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Abstract

We present a simple and effective framework
for exploiting multiple monolingual treebanks
with different annotation guidelines for pars-
ing. Several types oftransformation patterns
(TP) are designed to capture the systematic an-
notation inconsistencies among different tree-
banks. Based on such TPs, we designquasi-
synchronous grammarfeatures to augment the
baseline parsing models. Our approach can
significantly advance the state-of-the-art pars-
ing accuracy on two widely used target tree-
banks (Penn Chinese Treebank 5.1 and 6.0)
using the Chinese Dependency Treebank as
the source treebank. The improvements are
respectively 1.37% and 1.10% with automatic
part-of-speech tags. Moreover, an indirect
comparison indicates that our approach also
outperforms previous work based on treebank
conversion.

1 Introduction

The scale of available labeled data significantly af-
fects the performance of statistical data-driven mod-
els. As a structural classification problem that is
more challenging than binary classification and se-
quence labeling problems, syntactic parsing is more
prone to suffer from the data sparseness problem.
However, the heavy cost of treebanking typically
limits one single treebank in both scale and genre.
At present, learning from one single treebank seems
inadequate for further boosting parsing accuracy.1

∗Correspondence author: tliu@ir.hit.edu.cn
1Incorporating an increased number of global features, such

as third-order features in graph-based parsers, slightly affects
parsing accuracy (Koo and Collins, 2010; Li et al., 2011).

Treebanks# of Words Grammar
CTB5 0.51 million Phrase structure
CTB6 0.78 million Phrase structure
CDT 1.11 million Dependency structure
Sinica 0.36 million Phrase structure
TCT about 1 million Phrase structure

Table 1: Several publicly available Chinese treebanks.

Therefore, studies have recently resorted to other re-
sources for the enhancement of parsing models, such
as large-scale unlabeled data (Koo et al., 2008; Chen
et al., 2009; Bansal and Klein, 2011; Zhou et al.,
2011), and bilingual texts or cross-lingual treebanks
(Burkett and Klein, 2008; Huang et al., 2009; Bur-
kett et al., 2010; Chen et al., 2010).

The existence of multiple monolingual treebanks
opens another door for this issue. For example, ta-
ble 1 lists a few publicly available Chinese treebanks
that are motivated by different linguistic theories or
applications. In the current paper, we utilize the
first three treebanks, i.e., the Chinese Penn Tree-
bank 5.1 (CTB5) and 6.0 (CTB6) (Xue et al., 2005),
and the Chinese Dependency Treebank (CDT) (Liu
et al., 2006). The Sinica treebank (Chen et al., 2003)
and the Tsinghua Chinese Treebank (TCT) (Qiang,
2004) can be similarly exploited with our proposed
approach, which we leave as future work.

Despite the divergence of annotation philosophy,
these treebanks contain rich human knowledge on
the Chinese syntax, thereby having a great deal of
common ground. Therefore, exploiting multiple
treebanks is very attractive for boosting parsing ac-
curacy. Figure 1 gives an example with different an-
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Figure 1: Example with annotations from CTB5 (upper)
and CDT (under).

notations from CTB5 and CDT.2 This example illus-
trates that the two treebanks annotate coordination
constructions differently. In CTB5, the last noun is
the head, whereas the first noun is the head in CDT.

One natural idea for multiple treebank exploita-
tion is treebank conversion. First, the annotations
in the source treebank are converted into the style
of the target treebank. Then, both the converted
treebank and the target treebank are combined. Fi-
nally, the combined treebank are used to train a
better parser. However, the inconsistencies among
different treebanks are normally nontrivial, which
makes rule-based conversion infeasible. For exam-
ple, a number of inconsistencies between CTB5 and
CDT are lexicon-sensitive, that is, they adopt dif-
ferent annotations for some particular lexicons (or
word senses). Niu et al. (2009) use sophisticated
strategies to reduce the noises of the converted tree-
bank after automatic treebank conversion.

The present paper proposes a simple and effective
framework for this problem. The proposed frame-
work avoids directly addressing the difficult anno-
tation transformation problem, but focuses on mod-
eling the annotation inconsistencies usingtransfor-
mation patterns(TP). The TPs are used to compose
quasi-synchronous grammar(QG) features, such
that the knowledge of the source treebank can in-
spire the target parser to build better trees. We con-
duct extensive experiments using CDT as the source
treebank to enhance two target treebanks (CTB5 and
CTB6). Results show that our approach can signifi-
cantly boost state-of-the-art parsing accuracy. More-
over, an indirect comparison indicates that our ap-

2CTB5 is converted to dependency structures following the
standard practice of dependency parsing (Zhang and Clark,
2008b). Notably, converting a phrase-structure tree into its
dependency-structure counterpart is straightforward andcan be
performed by applying heuristic head-finding rules.

proach also outperforms the treebank conversion ap-
proach of Niu et al. (2009).

2 Related Work

The present work is primarily inspired by Jiang et
al. (2009) and Smith and Eisner (2009). Jiang et al.
(2009) improve the performance of word segmen-
tation and part-of-speech (POS) tagging on CTB5
using another large-scale corpus of different annota-
tion standards (People’s Daily). Their framework is
similar to ours. However, handling syntactic anno-
tation inconsistencies is significantly more challeng-
ing in our case of parsing. Smith and Eisner (2009)
propose effective QG features for parser adaptation
and projection. The first part of their work is closely
connected with our work, but with a few impor-
tant differences. First, they conduct simulated ex-
periments on one treebank by manually creating a
few trivial annotation inconsistencies based on two
heuristic rules. They then focus on better adapting a
parser to a new annotation style with few sentences
of the target style. In contrast, we experiment with
two real large-scale treebanks, and boost the state-
of-the-art parsing accuracy using QG features. Sec-
ond, we explore much richer QG features to fully
exploit the knowledge of the source treebank. These
features are tailored to the dependency parsing prob-
lem. In summary, the present work makes substan-
tial progress in modeling structural annotation in-
consistencies with QG features for parsing.

Previous work on treebank conversion primar-
ily focuses on converting one grammar formalism
of a treebank into another and then conducting a
study on the converted treebank (Collins et al., 1999;
Xia et al., 2008). The work by Niu et al. (2009)
is, to our knowledge, the only study to date that
combines the converted treebank with the existing
target treebank. They automatically convert the
dependency-structure CDT into the phrase-structure
style of CTB5 using a statistical constituency parser
trained on CTB5. Their experiments show that
the combined treebank can significantly improve
the performance of constituency parsers. However,
their method requires several sophisticated strate-
gies, such as corpus weighting and score interpo-
lation, to reduce the influence of conversion errors.
Instead of using the noisy converted treebank as ad-
ditional training data, our approach allows the QG-
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enhanced parsing models to softly learn the system-
atic inconsistencies based on QG features, making
our approach simpler and more robust.

Our approach is also intuitively related tostacked
learning (SL), a machine learning framework that
has recently been applied to dependency parsing
to integrate two main-stream parsing models, i.e.,
graph-based and transition-based models (Nivre and
McDonald, 2008; Martins et al., 2008). However,
the SL framework trains two parsers on the same
treebank and therefore does not need to consider the
problem of annotation inconsistencies.

3 Dependency Parsing

Given an input sentencex = w0w1...wn and its POS
tag sequencet = t0t1...tn, the goal of dependency
parsing is to build a dependency tree as depicted in
Figure 1, denoted byd = {(h,m, l) : 0 ≤ h ≤
n, 0 < m ≤ n, l ∈ L}, where(h,m, l) indicates an
directed arc from thehead word(also calledfather)
wh to themodifier (also calledchild or dependent)
wm with a dependency labell, andL is the label set.
We omit the labell because we focus on unlabeled
dependency parsing in the present paper. The artifi-
cial nodew0, which always points to the root of the
sentence, is used to simplify the formalizations.

In the current research, we adopt the graph-based
parsing models for their state-of-the-art performance
in a variety of languages.3 Graph-based models
view the problem as finding the highest scoring tree
from a directed graph. To guarantee the efficiency of
the decoding algorithms, the score of a dependency
tree is factored into the scores of some small parts
(subtrees).

Scorebs(x, t,d) = wbs · fbs(x, t,d)

=
∑

p⊆d

wpart · fpart(x, t, p)

wherep is a scoring part which contains one or more
dependencies ofd, andfbs(.) denotes thebasic pars-
ing features, as opposed to theQG features. Figure
2 lists the scoring parts used in our work, whereg,
h,m, ands, are word indices.

We implement three parsing models of varying
strengths in capturing features to better understand
the effect of the proposed QG features.

3Our approach can equally be applied to transition-based
parsing models (Yamada and Matsumoto, 2003; Nivre, 2003)
with minor modifications.

dependency sibling grandparent

h

m

h

ms

h

m

g

Figure 2: Scoring parts used in our graph-based parsing
models.

• The first-order model (O1) only incorporates
dependency parts (McDonald et al., 2005), and
requiresO(n3) parsing time.

• The second-order model using only sibling
parts (O2sib) includes both dependency and
sibling parts (McDonald and Pereira, 2006),
and needsO(n3) parsing time.

• The second-order model (O2)uses all the
scoring parts in Figure 2 (Koo and Collins,
2010). The time complexity of the decoding
algorithm isO(n4).4

For the O2 model, the score function is rewritten as:

Scorebs(x, t,d) =
∑

{(h,m)}⊆d

wdep · fdep(x, t, h,m)

+
∑

{(h,s),(h,m)}⊆d

wsib · fsib(x, t, h, s,m)

+
∑

{(g,h),(h,m)}⊆d

wgrd · fgrd(x, t, g, h,m)

where fdep(.), fsib(.) and fgrd(.) correspond to the
features for the three kinds of scoring parts. We
adopt the standard features following Li et al.
(2011). For the O1 and O2sib models, the above
formula is modified by deactivating the extra parts.

4 Dependency Parsing with QG Features

Smith and Eisner (2006) propose the QG for ma-
chine translation (MT) problems, allowing greater
syntactic divergences between the two languages.
Given a source sentencex′ and its syntactic tree
d
′, a QG defines a monolingual grammar that gen-

erates translations ofx′, which can be denoted by
p(x,d,a|x′,d′), wherex andd refer to a translation
and its parse, anda is a cross-language alignment.
Under a QG, any portion ofd can be aligned to any

4We use the coarse-to-fine strategy to prune the search
space, which largely accelerates the decoding procedure (Koo
and Collins, 2010).
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Figure 4: Most frequent transformation patterns (TPs) whenusing CDT as the source treebank and CTB5 as the
target. A TP comprises two syntactic structures, one in the source side and the other in the target side, and denotes
the process by which the left-side subtree is transformed into the right-side structure. Functionsψdep(.), ψsib(.), and
ψgrd(.) return the specific TP type for a candidate scoring part according to the source treed′.

Source Parser

Parser
S

Target Parser

Parser
T

Train

Train

Parse

Target 

Treebank

T={(xj, dj)}j

Source Treebank

S={(xi, di)}i

Parsed 

Treebank

T
S={(xj, dj

S)}j

Target Treebank with 

Source Annotations

T
+S={(xj, dj

S, dj)}j

Out

Figure 3: Framework of our approach.

portion ofd′, and the construction ofd can be in-
spired by arbitrary substructures ofd

′. To date, QGs
have been successfully applied to various tasks, such
as word alignment (Smith and Eisner, 2006), ma-
chine translation (Gimpel and Smith, 2011), ques-
tion answering (Wang et al., 2007), and sentence
simplification (Woodsend and Lapata, 2011).

In the present work, we utilize the idea of the QG
for the exploitation of multiple monolingual tree-
banks. The key idea is to let the parse tree of one
style inspire the parsing process of another style.
Different from a MT process, our problem consid-

ers one single sentence (x = x
′), and the alignment

a is trivial. Figure 3 shows the framework of our
approach. First, we train a statistical parser on the
source treebank, which is called thesource parser.
The source parser is then used to parse the wholetar-
get treebank. At this point, the target treebank con-
tains two sets of annotations, one conforming to the
source style, and the other conforming to the target
style. During both the training and test phases, the
target parserare inspired by the source annotations,
and the score of a target dependency tree becomes

Score(x, t,d′,d) =Scorebs(x, t,d)

+Scoreqg(x, t,d
′,d)

The first part corresponds to the baseline model,
whereas the second part is affected by the source tree
d
′ and can be rewritten as

Scoreqg(x, t,d
′,d) = wqg · fqg(x, t,d

′,d)

wherefqg(.) denotes theQG features. We expect the
QG features to encourage or penalize certain scor-
ing parts in the target side according to the source
treed

′. Taking Figure 1 as an example, suppose
that the upper structure is the target. The target
parser can raise the score of the candidate depen-
dence“and” ← “industry” , because the depen-
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dency also appears in the source structure, and ev-
idence in the training data shows that both annota-
tion styles handle conjunctions in the same manner.
Similarly, the parser may add weight to“trade” ←
“industry” , considering that thereversearc is in
the source structure. Therefore, the QG-enhanced
model must learn the systematic consistencies and
inconsistencies from the training data.

To model such consistency or inconsistency sys-
tematicness, we propose the use of TPs for encoding
the structural correspondence between the source
and target styles. Figure 4 presents the three kinds
of TPs used in our model, which correspond to the
three scoring parts of our parsing models.

Dependency TPs shown in the first row consider
how one dependency in the target side is trans-
formed in the source annotations. We only consider
the five cases shown in the figure. The percentages
in the lower boxes refer to the proportion of the
corresponding pattern, which are counted from the
training data of the target treebank with source anno-
tationsT+S. We can see that the noisy source struc-
tures and the gold-standard target structures have
55.4% common dependencies. If the source struc-
ture does not belong to any of the listed five cases,
ψdep(d

′, h,m) returns “else” (12.9%). We could
consider more complex structures, such ash being
the grand grand father ofm, but statistics show that
more complex transformations become very scarce
in the training data.

For the reason that dependency TPs can only
model how one dependency in the target structure is
transformed, we consider more complex transforma-
tions for the other two kinds of scoring parts of the
target parser, i.e., the sibling and grand TPs shown
in the bottom two rows. We only use high-frequency
TPs of a proportion larger than 1.0%, aggregate oth-
ers as“else” , which leaves us with 21 sibling TPs
and 22 grand TPs.

Based on these TPs, we propose the QG fea-
tures for enhancing the baseline parsing models,
which are shown in Table 2. The type of the
TP is conjoined with the related words and POS
tags, such that the QG-enhanced parsing models can
make more elaborate decisions based on the context.
Then, the score contributed by the QG features can

be redefined as

Scoreqg(x, t,d
′,d) =

∑

{(h,m)}⊆d

wqg-dep · fqg-dep(x, t,d
′, h,m)

+
∑

{(h,s),(h,m)}⊆d

wqg-sib · fqg-sib(x, t,d
′, h, s,m)

+
∑

{(g,h),(h,m)}⊆d

wqg-grd · fqg-grd(x, t,d
′, g, h,m)

which resembles the baseline model and can be nat-
urally handled by the decoding algorithms.

5 Experiments and Analysis

We use the CDT as the source treebank (Liu et
al., 2006). CDT consists of 60,000 sentences from
the People’s Daily in 1990s. For the target tree-
bank, we use two widely used versions of Penn Chi-
nese Treebank, i.e., CTB5 and CTB6, which con-
sist of Xinhua newswire, Hong Kong news and ar-
ticles from Sinarama news magazine (Xue et al.,
2005). To facilitate comparison with previous re-
sults, we follow Zhang and Clark (2008b) for data
split and constituency-to-dependency conversion of
CTB5. CTB6 is used as the Chinese data set in the
CoNLL 2009 shared task (Hajič et al., 2009). There-
fore, we adopt the same setting.

CDT and CTB5/6 adopt different POS tag sets,
and converting from one tag set to another is difficult
(Niu et al., 2009).5 To overcome this problem, we
use the People’s Daily corpus (PD),6 a large-scale
corpus annotated with word segmentation and POS
tags, to train a statistical POS tagger. The tagger
produces a universal layer of POS tags for both the
source and target treebanks. Based on the common
tags, the source parser projects the source annota-
tions into the target treebanks. PD comprises ap-
proximately 300 thousand sentences of with approx-
imately 7 million words from the first half of 1998
of People’s Daily.

Table 3 summarizes the data sets used in the
present work. CTB5X is the same with CTB5 but
follows the data split of Niu et al. (2009). We use
CTB5X to compare our approach with their treebank
conversion method (see Table 9).

5The word segmentation standards of the two treebanks also
slightly differs, which are not considered in this work.

6http://icl.pku.edu.cn/icl_groups/
corpustagging.asp
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fqg-dep(x, t,d
′, h,m) fqg-sib(x, t,d

′, h, s,m) fqg-grd(x, t,d
′, g, h,m)

⊕dir(h,m) ◦ dist(h,m) ⊕dir(h,m) ⊕dir(h,m) ◦ dir(g, h)
ψdep(d

′, h,m) ◦ th ◦ tm ψsib(d
′, h, s,m) ◦ th ◦ ts ◦ tm ψgrd(d

′, g, h,m) ◦ tg ◦ th ◦ tm
ψdep(d

′, h,m) ◦ wh ◦ tm ψsib(d
′, h, s,m) ◦ wh ◦ ts ◦ tm ψgrd(d

′, g, h,m) ◦ wg ◦ th ◦ tm
ψdep(d

′, h,m) ◦ th ◦ wm ψsib(d
′, h, s,m) ◦ th ◦ ws ◦ tm ψgrd(d

′, g, h,m) ◦ tg ◦ wh ◦ tm
ψdep(d

′, h,m) ◦ wh ◦ wm ψsib(d
′, h, s,m) ◦ th ◦ ts ◦ wm ψgrd(d

′, g, h,m) ◦ tg ◦ th ◦ wm

ψsib(d
′, h, s,m) ◦ ts ◦ tm ψgrd(d

′, g, h,m) ◦ tg ◦ tm

Table 2: QG features used to enhance the baseline parsing models.dir(h,m) denotes the direction of the dependency
(h,m), whereasdist(h,m) is the distance|h −m|. ⊕dir(h,m) ◦ dist(h,m) indicates that the features listed in the
corresponding column are also conjoined withdir(h,m) ◦ dist(h,m) to form new features.

Corpus Train Dev Test
PD 281,311 5,000 10,000
CDT 55,500 1,500 3,000
CTB5 16,091 803 1,910
CTB5X 18,104 352 348
CTB6 22,277 1,762 2,556

Table 3: Data used in this work (in sentence number).

We adoptunlabeled attachment score(UAS) as
the primary evaluation metric. We also useRoot ac-
curacy(RA) andcomplete match rate(CM) to give
more insights. All metrics exclude punctuation. We
adopt Dan Bikel’s randomized parsing evaluation
comparator for significance test (Noreen, 1989).7

For all models used in current work (POS tagging
and parsing), we adopt averaged perceptron to train
the feature weights (Collins, 2002). We train each
model for 10 iterations and select the parameters that
perform best on the development set.

5.1 Preliminaries

This subsection describes how we project the source
annotations into the target treebanks. First, we train
a statistical POS tagger on the training set of PD,
which we nameTaggerPD.8 The tagging accuracy
on the test set of PD is 98.30%.

We then useTaggerPD to produce POS tags for
all the treebanks (CDT, CTB5, and CTB6).

Based on the common POS tags, we train a
second-order source parser (O2) on CDT, denoted
by ParserCDT . The UAS on CDT-test is 84.45%.
We then useParserCDT to parse CTB5 and CTB6.

7http://www.cis.upenn.edu/[normal-wave ˜ ]
dbikel/software.html

8We adopt the Chinese-oriented POS tagging features pro-
posed in Zhang and Clark (2008a).

Models without QG with QG
O2 86.13 86.44 (+0.31,p = 0.06)
O2sib 85.63 86.17 (+0.54,p = 0.003)
O1 83.16 84.40 (+1.24,p < 10−5)
Li11 86.18 —
Z&N11 86.00 —

Table 4: Parsing accuracy (UAS) comparison on CTB5-
test with gold-standard POS tags. Li11 refers to the
second-order graph-based model of Li et al. (2011),
whereas Z&N11 is the feature-rich transition-based
model of Zhang and Nivre (2011).

At this point, both CTB5 and CTB6 contain depen-
dency structures conforming to the style of CDT.

5.2 CTB5 as the Target Treebank

Table 4 shows the results when the gold-standard
POS tags of CTB5 are adopted by the parsing mod-
els. We aim to analyze the efficacy of QG features
under the ideal scenario wherein the parsing mod-
els suffer from no error propagation of POS tag-
ging. We determine that our baseline O2 model
achieves comparable accuracy with the state-of-the-
art parsers. We also find that QG features can
boost the parsing accuracy by a large margin when
the baseline parser is weak (O1). The improve-
ment shrinks for stronger baselines (O2sib and O2).
This phenomenon is understandable. When gold-
standard POS tags are available, the baseline fea-
tures are very reliable and the QG features becomes
less helpful for more complex models. The p-values
in parentheses present the statistical significance of
the improvements.

We then turn to the more realistic scenario
wherein the gold-standard POS tags of the target
treebank are unavailable. We train a POS tagger on
the training set of CTB5 to produce the automatic
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Models without QG with QG
O2 79.67 81.04 (+1.37)
O2sib 79.25 80.45 (+1.20)
O1 76.73 79.04 (+2.31)
Li11 joint 80.79 —
Li11 pipeline 79.29 —

Table 5: Parsing accuracy (UAS) comparison on CTB5-
test with automatic POS tags. The improvements shown
in parentheses are all statistically significant (p < 10−5).

Setting UAS CM RA
fbs(.) 79.67 26.81 73.82
fqg(.) 79.15 26.34 74.71
fbs(.) + fqg(.) 81.04 29.63 77.17
fbs(.) + fqg-dep(.) 80.82 28.80 76.28
fbs(.) + fqg-sib(.) 80.86 28.48 76.18
fbs(.) + fqg-grd(.) 80.88 28.90 76.34

Table 6: Feature ablation for Parser-O2 on CTB5-test
with automatic POS tags.

POS tags for the development and test sets of CTB5.
The tagging accuracy is 93.88% on the test set. The
automatic POS tags of the training set are produced
using 10-fold cross-validation.9

Table 5 shows the results. We find that QG fea-
tures result in a surprisingly large improvement over
the O1 baseline and can also boost the state-of-
the-art parsing accuracy by a large margin. Li et
al. (2011) show that a joint POS tagging and de-
pendency parsing model can significantly improve
parsing accuracy over a pipeline model. Our QG-
enhanced parser outperforms their best joint model
by 0.25%. Moreover, the QG features can be used to
enhance a joint model and achieve higher accuracy,
which we leave as future work.

5.3 Analysis Using Parser-O2 with AUTO-POS

We then try to gain more insights into the effect of
the QG features through detailed analysis. We se-
lect the state-of-the-art O2 parser and focus on the
realistic scenario with automatic POS tags.

Table 6 compares the efficacy of different feature
sets. The first major row analyzes the efficacy of

9We could use the POS tags produced byTaggerPD in Sec-
tion 5.1, which however would make it difficult to compare our
results with previous ones. Moreover, inferior results maybe
gained due to the differences between CTB5 and PD in word
segmentation standards and text sources.

the basic featuresfbs(.) and the QG featuresfqg(.).
When using the few QG features in Table 2, the ac-
curacy is very close to that when using the basic
features. Moreover, using both features generates
a large improvement. The second major row com-
pares the efficacy of the three kinds of QG features
corresponding to the three types of scoring parts. We
can see that the three feature sets are similarly effec-
tive and yield comparable accuracies. Combining
these features generate an additional improvement
of approximately 0.2%. These results again demon-
strate that all the proposed QG features are effective.

Figure 5 describes how the performance varies
when the scale of CTB5 and CDT changes. In
the left subfigure, the parsers are trained on part
of the CTB5-train, and “16” indicates the use of
all the training instances. Meanwhile, the source
parserParserCDT is trained on the whole CDT-
train. We can see that QG features render larger
improvement when the target treebank is of smaller
scale, which is quite reasonable. More importantly,
the curves indicate thata QG-enhanced parser
trained on a target treebank of 16,000 sentences
may achieve comparable accuracy with a base-
line parser trained on a treebank that is double
the size (32,000), which is very encouraging.

In the right subfigure, the target treebank is
trained on the whole CTB5-train, whereas the source
parser is trained on part of the CDT-train, and “55.5”
indicates the use of all. The curve clearly demon-
strates that the QG features are more helpful when
the source treebank gets larger, which can be ex-
plained as follows. A larger source treebank can
teach a source parser of higher accuracy; then, the
better source parser can parse the target treebank
more reliably; and finally, the target parser can better
learn the annotation divergences based on QG fea-
tures. These results demonstrate the effectiveness
and stability of our approach.

Table 7 presents the detailed effect of the QG fea-
tures on different dependency patterns. A pattern
“VV → NN” refers to a right-directed dependency
with the head tagged as “VV” and the modifier
tagged as “NN”. whereas “←” means left-directed.
The “w/o QG” column shows the number of the cor-
responding dependency pattern that appears in the
gold-standard trees but misses in the results of the
baseline parser, whereas the signed figures in the
“+QG” column are the changes made by the QG-
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Figure 5: Parsing accuracy (UAS) comparison on CTB5-
test when the scale of CDT and CTB5 varies (thousands
in sentence number).

Dependencyw/o QG+QG Descriptions
NN← NN 858 -78noun modifier or coordinating nouns
VV → VV 777 -41 object clause or coordinating verbs
VV ← VV 570 -38 subject clause
VV → NN 509 -79 verb and its object
w0 → VV 357 -57 verb as sentence root
VV ← NN 328 -32 attributive clause
P← VV 278 -37 preposition phrase attachment
VV → DEC 233 -33 attributive clause and auxiliary DE
P→ NN 175 -35 preposition and its object

Table 7: Detailed effect of QG features on different de-
pendency patterns.

enhanced parser. We only list the patterns with an
absolute change larger than 30. We find that the QG
features can significantly help a variety of depen-
dency patterns (i.e., reducing the missing number).

5.4 CTB6 as the Target Treebank

We use CTB6 as the target treebank to further verify
the efficacy of our approach. Compared with CTB5,
CTB6 is of larger scale and is converted into de-
pendency structures according to finer-grained head-
finding rules (Hajič et al., 2009). We directly adopt
the same transformation patterns and features tuned
on CTB5. Table 8 shows results. The improvements
are similar to those on CTB5, demonstrating that our
approach is effective and robust. We list the top three
systems of the CoNLL 2009 shared task in Table 8,
showing that our approach also advances the state-
of-the-art parsing accuracy on this data set.10

10We reproduce their UASs using the data released
by the organizer: http://ufal.mff.cuni.cz/conll2009-st/results/
results.php. The parsing accuracies of the top systems may be
underestimated since the accuracy of the provided POS tags in
CoNLL 2009 is only 92.38% on the test set, while the POS tag-
ger used in our experiments reaches 94.08%.

Models without QG with QG
O2 83.23 84.33 (+1.10)
O2sib 82.87 84.11 (+1.37)
O1 80.29 82.76 (+2.47)
Bohnet (2009) 82.68 —
Che et al. (2009) 82.11 —
Gesmundo et al. (2009) 81.70 —

Table 8: Parsing accuracy (UAS) comparison on CTB6-
test with automatic POS tags. The improvements shown
in parentheses are all statistically significant (p < 10−5).

Models baseline with another treebank
Ours 84.16 86.67 (+2.51)
GP (Niu et al., 2009) 82.42 84.06 (+1.64)

Table 9: Parsing accuracy (UAS) comparison on the test
set of CTB5X. Niu et al. (2009) use the maximum en-
tropy inspired generative parser (GP) of Charniak (2000)
as their constituent parser.

5.5 Comparison with Treebank Conversion

As discussed in Section 2, Niu et al. (2009) automat-
ically convert the dependency-structure CDT to the
phrase-structure annotation style of CTB5X and use
the converted treebank as additional labeled data.
We convert their phrase-structure results on CTB5X-
test into dependency structures using the same head-
finding rules. To compare with their results, we
run our baseline and QG-enhanced O2 parsers on
CTB5X. Table 9 presents the results.11 The indirect
comparison indicates that our approach can achieve
larger improvement than their treebank conversion
based method.

6 Conclusions

The current paper proposes a simple and effective
framework for exploiting multiple large-scale tree-
banks of different annotation styles. We design
rich TPs to model the annotation inconsistencies and
consequently propose QG features based on these
TPs. Extensive experiments show that our approach
can effectively utilize the syntactic knowledge from
another treebank and significantly improve the state-
of-the-art parsing accuracy.

11We thank the authors for sharing their results. Niu et al.
(2009) also use the reranker (RP) of Charniak and Johnson
(2005) as a stronger baseline, but the results are missing. They
find a less improvement on F score with RP than with GP (0.9%
vs. 1.1%). We refer to their Table 5 and 6 for details.
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Padó, JaňStěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic dependen-
cies in multiple languages. InProceedings of CoNLL
2009.

Liang Huang, Wenbin Jiang, and Qun Liu. 2009.
Bilingually-constrained (monolingual) shift-reduce
parsing. InProceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing,
pages 1222–1231, Singapore, August. Association for
Computational Linguistics.

Wenbin Jiang, Liang Huang, and Qun Liu. 2009. Au-
tomatic adaptation of annotation standards: Chinese
word segmentation and pos tagging – a case study. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP, pages 522–530, Suntec, Singapore, Au-
gust. Association for Computational Linguistics.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. InProceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 1–11, Uppsala, Sweden, July. Asso-
ciation for Computational Linguistics.

683



Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. InPro-
ceedings of ACL-08: HLT, pages 595–603, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wen-
liang Chen, and Haizhou Li. 2011. Joint models
for chinese pos tagging and dependency parsing. In
EMNLP 2011, pages 1180–1191.

Ting Liu, Jinshan Ma, and Sheng Li. 2006. Building
a dependency treebank for improving Chinese parser.
In Journal of Chinese Language and Computing, vol-
ume 16, pages 207–224.

Andr— F. T. Martins, Dipanjan Das, Noah A. Smith, and
Eric P. Xing. 2008. Stacking dependency parsers. In
EMNLP’08, pages 157–166.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. InProceedings of EACL 2006.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. InProceedings of ACL 2005, pages 91–98.

Zheng-Yu Niu, Haifeng Wang, and Hua Wu. 2009. Ex-
ploiting heterogeneous treebanks for parsing. InPro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP, pages 46–54, Suntec, Singapore, August. As-
sociation for Computational Linguistics.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In Proceedings of ACL 2008, pages 950–958.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. InProceedings of the
8th International Workshop on Parsing Technologies
(IWPT), pages 149–160.

Eric W. Noreen. 1989.Computer-intensive methods for
testing hypotheses: An introduction. John Wiley &
Sons, Inc., New York. Book (ISBN 0471611360 ).

Zhou Qiang. 2004. Annotation scheme for chinese tree-
bank. Journal of Chinese Information Processing,
18(4):1–8.

David Smith and Jason Eisner. 2006. Quasi-synchronous
grammars: Alignment by soft projection of syntac-
tic dependencies. InProceedings on the Workshop
on Statistical Machine Translation, pages 23–30, New
York City, June. Association for Computational Lin-
guistics.

David A. Smith and Jason Eisner. 2009. Parser adapta-
tion and projection with quasi-synchronous grammar
features. InProceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing,
pages 822–831, Singapore, August. Association for
Computational Linguistics.

Mengqiu Wang, Noah A. Smith, and Teruko Mita-
mura. 2007. What is the Jeopardy model? a quasi-
synchronous grammar for QA. InProceedings of the
2007 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 22–32,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Kristian Woodsend and Mirella Lapata. 2011. Learning
to simplify sentences with quasi-synchronous gram-
mar and integer programming. InProceedings of
the 2011 Conference on Empirical Methods in Natu-
ral Language Processing, pages 409–420, Edinburgh,
Scotland, UK., July. Association for Computational
Linguistics.

Fei Xia, Rajesh Bhatt, Owen Rambow, Martha Palmer,
and Dipti Misra. Sharma. 2008. Towards a multi-
representational treebank. InIn Proceedings of the 7th
International Workshop on Treebanks and Linguistic
Theories.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The Penn Chinese Treebank: Phrase
structure annotation of a large corpus. InNatural Lan-
guage Engineering, volume 11, pages 207–238.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Proceedings of IWPT 2003, pages 195–206.

Yue Zhang and Stephen Clark. 2008a. Joint word seg-
mentation and POS tagging using a single perceptron.
In Proceedings of ACL-08: HLT, pages 888–896.

Yue Zhang and Stephen Clark. 2008b. A tale of two
parsers: Investigating and combining graph-based and
transition-based dependency parsing. InProceedings
of the 2008 Conference on Empirical Methods in Nat-
ural Language Processing, pages 562–571, Honolulu,
Hawaii, October. Association for Computational Lin-
guistics.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193, Portland, Ore-
gon, USA, June. Association for Computational Lin-
guistics.

Guangyou Zhou, Jun Zhao, Kang Liu, and Li Cai. 2011.
Exploiting web-derived selectional preference to im-
prove statistical dependency parsing. InProceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1556–1565, Portland, Oregon, USA,
June. Association for Computational Linguistics.

684


