constructed from scratch after

each EM iteration. B-SVM employs a single tran-

sition threshold αmin for the entire corpus, instead

of a different threshold αx
min for each x ∈ D. It

is representative of the state-of-the-art for learning

classifiers from PU data.

We employed two different Twitter collections.

The first collection, ORGANIZATIONS, is com-

posed of 10 corpora3 (O1 to O10). Each corpus con-

tains messages in English mentioning the name of

an organization (Bayer, Renault, among others). All

messages were labeled by five annotators. Label �

means that the message is associated with the orga-

nization, whereas label � means the opposite.

The other collection, SOCCER TEAMS, contains

6 large-scale PU corpora (ST1 to ST6), taken from a

platform for real time event monitoring (the link to

this platform is omitted due to blind review). Each

corpus contains messages in Portuguese mentioning

the name/mascot of a Brazilian soccer team. Both

collections are summarized in Table 1.
3http://nlp.uned.es/weps/

Table 1: Characteristics of each collection.
P U P U

O1 404 10 ST1 216,991 251,198

O2 404 55 ST2 256,027 504,428

O3 349 116 ST3 160,706 509,670

O4 329 119 ST4 147,706 633,357

O5 335 133 ST5 35,021 168,669

O6 314 143 ST6 5,993 351,882

O7 292 148 − − −
O8 295 172 − − −
O9 273 165 − − −
O10 33 425 − − −

4.2 Results

All experiments were performed on a Linux PC with

an Intel Core 2 Duo 2.20GHz and 4GBytes RAM.

Next we discuss the disambiguation performance

and the computational efficiency of our algorithms.

ORGANIZATIONS Corpora: Table 2 shows av-

erage AUC values for each algorithm. Algorithm

A4 was the best performer in all cases, suggest-

ing the benefits of (i) enabling both types of label-

transition operations and (ii) keeping the classifier

up-to-date after each label-transition operation. Fur-

ther, algorithm A3 performed better than algorithm

A2 in most of the cases, indicating the importance of

keeping the classifier always up-to-date. On average

A1 provides gains of 4% when compared against B-

SVM, while A4 provides gains of more than 20%.

SOCCER TEAMS Corpora: Table 3 shows aver-

age AUC values for each algorithm. Again, algo-

rithm A4 was the best performer, providing gains

that are up to 13% when compared against the base-

line. Also, algorithm A3 performed better than al-

gorithm A2, and the effectiveness of Algorithm A1

is similar to the effectiveness of the baseline.

Since the SOCCER TEAMS collection is com-

posed of large-scale corpora, in addition to high

effectiveness, another important issue to be evalu-

ated is computational performance. Table 4 shows

the results obtained for the evaluation of our algo-

rithms. As it can be seen, algorithm A1 is the fastest

one, since it is the simplest one. Even though being

slower than algorithm A1, algorithm A4 runs, on av-

erage, 120 times faster than B-SVM.
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Table 2: Average AUC values for each algorithm.

A1 A2 A3 A4 SVM B-SVM

O1 0.74 ± 0.02 0.76 ± 0.02 0.74 ± 0.03 0.79 ± 0.01 0.71 ± 0.03 0.76 ± 0.01

O2 0.77 ± 0.02 0.78 ± 0.02 0.70 ± 0.03 0.82 ± 0.02 0.73 ± 0.03 0.75 ± 0.02

O3 0.68 ± 0.02 0.70 ± 0.01 0.69 ± 0.02 0.69 ± 0.02 0.64 ± 0.03 0.65 ± 0.02

O4 0.68 ± 0.02 0.68 ± 0.02 0.70 ± 0.01 0.72 ± 0.02 0.63 ± 0.02 0.66 ± 0.02

O5 0.71 ± 0.01 0.72 ± 0.01 0.71 ± 0.01 0.72 ± 0.01 0.69 ± 0.01 0.71 ± 0.01

O6 0.73 ± 0.01 0.73 ± 0.01 0.75 ± 0.01 0.75 ± 0.01 0.68 ± 0.02 0.70 ± 0.01

O7 0.69 ± 0.01 0.72 ± 0.01 0.74 ± 0.01 0.74 ± 0.01 0.66 ± 0.02 0.69 ± 0.02

O8 0.65 ± 0.02 0.68 ± 0.02 0.69 ± 0.02 0.72 ± 0.01 0.61 ± 0.03 0.63 ± 0.03

O9 0.70 ± 0.01 0.70 ± 0.01 0.72 ± 0.01 0.72 ± 0.01 0.65 ± 0.01 0.70 ± 0.01

O10 0.70 ± 0.01 0.74 ± 0.02 0.71 ± 0.02 0.75 ± 0.02 0.61 ± 0.03 0.66 ± 0.02

Table 3: Average AUC values for each algorithm.

A1 A2 A3 A4 SVM B-SVM

ST1 0.62 ± 0.02 0.63 ± 0.02 0.64 ± 0.01 0.67 ± 0.02 0.59 ± 0.03 0.61 ± 0.03

ST2 0.55 ± 0.01 0.58 ± 0.01 0.59 ± 0.01 0.59 ± 0.01 0.54 ± 0.01 0.57 ± 0.01

ST3 0.65 ± 0.02 0.67 ± 0.01 0.67 ± 0.01 0.69 ± 0.01 0.61 ± 0.03 0.64 ± 0.03

ST4 0.57 ± 0.01 0.59 ± 0.01 0.59 ± 0.01 0.59 ± 0.01 0.50 ± 0.04 0.55 ± 0.02

ST5 0.74 ± 0.01 0.74 ± 0.01 0.77 ± 0.02 0.77 ± 0.01 0.67 ± 0.02 0.72 ± 0.03

ST6 0.68 ± 0.02 0.70 ± 0.01 0.71 ± 0.01 0.72 ± 0.01 0.63 ± 0.01 0.68 ± 0.02

Table 4: Average execution time (secs) for each algo-

rithm. The time spent by algorithm A1 is similar to the

time spent by algorithm A2. The time spent by algorithm

A3 is similar to the time spent by algorithm A4.

A1(≈A2) A3(≈ A4) SVM B-SVM

ST1 1,565 2,102 9,172 268,216

ST2 2,086 2,488 11,284 297,556

ST3 2,738 3,083 14,917 388,184

ST4 847 1,199 6,188 139,100

ST5 1,304 1,604 9,017 192,576

ST6 1,369 1,658 9,829 196,922

5 Conclusions

In this paper we have introduced a novel EM ap-

proach, which employs a highly incremental un-

derlying classifier based on association rules, com-

pletely avoiding work replication. Further, two

label-transition operations are allowed, enabling the

correction of false-negatives and false-positives. We

proposed four algorithms based on our EM ap-

proach. Our algorithms employ an entropy min-

imization method, which finds the best transition

threshold for each example in D. All these prop-

erties make our algorithms appropriate for named

entity disambiguation under streaming data scenar-

ios. Our experiments involve Twitter data mention-

ing ambiguous named entities. These datasets were

obtained from real application scenarios and from

platforms currently in operation. We have shown

that three of our algorithms achieve significantly

higher disambiguation performance when compared

against a strong baseline (B-SVM), providing gains

ranging from 1% to 20%. Also importantly, for

large-scale streaming data, our algorithms are more

than 120 times faster than the baseline.
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