
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 506–515,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Strong Lexicalization of Tree Adjoining Grammars

Andreas Maletti∗
IMS, Universität Stuttgart

Pfaffenwaldring 5b
70569 Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Joost Engelfriet
LIACS, Leiden University

P.O. Box 9512
2300 RA Leiden, The Netherlands

engelfri@liacs.nl

Abstract

Recently, it was shown (KUHLMANN, SATTA:
Tree-adjoining grammars are not closed un-
der strong lexicalization. Comput. Linguist.,
2012) that finitely ambiguous tree adjoining
grammars cannot be transformed into a nor-
mal form (preserving the generated tree lan-
guage), in which each production contains a
lexical symbol. A more powerful model, the
simple context-free tree grammar, admits such
a normal form. It can be effectively con-
structed and the maximal rank of the non-
terminals only increases by 1. Thus, simple
context-free tree grammars strongly lexicalize
tree adjoining grammars and themselves.

1 Introduction

Tree adjoining grammars [TAG] (Joshi et al., 1969;
Joshi et al., 1975) are a mildly context-sensitive
grammar formalism that can handle certain non-
local dependencies (Kuhlmann and Mohl, 2006),
which occur in several natural languages. A good
overview on TAG, their formal properties, their lin-
guistic motivation, and their applications is pre-
sented by Joshi and Schabes (1992) and Joshi and
Schabes (1997), in which also strong lexicalization
is discussed. In general, lexicalization is the process
of transforming a grammar into an equivalent one
(potentially expressed in another formalism) such
that each production contains a lexical item (or an-
chor). Each production can then be viewed as lex-
ical information on its anchor. It demonstrates a
syntactical construction in which the anchor can oc-
cur. Since a lexical item is a letter of the string

∗ Financially supported by the German Research Founda-
tion (DFG) grant MA 4959 / 1-1.

alphabet, each production of a lexicalized gram-
mar produces at least one letter of the generated
string. Consequently, lexicalized grammars offer
significant parsing benefits (Schabes et al., 1988)
as the number of applications of productions (i.e.,
derivation steps) is clearly bounded by the length
of the input string. In addition, the lexical items
in the productions guide the production selection in
a derivation, which works especially well in sce-
narios with large alphabets.1 The GREIBACH nor-
mal form (Hopcroft et al., 2001; Blum and Koch,
1999) offers those benefits for context-free gram-
mars [CFG], but it changes the parse trees. Thus,
we distinguish between two notions of equivalence:
Weak equivalence (Bar-Hillel et al., 1960) only re-
quires that the generated string languages coincide,
whereas strong equivalence (Chomsky, 1963) re-
quires that even the generated tree languages coin-
cide. Correspondingly, we obtain weak and strong
lexicalization based on the required equivalence.

The GREIBACH normal form shows that CFG
can weakly lexicalize themselves, but they cannot
strongly lexicalize themselves (Schabes, 1990). It is
a prominent feature of tree adjoining grammars that
they can strongly lexicalize CFG (Schabes, 1990),2

and it was claimed and widely believed that they can
strongly lexicalize themselves. Recently, Kuhlmann
and Satta (2012) proved that TAG actually can-
not strongly lexicalize themselves. In fact, they
prove that TAG cannot even strongly lexicalize the
weaker tree insertion grammars (Schabes and Wa-
ters, 1995). However, TAG can weakly lexicalize
themselves (Fujiyoshi, 2005).

1Chen (2001) presents a detailed account.
2Good algorithmic properties and the good coverage of lin-

guistic phenomena are other prominent features.

506



Simple (i.e., linear and nondeleting) context-free
tree grammars [CFTG] (Rounds, 1969; Rounds,
1970) are a more powerful grammar formalism than
TAG (Mönnich, 1997). However, the monadic vari-
ant is strongly equivalent to a slightly extended ver-
sion of TAG, which is called non-strict TAG (Kepser
and Rogers, 2011). A GREIBACH normal form for a
superclass of CFTG (viz., second-order abstract cat-
egorial grammars) was discussed by Kanazawa and
Yoshinaka (2005) and Yoshinaka (2006). In particu-
lar, they also demonstrate that monadic CFTG can
strongly lexicalize regular tree grammars (Gécseg
and Steinby, 1984; Gécseg and Steinby, 1997).

CFTG are weakly equivalent to the simple macro
grammars of Fischer (1968), which are a notational
variant of the well-nested linear context-free rewrit-
ing systems (LCFRS) of Vijay-Shanker et al. (1987)
and the well-nested multiple context-free grammars
(MCFG) of Seki et al. (1991).3 Thus, CFTG are
mildly context-sensitive since their generated string
languages are semi-linear and can be parsed in poly-
nomial time (Gómez-Rodrı́guez et al., 2010).

In this contribution, we show that CFTG can
strongly lexicalize TAG and also themselves, thus
answering the second question in the conclusion
of Kuhlmann and Satta (2012). This is achieved
by a series of normalization steps (see Section 4)
and a final lexicalization step (see Section 5), in
which a lexical item is guessed for each produc-
tion that does not already contain one. This item
is then transported in an additional argument until
it is exchanged for the same item in a terminal pro-
duction. The lexicalization is effective and increases
the maximal rank (number of arguments) of the non-
terminals by at most 1. In contrast to a transforma-
tion into GREIBACH normal form, our lexicalization
does not radically change the structure of the deriva-
tions. Overall, our result shows that if we consider
only lexicalization, then CFTG are a more natural
generalization of CFG than TAG.

2 Notation

We write [k] for the set {i ∈ N | 1 ≤ i ≤ k},
where N denotes the set of nonnegative integers. We
use a fixed countably infinite set X = {x1, x2, . . . }

3Kuhlmann (2010), Mönnich (2010), and Kanazawa (2009)
discuss well-nestedness.

of (mutually distinguishable) variables, and we let
Xk = {xi | i ∈ [k]} be the first k variables from X
for every k ∈ N. As usual, an alphabet Σ is a finite
set of symbols, and a ranked alphabet (Σ, rk) adds a
ranking rk : Σ → N. We let Σk = {σ | rk(σ) = k}
be the set of k-ary symbols. Moreover, we just
write Σ for the ranked alphabet (Σ, rk).4 We build
trees over the ranked alphabet Σ such that the nodes
are labeled by elements of Σ and the rank of the node
label determines the number of its children. In addi-
tion, elements of X can label leaves. Formally, the
set TΣ(X) of Σ-trees indexed by X is the smallest
set T such that X ⊆ T and σ(t1, . . . , tk) ∈ T for all
k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ T .5

We use positions to address the nodes of a tree. A
position is a sequence of nonnegative integers indi-
cating successively in which subtree the addressed
node is. More precisely, the root is at position ε and
the position ip with i ∈ N and p ∈ N∗ refers to
the position p in the ith direct subtree. Formally, the
set pos(t) ⊆ N∗ of positions of a tree t ∈ TΣ(X) is
defined by pos(x) = {ε} for x ∈ X and

pos(σ(t1, . . . , tk)) = {ε} ∪ {ip | i ∈ [k], p ∈ pos(ti)}

for all symbols σ ∈ Σk and t1, . . . , tk ∈ TΣ(X).
The positions are indicated as superscripts of the la-
bels in the tree of Figure 1. The subtree of t at posi-
tion p ∈ pos(t) is denoted by t|p, and the label of t
at position p by t(p). Moreover, t[u]p denotes the
tree obtained from t by replacing the subtree at p by
the tree u ∈ TΣ(X). For every label set S ⊆ Σ,
we let posS(t) = {p ∈ pos(t) | t(p) ∈ S} be
the S-labeled positions of t. For every σ ∈ Σ,
we let posσ(t) = pos{σ}(t). The set CΣ(Xk) con-
tains all trees t of TΣ(X), in which every x ∈ Xk

occurs exactly once and posX\Xk
(t) = ∅. Given

u1, . . . , uk ∈ TΣ(X), the first-order substitution
t[u1, . . . , uk] is inductively defined by

xi[u1, . . . , uk] =

{
ui if i ∈ [k]

xi otherwise

t[u1, . . . , uk] = σ
(
t1[u1, . . . , uk], . . . , tk[u1, . . . , uk]

)
for every i ∈ N and t = σ(t1, . . . , tk) with σ ∈ Σk

and t1, . . . , tk ∈ TΣ(X). First-order substitution is
illustrated in Figure 1.

4We often decorate a symbol σ with its rank k [e.g. σ(k)].
5We will often drop quantifications like ‘for all k ∈ N’.

507



σ[ε]

σ[1]

α[11] x
[12]
2

σ[2]

x
[21]
1 α[22]

[ γ

α
, x1

]
=

σ

σ

α x1

σ

γ

α

α

Figure 1: Tree in CΣ(X2) ⊂ TΣ(X) with indicated po-
sitions, where Σ = {σ, γ, α} with rk(σ) = 2, rk(γ) = 1,
and rk(α) = 0, and an example first-order substitution.

In first-order substitution we replace leaves (ele-
ments of X), whereas in second-order substitution
we replace an internal node (labeled by a symbol
of Σ). Let p ∈ pos(t) be such that t(p) ∈ Σk,
and let u ∈ CΣ(Xk) be a tree in which the vari-
ables Xk occur exactly once. The second-order sub-
stitution t[p ← u] replaces the subtree at position p
by the tree u into which the children of p are (first-
order) substituted. In essence, u is “folded” into t at
position p. Formally, t[p← u] = t

[
u[t|1, . . . , t|k]

]
p
.

Given P ⊆ posσ(t) with σ ∈ Σk, we let t[P ← u]
be t[p1 ← u] · · · [pn ← u], where P = {p1, . . . , pn}
and p1 > · · · > pn in the lexicographic order.
Second-order substitution is illustrated in Figure 2.
Gécseg and Steinby (1997) present a detailed intro-
duction to trees and tree languages.

3 Context-free tree grammars

In this section, we recall linear and nondeleting
context-free tree grammars [CFTG] (Rounds, 1969;
Rounds, 1970). The property ‘linear and nondelet-
ing’ is often called ‘simple’. The nonterminals of
regular tree grammars only occur at the leaves and
are replaced using first-order substitution. In con-
trast, the nonterminals of a CFTG are ranked sym-
bols, can occur anywhere in a tree, and are replaced
using second-order substitution.6 Consequently, the
nonterminals N of a CFTG form a ranked alpha-
bet. In the left-hand sides of productions we write
A(x1, . . . , xk) for a nonterminal A ∈ Nk to indi-
cate the variables that hold the direct subtrees of a
particular occurrence of A.

Definition 1. A (simple) context-free tree gram-
mar [CFTG] is a system (N,Σ, S, P ) such that
• N is a ranked alphabet of nonterminal symbols,
• Σ is a ranked alphabet of terminal symbols,7

6see Sections 6 and 15 of (Gécseg and Steinby, 1997)
7We assume that Σ ∩N = ∅.

σ

α σ

α α

[
ε←

σ

σ

α x2

σ

x1 α

]
=

σ

σ

α σ

α α

σ

α α

Figure 2: Example second-order substitution, in which
the boxed symbol σ is replaced.

• S ∈ N0 is the start nonterminal of rank 0, and
• P is a finite set of productions of the form
A(x1, . . . , xk) → r, where r ∈ CN∪Σ(Xk)
and A ∈ Nk.

The components ` and r are called left- and right-
hand side of the production ` → r in P . We say
that it is an A-production if ` = A(x1, . . . , xk). The
right-hand side is simply a tree using terminal and
nonterminal symbols according to their rank. More-
over, it contains all the variables ofXk exactly once.
Let us illustrate the syntax on an example CFTG. We
use an abstract language for simplicity and clarity.
We use lower-case Greek letters for terminal sym-
bols and upper-case Latin letters for nonterminals.

Example 2. As a running example, we consider the
CFTG Gex = ({S(0), A(2)},Σ, S, P ) where
• Σ = {σ(2), α(0), β(0)} and
• P contains the productions (see Figure 3):8

S → A(α, α) | A(β, β) | σ(α, β)

A(x1, x2)→ A(σ(x1, S), σ(x2, S)) | σ(x1, x2) .

We recall the (term) rewrite semantics (Baader
and Nipkow, 1998) of the CFTG G = (N,Σ, S, P ).
Since G is simple, the actual rewriting strategy
is irrelevant. The sentential forms of G are sim-
ply SF(G) = TN∪Σ(X). This is slightly more gen-
eral than necessary (for the semantics of G), but the
presence of variables in sentential forms will be use-
ful in the next section because it allows us to treat
right-hand sides as sentential forms. In essence in a
rewrite step we just select a nonterminal A ∈ N and
an A-production ρ ∈ P . Then we replace an occur-
rence of A in the sentential form by the right-hand
side of ρ using second-order substitution.

Definition 3. Let ξ, ζ ∈ SF(G) be sentential forms.
Given an A-production ρ = ` → r in P and an

8We separate several right-hand sides with ‘|’.

508



S →
A

α α
S →

σ

α β
S →

A

β β

A

x1 x2

→
A

σ

x1 S

σ

x2 S

A

x1 x2

→
σ

x1 x2

Figure 3: Productions of Example 2.

A-labeled position p ∈ posA(ξ) in ξ, we write
ξ ⇒ρ,p

G ξ[p ← r]. If there exist ρ ∈ P and
p ∈ pos(ξ) such that ξ ⇒ρ,p

G ζ, then ξ ⇒G ζ.9 The
semantics JGK of G is {t ∈ TΣ | S ⇒∗G t}, where
⇒∗G is the reflexive, transitive closure of⇒G.

Two CFTGG1 andG2 are (strongly) equivalent if
JG1K = JG2K. In this contribution we are only con-
cerned with strong equivalence (Chomsky, 1963).
Although we recall the string corresponding to a tree
later on (via its yield), we will not investigate weak
equivalence (Bar-Hillel et al., 1960).
Example 4. Reconsider the CFTG Gex of Exam-
ple 2. A derivation to a tree of TΣ is illustrated in
Figure 4. It demonstrates that the final tree in that
derivation is in the language JGexK generated byGex.

Finally, let us recall the relation between CFTG
and tree adjoining grammars [TAG] (Joshi et al.,
1969; Joshi et al., 1975). Joshi et al. (1975)
show that TAG are special footed CFTG (Kepser
and Rogers, 2011), which are weakly equivalent
to monadic CFTG, i.e., CFTG whose nonterminals
have rank at most 1 (Mönnich, 1997; Fujiyoshi
and Kasai, 2000). Kepser and Rogers (2011) show
the strong equivalence of those CFTG to non-strict
TAG, which are slightly more powerful than tradi-
tional TAG. In general, TAG are a natural formalism
to describe the syntax of natural language.10

4 Normal forms

In this section, we first recall an existing normal
form for CFTG. Then we introduce the property of
finite ambiguity in the spirit of (Schabes, 1990; Joshi
and Schabes, 1992; Kuhlmann and Satta, 2012),
which allows us to normalize our CFTG even fur-
ther. A major tool is a simple production elimination

9For all k ∈ N and ξ ⇒G ζ we note that ξ ∈ CN∪Σ(Xk) if
and only if ζ ∈ CN∪Σ(Xk).

10XTAG Research Group (2001) wrote a TAG for English.

scheme, which we present in detail. From now on,
let G = (N,Σ, S, P ) be the considered CFTG.

The CFTG G is start-separated if posS(r) = ∅
for every production `→ r ∈ P . In other words, the
start nonterminal S is not allowed in the right-hand
sides of the productions. It is clear that each CFTG
can be transformed into an equivalent start-separated
CFTG. In such a CFTG we call each production of
the form S → r initial. From now on, we assume,
without loss of generality, that G is start-separated.

Example 5. Let Gex = (N,Σ, S, P ) be the CFTG
of Example 2. An equivalent start-separated CFTG
is G′ex = ({S′(0)} ∪N,Σ, S′, P ∪ {S′ → S}).

We start with the growing normal form of Stamer
and Otto (2007) and Stamer (2009). It requires that
the right-hand side of each non-initial production
contains at least two terminal or nonterminal sym-
bols. In particular, it eliminates projection produc-
tions A(x1) → x1 and unit productions, in which
the right-hand side has the same shape as the left-
hand side (potentially with a different root symbol
and a different order of the variables).

Definition 6. A production ` → r is growing if
|posN∪Σ(r)| ≥ 2. The CFTG G is growing if all
of its non-initial productions are growing.

The next theorem is Proposition 2 of (Stamer and
Otto, 2007). Stamer (2009) provides a full proof.

Theorem 7. For every start-separated CFTG there
exists an equivalent start-separated, growing CFTG.

Example 8. Let us transform the CFTG G′ex of Ex-
ample 5 into growing normal form. We obtain the
CFTG G′′ex = ({S′(0), S(0), A(2)},Σ, S′, P ′′) where
P ′′ contains S′ → S and for each δ ∈ {α, β}

S → A(δ, δ) | σ(δ, δ) | σ(α, β) (1)
A(x1, x2)→ A(σ(x1, S), σ(x2, S)) (2)
A(x1, x2)→ σ(σ(x1, S), σ(x2, S)) .

From now on, we assume thatG is growing. Next,
we recall the notion of finite ambiguity from (Sch-
abes, 1990; Joshi and Schabes, 1992; Kuhlmann and
Satta, 2012).11 We distinguish a subset ∆ ⊆ Σ0 of
lexical symbols, which are the symbols that are pre-
served by the yield mapping. The yield of a tree is

11It should not be confused with the notion of ‘finite ambigu-
ity’ of (Goldstine et al., 1992; Klimann et al., 2004).

509



S ⇒G
A

α α

⇒G

A

σ

α S

σ

α S

⇒G

A

σ

α A

β β

σ

α S
⇒G

A

σ

α A

β β

σ

α σ

α β

⇒∗G

σ

σ

α σ

β β

σ

α σ

α β

Figure 4: Derivation using the CFTG Gex of Example 2. The selected positions are boxed.

a string of lexical symbols. All other symbols are
simply dropped (in a pre-order traversal). Formally,
yd∆ : TΣ → ∆∗ is such that for all t = σ(t1, . . . , tk)
with σ ∈ Σk and t1, . . . , tk ∈ TΣ

yd∆(t) =

{
σ yd∆(t1) · · · yd∆(tk) if σ ∈ ∆

yd∆(t1) · · · yd∆(tk) otherwise.

Definition 9. The tree language L ⊆ TΣ has finite
∆-ambiguity if {t ∈ L | yd∆(t) = w} is finite for
every w ∈ ∆∗.

Roughly speaking, we can say that the set L has
finite ∆-ambiguity if eachw ∈ ∆∗ has finitely many
parses in L (where t is a parse of w if yd∆(t) = w).
Our example CFTG Gex is such that JGexK has finite
{α, β}-ambiguity (because Σ1 = ∅).

In this contribution, we want to (strongly) lexical-
ize CFTG, which means that for each CFTG G such
that JGK has finite ∆-ambiguity, we want to con-
struct an equivalent CFTG such that each non-initial
production contains at least one lexical symbol.
This is typically called strong lexicalization (Sch-
abes, 1990; Joshi and Schabes, 1992; Kuhlmann
and Satta, 2012) because we require strong equiva-
lence.12 Let us formalize our lexicalization property.

Definition 10. The production ` → r is ∆-lexical-
ized if pos∆(r) 6= ∅. The CFTG G is ∆-lexicalized
if all its non-initial productions are ∆-lexicalized.

Note that the CFTG G′′ex of Example 8 is not yet
{α, β}-lexicalized. We will lexicalize it in the next
section. To do this in general, we need some auxil-
iary normal forms. First, we define our simple pro-
duction elimination scheme, which we will use in
the following. Roughly speaking, a non-initial A-
production such that A does not occur in its right-
hand side can be eliminated fromG by applying it in

12The corresponding notion for weak equivalence is called
weak lexicalization (Joshi and Schabes, 1992).

all possible ways to occurrences in right-hand sides
of the remaining productions.

Definition 11. Let ρ = A(x1, . . . , xk) → r in P
be a non-initial production such that posA(r) = ∅.
For every other production ρ′ = `′ → r′ in P and
J ⊆ posA(r′), let ρ′J = `′ → r′[J ← r]. The CFTG
Elim(G, ρ) = (N,Σ, S, P ′) is such that

P ′ =
⋃

ρ′=`′→r′∈P\{ρ}

{ρ′J | J ⊆ posA(r′)} .

In particular, ρ′∅ = ρ′ for every production ρ′,
so every production besides the eliminated produc-
tion ρ is preserved. We obtained the CFTG G′′ex of
Example 8 as Elim(G′ex, A(x1, x2) → σ(x1, x2))
from G′ex of Example 5.

Lemma 12. The CFTG G and G′ρ = Elim(G, ρ)
are equivalent for every non-initial A-production
ρ = `→ r in P such that posA(r) = ∅.

Proof. Clearly, every single derivation step of G′ρ
can be simulated by a derivation of G using poten-
tially several steps. Conversely, a derivation of G
can be simulated directly by G′ρ except for deriva-
tion steps ⇒ρ,p

G using the eliminated production ρ.
Since S 6= A, we know that the nonterminal at po-
sition p was generated by another production ρ′. In
the given derivation of G we examine which non-
terminals in the right-hand side of the instance of ρ′

were replaced using ρ. Let J be the set of positions
corresponding to those nonterminals (thus p ∈ J).
Then instead of applying ρ′ and potentially several
times ρ, we equivalently apply ρ′J of G′ρ.

In the next normalization step we use our pro-
duction elimination scheme. The goal is to make
sure that non-initial monic productions (i.e., produc-
tions of which the right-hand side contains at most
one nonterminal) contain at least one lexical sym-
bol. We define the relevant property and then present

510



the construction. A sentential form ξ ∈ SF(G)
is monic if |posN (ξ)| ≤ 1. The set of all monic
sentential forms is denoted by SF≤1(G). A pro-
duction ` → r is monic if r is monic. The next
construction is similar to the simultaneous removal
of epsilon-productions A → ε and unit productions
A → B for context-free grammars (Hopcroft et al.,
2001). Instead of computing the closure under those
productions, we compute a closure under non-∆-
lexicalized productions.

Theorem 13. If JGK has finite ∆-ambiguity, then
there exists an equivalent CFTG such that all its non-
initial monic productions are ∆-lexicalized.

Proof. Without loss of generality, we assume that
G is start-separated and growing by Theorem 7.
Moreover, we assume that each nonterminal is use-
ful. For every A ∈ N with A 6= S, we compute
all monic sentential forms without a lexical sym-
bol that are reachable from A(x1, . . . , xk), where
k = rk(A). Formally, let

ΞA = {ξ ∈ SF≤1(G) | A(x1, . . . , xk)⇒+

G′ ξ} ,

where⇒+

G′ is the transitive closure of⇒G′ and the
CFTG G′ = (N,Σ, S, P ′) is such that P ′ contains
exactly the non-∆-lexicalized productions of P .
The set ΞA is finite since only finitely many non-
∆-lexicalized productions can be used due to the
finite ∆-ambiguity of JGK. Moreover, no senten-
tial form in ΞA contains A for the same reason
and the fact that G is growing. We construct the
CFTG G1 = (N,Σ, S, P ∪ P1) such that

P1 = {A(x1, . . . , xk)→ ξ | A ∈ Nk, ξ ∈ ΞA} .

Clearly, G and G1 are equivalent. Next, we elimi-
nate all productions of P1 from G1 using Lemma 12
to obtain an equivalent CFTG G2 with the produc-
tions P2. In the final step, we drop all non-∆-
lexicalized monic productions of P2 to obtain the
CFTG G, in which all monic productions are ∆-
lexicalized. It is easy to see that G is growing, start-
separated, and equivalent to G2.

The CFTG G′′ex only has {α, β}-lexicalized non-
initial monic productions, so we use a new example.

Example 14. Let ({S(0), A(1), B(1)},Σ, S, P ) be
the CFTG such that Σ = {σ(2), α(0), β(0)} and

A

x1

⇒G′

σ

β B

x1

⇒G′

σ

β σ

x1 β

B

x1

⇒G′
σ

x1 β

Figure 5: The relevant derivations using only productions
that are not ∆-lexicalized (see Example 14).

P contains the productions

A(x1)→ σ(β,B(x1)) B(x1)→ σ(x1, β) (3)
B(x1)→ σ(α,A(x1)) S → A(α) .

This CFTG Gex2 is start-separated and growing.
Moreover, all its productions are monic, and JGex2K
is finitely ∆-ambiguous for the set ∆ = {α} of
lexical symbols. Then the productions (3) are non-
initial and not ∆-lexicalized. So we can run the
construction in the proof of Theorem 13. The rel-
evant derivations using only non-∆-lexicalized pro-
ductions are shown in Figure 5. We observe that
|ΞA| = 2 and |ΞB| = 1, so we obtain the CFTG
({S(0), B(1)},Σ, S, P ′), where P ′ contains13

S → σ(β,B(α)) | σ(β, σ(α, β))

B(x1)→ σ(α, σ(β,B(x1)))

B(x1)→ σ(α, σ(β, σ(x1, β))) . (4)

We now do one more normalization step before
we present our lexicalization. We call a production
` → r terminal if r ∈ TΣ(X); i.e., it does not con-
tain nonterminal symbols. Next, we show that for
each CFTG G such that JGK has finite ∆-ambiguity
we can require that each non-initial terminal produc-
tion contains at least two occurrences of ∆-symbols.

Theorem 15. If JGK has finite ∆-ambiguity, then
there exists an equivalent CFTG (N,Σ, S, P ′) such
that |pos∆(r)| ≥ 2 for all its non-initial terminal
productions `→ r ∈ P ′.

Proof. Without loss of generality, we assume that
G is start-separated and growing by Theorem 7.
Moreover, we assume that each nonterminal is use-
ful and that each of its non-initial monic produc-
tions is ∆-lexicalized by Theorem 13. We obtain
the desired CFTG by simply eliminating each non-
initial terminal production ` → r ∈ P such that
|pos∆(r)| = 1. By Lemma 12 the obtained CFTG

13The nonterminal A became useless, so we just removed it.

511



A

x1 x2

→
A

σ

x1 S

σ

x2 S

〈A,α〉

x1 x2 x3

→

〈A,α〉

σ

x1 S

σ

x2 S

x3

〈A,α〉

x1 x2 x3

→

〈A,α〉

σ

x1 〈S, β〉

β

σ

x2 S

x3

Figure 6: Production ρ = `→ r of (2) [left], a corresponding production ρα of P ′ [middle] with right-hand side rα,2,
and a corresponding production of P ′′′ [right] with right-hand side (rα,2)β (see Theorem 17).

is equivalent to G. The elimination process termi-
nates because a new terminal production can only be
constructed from a monic production and a terminal
production or several terminal productions, but those
combinations already contain two occurrences of ∆-
symbols since non-initial monic productions are al-
ready ∆-lexicalized.

Example 16. Reconsider the CFTG obtained in Ex-
ample 14. Recall that ∆ = {α}. Production (4) is
the only non-initial terminal production that violates
the requirement of Theorem 15. We eliminate it and
obtain the CFTG with the productions

S → σ(β,B(α)) | σ(β, σ(α, β))

S → σ(β, σ(α, σ(β, σ(α, β))))

B(x1)→ σ(α, σ(β,B(x1)))

B(x1)→ σ(α, σ(β, σ(α, σ(β, σ(x1, β))))) .

5 Lexicalization

In this section, we present the main lexicalization
step, which lexicalizes non-monic productions. We
assume that JGK has finite ∆-ambiguity and is nor-
malized according to the results of Section 4: no
useless nonterminals, start-separated, growing (see
Theorem 7), non-initial monic productions are ∆-
lexicalized (see Theorem 13), and non-initial termi-
nal productions contain at least two occurrences of
∆-symbols (see Theorem 15).

The basic idea of the construction is that we guess
a lexical symbol for each non-∆-lexicalized produc-
tion. The guessed symbol is put into a new param-
eter of a nonterminal. It will be kept in the pa-
rameter until we reach a terminal production, where
we exchange the same lexical symbol by the pa-
rameter. This is the reason why we made sure
that we have two occurrences of lexical symbols in
the terminal productions. After we exchanged one
for a parameter, the resulting terminal production is

still ∆-lexicalized. Lexical items that are guessed
for distinct (occurrences of) productions are trans-
ported to distinct (occurrences of) terminal produc-
tions [cf. Section 3 of (Potthoff and Thomas, 1993)
and page 346 of (Hoogeboom and ten Pas, 1997)].

Theorem 17. For every CFTG G such that JGK
has finite ∆-ambiguity there exists an equivalent
∆-lexicalized CFTG.

Proof. We can assume that G = (N,Σ, S, P ) has
the properties mentioned before the theorem without
loss of generality. We let N ′ = N ×∆ be a new set
of nonterminals such that rk(〈A, δ〉) = rk(A) + 1
for every A ∈ N and δ ∈ ∆. Intuitively, 〈A, δ〉
represents the nonterminal A, which has the lexical
symbol δ in its last (new) parameter. This parameter
is handed to the (lexicographically) first nonterminal
in the right-hand side until it is resolved in a termi-
nal production. Formally, for each right-hand side
r ∈ TN∪N ′∪Σ(X) such that posN (r) 6= ∅ (i.e., it
contains an original nonterminal), each k ∈ N, and
each δ ∈ ∆, let rδ,k and rδ be such that

rδ,k = r[〈B, δ〉(r1, . . . , rn, xk+1)]p

rδ = r[〈B, δ〉(r1, . . . , rn, δ)]p ,

where p is the lexicographically smallest element
of posN (r) and r|p = B(r1, . . . , rn) with B ∈ N
and r1, . . . , rn ∈ TN∪N ′∪Σ(X). For each non-
terminal A-production ρ = `→ r in P let

ρδ = 〈A, δ〉(x1, . . . , xk+1)→ rδ,k ,

where k = rk(A). This construction is illustrated
in Figure 6. Roughly speaking, we select the lexi-
cographically smallest occurrence of a nonterminal
in the right-hand side and pass the lexical symbol δ
in the extra parameter to it. The extra parameter is
used in terminal productions, so let ρ = `→ r in P

512



S →
σ

α α

〈S, α〉

x1

→
σ

x1 α

Figure 7: Original terminal production ρ from (1) [left]
and the production ρ (see Theorem 17).

be a terminal A-production. Then we define

ρ = 〈A, r(p)〉(x1, . . . , xk+1)→ r[xk+1]p ,

where p is the lexicographically smallest element
of pos∆(r) and k = rk(A). This construction is
illustrated in Figure 7. With these productions we
obtain the CFTG G′ = (N ∪ N ′,Σ, S, P ), where
P = P ∪ P ′ ∪ P ′′ and

P ′ =
⋃

ρ=`→r∈P
6̀=S,posN (r)6=∅

{ρδ | δ ∈ ∆} P ′′ =
⋃

ρ=`→r∈P
6̀=S,posN (r)=∅

{ρ} .

It is easy to prove that those new productions man-
age the desired transport of the extra parameter if it
holds the value indicated in the nonterminal.

Finally, we replace each non-initial non-∆-lexi-
calized production in G′ by new productions that
guess a lexical symbol and add it to the new parame-
ter of the (lexicographically) first nonterminal of N
in the right-hand side. Formally, we let

P nil = {`→ r ∈ P | ` 6= S, pos∆(r) = ∅}
P ′′′ = {`→ rδ | `→ r ∈ P nil, δ ∈ ∆} ,

of which P ′′′ is added to the productions. Note that
each production ` → r ∈ P nil contains at least one
occurrence of a nonterminal ofN (because all monic
productions of G are ∆-lexicalized). Now all non-
initial non-∆-lexicalized productions from P can be
removed, so we obtain the CFTGG′′, which is given
by (N ∪N ′,Σ, S,R) with R = (P ∪ P ′′′) \ P nil. It
can be verified that G′′ is ∆-lexicalized and equiva-
lent to G (using the provided argumentation).

Instead of taking the lexicographically smallest
element of posN (r) or pos∆(r) in the previous
proof, we can take any fixed element of that set. In
the definition of P ′ we can change posN (r) 6= ∅
to |pos∆(r)| ≤ 1, and simultaneously in the defini-
tion of P ′′ change posN (r) = ∅ to |pos∆(r)| ≥ 2.
With the latter changes the guessed lexical item is
only transported until it is resolved in a production
with at least two lexical items.

Example 18. For the last time, we consider the
CFTG G′′ex of Example 8. We already illustrated the
parts of the construction of Theorem 17 in Figures
6 and 7. The obtained {α, β}-lexicalized CFTG has
the following 25 productions for all δ, δ′ ∈ {α, β}:

S′ → S

S → A(δ, δ) | σ(δ, δ) | σ(α, β)

Sδ(x1)→ Aδ(δ
′, δ′, x1) | σ(x1, δ)

Sα(x1)→ σ(x1, β)

A(x1, x2)→ Aδ(σ(x1, S), σ(x2, S), δ) (5)
Aδ(x1, x2, x3)→ Aδ(σ(x1, Sδ′(δ

′)), σ(x2, S), x3)

A(x1, x2)→ σ(σ(x1, Sδ(δ)), σ(x2, S))

Aδ(x1, x2, x3)→ σ(σ(x1, Sδ(x3)), σ(x2, Sδ′(δ
′))) ,

where Aδ = 〈A, δ〉 and Sδ = 〈S, δ〉.
If we change the lexicalization construction as

indicated before this example, then all the produc-
tions Sδ(x1) → Aδ(δ

′, δ′, x1) are replaced by the
productions Sδ(x1) → A(x1, δ). Moreover, the
productions (5) can be replaced by the productions
A(x1, x2) → A(σ(x1, Sδ(δ)), σ(x2, S)), and then
the nonterminalsAδ and their productions can be re-
moved, which leaves only 15 productions.

Conclusion

For k ∈ N, let CFTG(k) be the set of those CFTG
whose nonterminals have rank at most k. Since the
normal form constructions preserve the nonterminal
rank, the proof of Theorem 17 shows that CFTG(k)
are strongly lexicalized by CFTG(k+1). Kepser and
Rogers (2011) show that non-strict TAG are strongly
equivalent to CFTG(1). Hence, non-strict TAG are
strongly lexicalized by CFTG(2).

It follows from Section 6 of Engelfriet et al.
(1980) that the classes CFTG(k) with k ∈ N in-
duce an infinite hierarchy of string languages, but it
remains an open problem whether the rank increase
in our lexicalization construction is necessary.

Gómez-Rodrı́guez et al. (2010) show that well-
nested LCFRS of maximal fan-out k can be parsed
in time O(n2k+2), where n is the length of the in-
put string w ∈ ∆∗. From this result we conclude
that CFTG(k) can be parsed in time O(n2k+4), in
the sense that we can produce a parse tree t that
is generated by the CFTG with yd∆(t) = w. It is
not clear yet whether lexicalized CFTG(k) can be
parsed more efficiently in practice.

513



References
Franz Baader and Tobias Nipkow. 1998. Term Rewriting

and All That. Cambridge University Press.
Yehoshua Bar-Hillel, Haim Gaifman, and Eli Shamir.

1960. On categorial and phrase-structure grammars.
Bulletin of the Research Council of Israel, 9F(1):1–16.

Norbert Blum and Robert Koch. 1999. Greibach normal
form transformation revisited. Inform. and Comput.,
150(1):112–118.

John Chen. 2001. Towards Efficient Statistical Parsing
using Lexicalized Grammatical Information. Ph.D.
thesis, University of Delaware, Newark, USA.

Noam Chomsky. 1963. Formal properties of gram-
mar. In R. Duncan Luce, Robert R. Bush, and Eugene
Galanter, editors, Handbook of Mathematical Psychol-
ogy, volume 2, pages 323–418. John Wiley and Sons,
Inc.

Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki.
1980. Tree transducers, L systems, and two-way ma-
chines. J. Comput. System Sci., 20(2):150–202.

Michael J. Fischer. 1968. Grammars with macro-like
productions. In Proc. 9th Ann. Symp. Switching and
Automata Theory, pages 131–142. IEEE Computer
Society.

Akio Fujiyoshi. 2005. Epsilon-free grammars and
lexicalized grammars that generate the class of the
mildly context-sensitive languages. In Proc. 7th Int.
Workshop Tree Adjoining Grammar and Related For-
malisms, pages 16–23.

Akio Fujiyoshi and Takumi Kasai. 2000. Spinal-formed
context-free tree grammars. Theory Comput. Syst.,
33(1):59–83.

Ferenc Gécseg and Magnus Steinby. 1984. Tree Au-
tomata. Akadémiai Kiadó, Budapest.

Ferenc Gécseg and Magnus Steinby. 1997. Tree lan-
guages. In Grzegorz Rozenberg and Arto Salomaa,
editors, Handbook of Formal Languages, volume 3,
chapter 1, pages 1–68. Springer.

Jonathan Goldstine, Hing Leung, and Detlef Wotschke.
1992. On the relation between ambiguity and nonde-
terminism in finite automata. Inform. and Comput.,
100(2):261–270.

Carlos Gómez-Rodrı́guez, Marco Kuhlmann, and Gior-
gio Satta. 2010. Efficient parsing of well-nested lin-
ear context-free rewriting systems. In Proc. Ann. Conf.
North American Chapter of the ACL, pages 276–284.
Association for Computational Linguistics.

Hendrik Jan Hoogeboom and Paulien ten Pas. 1997.
Monadic second-order definable text languages. The-
ory Comput. Syst., 30(4):335–354.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. 2001. Introduction to automata theory, lan-
guages, and computation. Addison-Wesley series in
computer science. Addison Wesley, 2nd edition.

Aravind K. Joshi, S. Rao Kosaraju, and H. Yamada.
1969. String adjunct grammars. In Proc. 10th Ann.
Symp. Switching and Automata Theory, pages 245–
262. IEEE Computer Society.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars. J. Comput. System Sci.,
10(1):136–163.

Aravind K. Joshi and Yves Schabes. 1992. Tree-
adjoining grammars and lexicalized grammars. In
Maurice Nivat and Andreas Podelski, editors, Tree Au-
tomata and Languages. North-Holland.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. In Grzegorz Rozenberg and Arto
Salomaa, editors, Beyond Words, volume 3 of Hand-
book of Formal Languages, pages 69–123. Springer.

Makoto Kanazawa. 2009. The convergence of well-
nested mildly context-sensitive grammar formalisms.
Invited talk at the 14th Int. Conf. Formal Gram-
mar. slides available at: research.nii.ac.jp/
˜kanazawa.

Makoto Kanazawa and Ryo Yoshinaka. 2005. Lexical-
ization of second-order ACGs. Technical Report NII-
2005-012E, National Institute of Informatics, Tokyo,
Japan.

Stephan Kepser and James Rogers. 2011. The equiv-
alence of tree adjoining grammars and monadic lin-
ear context-free tree grammars. J. Log. Lang. Inf.,
20(3):361–384.

Ines Klimann, Sylvain Lombardy, Jean Mairesse, and
Christophe Prieur. 2004. Deciding unambiguity and
sequentiality from a finitely ambiguous max-plus au-
tomaton. Theoret. Comput. Sci., 327(3):349–373.

Marco Kuhlmann. 2010. Dependency Structures and
Lexicalized Grammars: An Algebraic Approach, vol-
ume 6270 of LNAI. Springer.

Marco Kuhlmann and Mathias Mohl. 2006. Extended
cross-serial dependencies in tree adjoining grammars.
In Proc. 8th Int. Workshop Tree Adjoining Grammars
and Related Formalisms, pages 121–126. ACL.

Marco Kuhlmann and Giorgio Satta. 2012. Tree-
adjoining grammars are not closed under strong lex-
icalization. Comput. Linguist. available at: dx.doi.
org/10.1162/COLI_a_00090.

Uwe Mönnich. 1997. Adjunction as substitution: An
algebraic formulation of regular, context-free and tree
adjoining languages. In Proc. 3rd Int. Conf. Formal
Grammar, pages 169–178. Université de Provence,
France. available at: arxiv.org/abs/cmp-lg/
9707012v1.

Uwe Mönnich. 2010. Well-nested tree languages and at-
tributed tree transducers. In Proc. 10th Int. Conf. Tree
Adjoining Grammars and Related Formalisms. Yale
University. available at: www2.research.att.
com/˜srini/TAG+10/papers/uwe.pdf.

514



Andreas Potthoff and Wolfgang Thomas. 1993. Reg-
ular tree languages without unary symbols are star-
free. In Proc. 9th Int. Symp. Fundamentals of Compu-
tation Theory, volume 710 of LNCS, pages 396–405.
Springer.

William C. Rounds. 1969. Context-free grammars on
trees. In Proc. 1st ACM Symp. Theory of Comput.,
pages 143–148. ACM.

William C. Rounds. 1970. Tree-oriented proofs of some
theorems on context-free and indexed languages. In
Proc. 2nd ACM Symp. Theory of Comput., pages 109–
116. ACM.

Yves Schabes. 1990. Mathematical and Computational
Aspects of Lexicalized Grammars. Ph.D. thesis, Uni-
versity of Pennsylvania, Philadelphia, USA.

Yves Schabes, Anne Abeillé, and Aravind K. Joshi.
1988. Parsing strategies with ‘lexicalized’ grammars:
Application to tree adjoining grammars. In Proc. 12th
Int. Conf. Computational Linguistics, pages 578–583.
John von Neumann Society for Computing Sciences,
Budapest.

Yves Schabes and Richard C. Waters. 1995. Tree in-
sertion grammar: A cubic-time parsable formalism
that lexicalizes context-free grammars without chang-
ing the trees produced. Comput. Linguist., 21(4):479–
513.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars. Theoret. Comput. Sci., 88(2):191–229.

Heiko Stamer. 2009. Restarting Tree Automata: Formal
Properties and Possible Variations. Ph.D. thesis, Uni-
versity of Kassel, Germany.

Heiko Stamer and Friedrich Otto. 2007. Restarting tree
automata and linear context-free tree languages. In
Proc. 2nd Int. Conf. Algebraic Informatics, volume
4728 of LNCS, pages 275–289. Springer.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions produced
by various grammatical formalisms. In Proc. 25th
Ann. Meeting of the Association for Computational
Linguistics, pages 104–111. Association for Compu-
tational Linguistics.

XTAG Research Group. 2001. A lexicalized tree adjoin-
ing grammar for English. Technical Report IRCS-01-
03, University of Pennsylvania, Philadelphia, USA.

Ryo Yoshinaka. 2006. Extensions and Restrictions of
Abstract Categorial Grammars. Ph.D. thesis, Univer-
sity of Tokyo.

515


