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Abstract

Many semantic parsing models use tree trans-
formations to map between natural language
and meaning representation. However, while
tree transformations are central to several
state-of-the-art approaches, little use has been
made of the rich literature on tree automata.
This paper makes the connection concrete
with a tree transducer based semantic parsing
model and suggests that other models can be
interpreted in a similar framework, increasing
the generality of their contributions. In par-
ticular, this paper further introduces a varia-
tional Bayesian inference algorithm that is ap-
plicable to a wide class of tree transducers,
producing state-of-the-art semantic parsing re-
sults while remaining applicable to any do-
main employing probabilistic tree transducers.

1 Introduction

Semantic parsing is the task of mapping natural lan-
guage sentences to a formal representation of mean-
ing. Typically, a system is trained on pairs of natural
language sentences (NLs) and their meaning repre-
sentation expressions (MRs), as in figure 1(a), and
the system must generalize to novel sentences.

Most semantic parsing models rely on an assump-
tion of structural similarity between MR and NL.
Since strict isomorphism is overly restrictive, this
assumption is often relaxed by applying transforma-
tions. Several approaches assume a tree structure to
the NL, MR, or both (Ge and Mooney, 2005; Kate
and Mooney, 2006; Wong and Mooney, 2006; Lu
et al., 2008; B̈orschinger et al., 2011), and often in-

Figure 1: (a) An example sentence/meaning pair, (b) a
tree transformation based mapping, and (c) a tree trans-
ducer that performs the mapping.

volve tree transformations either between two trees
or a tree and a string.

The tree transducer, a formalism from automata
theory which has seen interest in machine transla-
tion (Yamada and Knight, 2001; Graehl et al., 2008)
and has potential applications in many other areas,
is well suited to formalizing such tree transforma-
tion based models. Yet, while many semantic pars-
ing systems resemble the formalism, each was pro-
posed as an independent model requiring custom al-
gorithms, leaving it unclear how developments in
one line of inquiry relate to others. We argue for a
unifying theory of tree transformation based seman-
tic parsing by presenting a tree transducer model and
drawing connections to other similar systems.

We make a further contribution by bringing to
tree transducers the benefits of the Bayesian frame-
work for principled handling of data sparsity and
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prior knowledge. Graehl et al. (2008) present an EM
training procedure for top down tree transducers, but
while there are Bayesian approaches to string trans-
ducers (Chiang et al., 2010) and PCFGs (Kurihara
and Sato, 2006), there has yet to be a proposal for
Bayesian inference intree transducers. Our vari-
ational algorithm produces better semantic parses
than EM while remaining general to a broad class
of transducers appropriate for other domains.

In short, our contributions are three-fold: we
present a new state-of-the-art semantic parsing
model, propose a broader theory for tree transforma-
tion based semantic parsing, and present a general
inference algorithm for the tree transducer frame-
work. We recommend the last of these as just one
benefit of working within a general theory: contri-
butions are more broadly applicable.

2 Meaning representations and regular
tree grammars

In semantic parsing, an MR is typically an expres-
sion from a machine interpretable language (e.g., a
database query language or a logical language like
Prolog). In this paper we assume MRs can be rep-
resented as trees, either by pre-parsing or because
they are already trees (often the case for functional
languages like LISP).1 More specifically, we assume
the MR language is a regular tree language.

A regular tree grammar (RTG) closely resembles
a context free grammar (CFG), and is a way of de-
scribing a language of trees. Formally, defineTΣ as
the set of trees with symbols from alphabetΣ, and
TΣ(A) as the set of all trees inTΣ∪A where symbols
fromA only occur at the leaves. Then an RTG is a
tuple(Q, Σ, qstart,R), whereQ is a set of states,Σ
is an alphabet,qstart ∈ Q is the initial state, andR
is a set of grammar rules of the formq → t, whereq
is a state fromQ andt is a tree fromTΣ(Q).

A rule typically consists of a parent state (left) and
its child states and output symbol (right). We indi-
cate states using all capital letters:

NUM → population(PLACE).

Intuitively, an RTG is a CFG where the yield of
every parse is itself a tree. In fact, for any CFGG, it

1See Liang et al. (2011) for work in representing lambda
calculus expressions with trees.

is straightforward to produce a corresponding RTG
that generates the set of parses ofG. Consequently,
while we assume we have an RTG for the MR lan-
guage, there is no loss of generality if the MR lan-
guage is actually context free.

3 Weighted root-to-frontier, linear,
non-deleting tree-to-string transducers

Tree transducers (Rounds, 1970; Thatcher, 1970) are
generalizations of finite state machines that operate
on trees. Mirroring the branching nature of its in-
put, the transducer may simultaneously transition to
several successor states, assigning a separate state to
each subtree.

There are many classes of transducer with dif-
ferent formal properties (Knight and Greahl, 2005;
Maletti et al., 2009). Figure 1(c) is an example of
a root-to-frontier, linear, non-deleting tree-to-string
transducer. It is defined using rules where the left
hand side identifies a state of the transducer and a
fragment of the input tree, and the right hand side
describes a portion of the output string. Variables
xi stand for entire sub-trees, and state-variable pairs
qj .xi stand for strings produced by applying the
transducer starting at stateqj to subtreexi. Fig-
ure 1(b) illustrates an application of the transducer,
taking the tree on the left as input and outputting the
string on the right.

Formally, a weighted root-to-frontier, tree-to-
string transducer is a 5-tuple(Q, Σ, ∆, qstart,R). Q
is a finite set of states,Σ and∆ are the input and out-
put alphabets,qstart is the start state, andR is the
set of rules. Denote a pair of symbols,a andb by
a.b, the cross product of two setsA andB byA.B,
and letX be the set of variables{x0, x1, ...}. Then,
each ruler ∈ R is of the form[q.t → u].v, where
v ∈ ℜ≥0 is the rule weight,q ∈ Q, t ∈ TΣ(X ), and
u is a string in(∆ ∪ Q.X )∗ such that everyx ∈ X
in u also occurs int.

We sayq.t is the left hand side of ruler andu its
right hand side. The transducer islinear iff no vari-
able appears more than once on the right hand side.
It is non-deleting iff all variables on the left hand
side also occur on the right hand side. In this paper
we assume that every treet on the left hand side is ei-
ther a single variablex0 or of the formσ(x0, ...xn),
whereσ ∈ Σ (i.e., it is a tree of depth≤ 1).
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A weighted tree transducer may define a probabil-
ity distribution, either a joint distribution over input
and output pairs or a conditional distribution of the
output given the input. Here, we will use joint dis-
tributions, which can be defined by ensuring that the
weights of all rules with the same state on the left-
hand side sum to one. In this case, it can be help-
ful to view the transducer as simultaneously gener-
ating both the input and output, rather than the usual
view of mapping input trees into output strings. A
joint distribution allows us to model with a single
machine both the input and output languages, which
is important during decoding when we want to infer
the input given the output.

4 A generative model of semantic parsing

Like the hybrid tree semantic parser (Lu et al., 2008)
and the synchronous grammar based WASP (Wong
and Mooney, 2006), our model simultaneously gen-
erates the input MR tree and the output NL string.
The MR tree is built up according to the provided
MR grammar, one grammar rule at a time. Coupled
with the application of the MR rule, similar CFG-
like productions are applied to the NL side, repeated
until both the MR and NL are fully generated. In
each step, we select an MR rule and then build the
NL by first choosing a pattern with which to expand
it and then filling out that pattern with words drawn
from a unigram distribution.

This kind of coupled generative process can
be naturally formalized with tree transducer rules,
where the input tree fragment on the left side of each
rule describes the derivation of the MR and the right
describes the corresponding NL derivation.

For a simple example of a tree-to-string trans-
ducer rule consider

q.population(x1) → ‘population of’ q.x1 (1)

which simultaneously generates tree fragment
population(x1) on the left and sub-string “popula-
tion of q.x1” on the right. Variablex1 stands for
an MR subtree underpopulation, and, on the right,
state-variable pairq.x1 stands for the NL substring
generated while processing subtreex1 starting from
q. While this rule can serve as a single step of
an MR-to-NL map such as the example transducer
shown in Figure 1(c), such rules do not model the

NUM → population(PLACE) (m)

PLACE→ cityid(CITY, STATE) (r)

CITY → portland (u)

STATE→ maine (v)

qMR
m,1.x1 → qNL

r .x1 (2)

qMR
r,1 .x1 → qNL

u .x1

qMR
r,2 .x1 → qNL

v .x1

qNL
m .population(w1, x1, w2) →

qW
m .w1 qMR

m,1.x1 qEND.w2 (3)

qNL
r .cityid(w1, x1, w2, x2, w3) →

qEND.w1 qMR
r,2 .x2 qW

r .w2 qMR
r,1 .x1 qEND.w3 (4)

qW
m .w1 → ‘population’ qW

m .w1 (5)

qW
m .w1 → ‘of’ qW

m .w1

qW
m .w1 → ... qW

m .w1

qW
m .w1 → ‘of’ qEND.w1 (6)

qW
m .w1 → ... qEND.w1

qEND.W → ǫ (7)

Figure 2: Examples of transducer rules (bottom) that gen-
erate MR and NL associated with MR rulesm-v (top).
Transducer rule 2 selects MR ruler from the MR gram-
mar. Rule 3 simultaneously writes the MR associated
with rule m and chooses an NL pattern (as does 4 for
r). Rules 5-7 generate the words associated withm ac-
cording to a unigram distribution specific tom.

grammaticality of the MR and lack flexibility since
sub-strings corresponding to a given tree fragment
must be completely pre-specified. Instead, we break
transductions down into a three stage process of
choosing the (i) MR grammar rule, (ii) NL expan-
sion pattern, and (iii) individual words according to
a unigram distribution. Such a decomposition in-
corporates independence assumptions that improve
generalizability. See Figure 2 for example rules
from our transducer and Figure 3 for a derivation.

To ensure that only grammatical MRs are gener-
ated, each state of our transducer encodes the iden-
tity of exactly one MR grammar rule. Transitions
betweenqMR andqNL states implicitly select the em-
bedded rule. For instance, rule 2 in Figure 2 selects
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MR grammar ruler to expand theith child of the
parent produced by rulem. Aside from ensuring
the grammaticality of the generated MR, rules of
this type also model theprobability of the MR, con-
ditioning the probability of a rule both on the par-
ent rule and the index of the child being expanded.
Thus, parent stateqMR

m,1 encodes not only the identity
of rulem, but also the child index,1 in this case.

Once the MR rule is selected,qNL states are ap-
plied to select among rules such as 3 and 4 to gen-
erate the MR entity and choose the NL expansion
pattern. These rules determine the word order of the
language by deciding (i) whether or not to generate
words in a given location and (ii) where to insert the
result of processing each MR subtree. Decision (i) is
made by either transitioning to stateqW

r to generate
words or toqEND to generate the empty string. De-
cision (ii) is made with the order ofxi’s on the right
hand side. Rule 4 illustrates the case whereport-
land andmaine in cityid(portland, maine) would be
realized in reverse order as “maine ... portland”.

The particular set of patterns that appear on the
right of rules such as 3 embodies the binary word at-
tachment decisions and the particular permutation of
xi in the NL. We allow words to be generated at the
beginning and end of each pattern and between the
xis. Thus, rule 4 is just one of 16 such possible pat-
terns (3 binary decisions and 2 permutations), while
rule 3 is one of 4. We instantiate all such rules and
allow the system to learn weights for them according
to the language of the training data.

Finally, the NL is filled out with words chosen ac-
cording to a unigram distribution, implemented in a
PCFG-like fashion, using a different rule for each
word which recursively chooses the next word un-
til a string termination rule is reached.2 Generating
word sequence “population of” entails first choosing
rule 5 in Figure 2. StateqW

r is then recursively ap-
plied to choose rule 6, generating “of” at the same
time as deciding to terminate the string by transi-
tioning to a new stateqEND which deterministically
concludes by writing the empty stringǫ.

On the MR side, rules 5-7 do very little: the tree
on the left side of rules 5 and 6 consists entirely of a

2There are roughly 25,000 rules in the transducers in our
experiments, and the majority of these implement the unigram
word distributions since every entity in the MR may potentially
produce any of the words it is paired with in training.

subtree variablew1, indicating that nothing is gener-
ated in the MR. Rule 7 subsequently generates these
subtrees asW symbols, marking corresponding lo-
cations where words might be produced in the NL,
which are later removed during post processing.3

Figure 3(b) illustrates the coupled generative pro-
cess. At each step of the derivation, an MR rule is
chosen to expand a node of the MR tree, and then a
corresponding part of the NL is expanded. Step 1.1
of the example chooses MR rulem, NUM →
population(PLACE). Transducer rule 3 then gener-
atespopulation in the MR (shown in the left column)
at the same time as choosing an NL expansion pat-
tern (Step 1.2) which is subsequently filled out with
specific words “population” (1.3) and “of” (1.4).

This coupled derivation can be represented by a
tree, shown in Figure 3(c), which explicitly repre-
sents the dependency structure of the coupled MR
and NL (a simplified version is shown in (d) for clar-
ity). In our transducer, which defines a joint distri-
bution over both the MR and NL, the probability of
a rule is conditioned on the parent state. Since each
state encodes an MR rule, MR rule specific distribu-
tions are learned for both the words and their order.

5 Relation to existing models

The tree transducer model can be viewed either as
a generative procedure for building up two separate
structures or as a transformative machine that takes
one as input and produces another as output. Dif-
ferent semantic parsing approaches have taken one
or the other view, and both can be captured in this
single framework.

WASP (Wong and Mooney, 2006) is an exam-
ple of the former perspective, coupling the genera-
tion of the MR and NL with a synchronous gram-
mar, a formalism closely related to tree transducers.
The most significant difference from our approach
is that they use machine translation techniques for
automatically extracting rules from parallel corpora;
similar techniques can be applied to tree transduc-
ers (Galley et al., 2004). In fact, synchronous gram-
mars and tree transducers can be seen as instances of
the same more general class of automata (Shieber,

3The addition ofW symbols is a convenience; it is easier to
design transducer rules where every substring on the right side
corresponds to a subtree on the left.
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Figure 3: Coupled derivation of an (MR, NL) pair. At each stepan MR grammar rule is chosen to expand the MR and
the corresponding portion of the NL is then generated. Symbols W stand for locations in the tree corresponding to
substrings of the output and are removed in a post-processing step. (a) The (MR, NL) pair. (b) Step by step derivation.
(c) The same derivation shown in tree form. (d) The underlying dependency structure of the derivation.

2004). Rather than argue for one or the other, we
suggest that other approaches could also be inter-
preted in terms of general model classes, grounding
them in a broader base of theory.

The hybrid tree model (Lu et al., 2008) takes
a transformative perspective that is in some ways
more similar to our model. In fact, there is a one-
to-one relationship between the multinomial param-
eters of the two models. However, they represent the
MR and NL with a single tree and apply tree walk-
ing algorithms to extract them. Furthermore, they
implement a custom training procedure for search-
ing over the potential MR transformations. The tree

transducer, on the other hand, naturally captures the
same probabilistic dependencies while maintaining
the separation between MR and NL, and further al-
lows us to build upon a larger body of theory.

KRISP (Kate and Mooney, 2006) uses string clas-
sifiers to label substrings of the NL with entities
from the MR. To focus search, they impose an or-
dering constraint based on the structure of the MR
tree, which they relax by allowing the re-ordering
of sibling nodes and devise a procedure for recover-
ing the MR from the permuted tree. This procedure
corresponds to backward-application in tree trans-
ducers, identifying the most likely input tree given a
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particular output string.
SCISSOR (Ge and Mooney, 2005) takes syntactic

parses rather than NL strings and attempts to trans-
late them into MR expressions. While few seman-
tic parsers attempt to exploit syntactic information,
there are techniques from machine translation for
using tree transducers to map between parsed par-
allel corpora, and these techniques could likely be
applied to semantic parsing.

Börschinger et al. (2011) argue for the PCFG as
an alternative model class, permitting conventional
grammar induction techniques, and tree transducers
are similar enough that many techniques are applica-
ble to both. However, the PCFG is less amenable to
conceptualizing correspondences between parallel
structures, and their model is more restrictive, only
applicable to domains with finite MR languages,
since their non-terminals encode entire MRs. The
tree transducer framework, on the other hand, allows
us to condition on individual MR rules.

6 Variational Bayes for tree transducers

As seen in the example in Figure 3(c), tree trans-
ducers not only operate on trees, their derivations
are themselves trees, making them amenable to dy-
namic programming and an EM training procedure
resembling inside-outside (Graehl et al., 2008). EM
assigns zero probability to events not seen in the
training data, however, limiting the ability to gen-
eralize to novel items. The Bayesian framework of-
fers an elegant solution to this problem, introducing
a prior over rule weights which simultaneously en-
sures that all rules receive non-zero probability and
allows the incorporation of prior knowledge and in-
tuitions. Unfortunately, the introduction of a prior
makes exact inference intractable, so we use an ap-
proximate method, variational Bayesian inference
(Bishop, 2006), deriving an algorithm similar to that
for PCFGs (Kurihara and Sato, 2006).

The tree transducer defines a joint distribution
over the inputy, outputw, and their derivationx
as the product of the weights of the rules appearing
in x. That is,

p(y, x, w|θ) =
∏

r∈R

θ(r)cr(x)

whereθ is the set of multinomial parameters,r is a
transducer rule,θ(r) is its weight, andcr(x) is the

number of timesr appears inx. In EM, we are in-
terested in the point estimate forθ that maximizes
p(Y,W|θ), whereY andW are theN input-output
pairs in the training data. In the Bayesian setting,
however, we place a symmetric Dirichlet prior over
θ and estimate a posterior distribution over bothX
andθ.

p(θ,X|Y,W) =
p(Y,X ,W, θ)

p(Y,W)

=
p(θ)

∏N
i=1 p(yi, xi, wi|θ)

∫

p(θ)
∏N

i=1

∑

x∈Xi
p(yi, x, wi|θ)dθ

Since the integral in the denominator is in-
tractable, we look for an appropriate approximation
q(θ,X ) ≈ p(θ,X|Y,W). In particular, we assume
the rule weights and the derivations are independent,
i.e., q(θ,X ) = q(θ)q(X ). The basic idea is then to
define a lower boundF ≤ ln p(Y,W) in terms ofq
and then apply the calculus of variations to find aq

that maximizesF .

ln p(Y,W|α) = ln Eq[
p(Y,X ,W|θ)

q(θ,X )
]

≥ Eq[ln
p(Y,X ,W|θ)

q(θ,X )
] = F ,

Applying our independence assumption, we arrive at
the following expression forF , whereθt is the par-
ticular parameter vector corresponding to the rules
with parent statet:

F =
∑

t∈Q

(

Eq(θt)[ln p(θt|αt)]− Eq(θt)[ln q(θt)]
)

+
N
∑

i=1

(

Eq[ln p(wi, xi, yi|θ)]− Eq(xi)[ln q(xi)]
)

.

We find theq(θt) andq(xi) that maximizeF by
taking derivatives of the Lagrangian, setting them to
zero, and solving, which yields:

q(θt) = Dirichlet(θt|α̂t)

q(xi) =

∏

r∈R θ̂(r)cr(xi)

∑

x∈Xi

∏

r∈R θ̂(r)cr(x)

where

α̂(r) = α(r) +
∑

i

Eq(xi)[cr(xi)]

θ̂(r) = exp



Ψ(α̂(r))−Ψ(
∑

r:s(r)=t

α̂(r))



 .
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The parameters ofq(θt) are defined with respect
to q(xi) and the parameters ofq(xi) with respect
to the parameters ofq(θt). q(xi) can be computed
efficiently using inside-outside. Thus, we can per-
form an EM-like alternation between calculatingα̂

andθ̂.4

It is also possible to estimate the hyper-
parametersα from data, a practice known asem-
pirical Bayes, by optimizingF . We explore learn-
ing separate hyper-parametersαt for eachθt, us-
ing a fixed point update described by Minka (2000),
wherekt is the number of rules with parent statet:

α′t =

(

1

αt

+
1

ktα
2
t

(

∂2F

∂α2
t

)−1(
∂F

∂αt

)

)−1

7 Training and decoding

We implement our VB training algorithm inside the
tree transducer package Tiburon (May and Knight,
2006), and experiment with both manually set and
automatically estimated priors. For our manually
set priors, we explore different hyper-parameter set-
tings for three different priors, one for each of the
main decision types: MR rule, NL pattern, and word
generation. For the automatic priors, we estimate
separate hyper-parameters for each multinomial (of
which there are hundreds). As is standard, we ini-
tialize the word distributions using a variant of IBM
model 1, and make use of NP lists (a manually cre-
ated list of the constants in the MR language paired
with the words that refer to them in the corpus).

At test time, since finding the most probableMR
for a sentence involves summing over all possible
derivations, we instead find the MR associated with
the most probablederivation.

8 Experimental setup and evaluation

We evaluate the system on GeoQuery (Wong and
Mooney, 2006), a parallel corpus of 880 English
questions and database queries about United States
geography, 250 of which were translated into Span-
ish, Japanese, and Turkish. We present here ad-
ditional translations of the full 880 sentences into

4Because of the resemblance to EM, this procedure has been
called VBEM. Unlike EM, however, this procedure alternates
between two estimation steps and has no maximization step.

German, Greek, and Thai. For evaluation, follow-
ing from Kwiatkowski et al. (2010), we reserve 280
sentences for test and train on the remaining 600.
During development, we use cross-validation on the
600 sentence training set. At test, we run once on the
remaining 280 and perform 10 fold cross-validation
on the 250 sentence sets.

To judge correctness, we follow standard prac-
tice and submit each parse as a GeoQuery database
query, and say the parse is correct only if the answer
matches the gold standard. We report raw accuracy
(the percentage of sentences with correct answers),
as well as F1: the harmonic mean of precision (the
proportion of correct answers out of sentences with
a parse) and recall (the proportion of correct answers
out of all sentences).5

We run three other state-of-the-art systems for
comparison.WASP (Wong and Mooney, 2006) and
the hybrid tree (Lu et al., 2008) are chosen to rep-
resent tree transformation based approaches, and,
while this comparison is our primary focus, we also
reportUBL-S (Kwiatkowski et al., 2010) as a non-
tree based top-performing system.6 The hybrid tree
is notable as the only other system based on a gen-
erative model, anduni-hybrid, a version that uses a
unigram distribution over words, is very similar to
our own model. We also report the best performing
version,re-hybrid, which incorporates a discrimina-
tive re-ranking step.

We report transducer performance under three dif-
ferent training conditions:tsEM using EM, tsVB-
auto using VB with empirical Bayes, andtsVB-hand
using hyper-parameters manually tuned on the Ger-
man training data (α of 0.3, 0.8, and 0.25 for MR
rule, NL pattern, and word choices, respectively).

Table 1 shows results for 10 fold cross-validation
on the training set. The results highlight the benefit
of the Dirichlet prior, whether manually or automat-
ically set. VB improves over EM considerably, most
likely because (1) the handling of unknown words
and MR entities allows it to return an analysis for all
sentences, and (2) the sparse Dirichlet prior favors
fewer rules, reasonable in this setting where only a
few words are likely to share the same meaning.

5Note that accuracy and f-score reduce to the same formula
if there are no parse failures.

6UBL-S is based on CCG, which can be viewed as a map-
ping between graphs more general than trees.
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DEV geo600 - 10 fold cross-val
German Greek

Acc F1 Acc F1
UBL-S 76.7 76.9 76.2 76.5
WASP 66.3 75.0 71.2 79.7
uni-hybrid 61.7 66.1 71.0 75.4
re-hybrid 62.3 69.5 70.2 76.8
tsEM 61.7 67.9 67.3 73.2
tsVB-auto 74.0 74.0 •79.8 •79.8
tsVB-hand •78.0 •78.0 79.0 79.0

English Thai
UBL-S 85.3 85.4 74.0 74.1
WASP 73.5 79.4 69.8 73.9
uni-hybrid 76.3 79.0 71.3 73.7
re-hybrid 77.0 82.2 71.7 76.0
tsEM 73.5 78.1 69.8 72.9
tsVB-auto 81.2 81.2 74.7 74.7
tsVB-hand •83.7 •83.7 •76.7 •76.7

Table 1: Accuracy and F1 score comparisons on the
geo600 training set. Highest scores are in bold, while
the highest among thetree based models are marked with
a bullet. The dotted line separates the tree based from
non-tree based models.

On the test set (Table 2), we only run the model
variants that perform best on the training set. Test set
accuracy is consistently higher for the VB trained
tree transducer than the other tree transformation
based models (and often highest overall), while f-
score remains competitive.7

9 Conclusion

We have argued that tree transformation based se-
mantic parsing can benefit from the literature on for-
mal language theory and tree automata, and have
taken a step in this direction by presenting a tree
transducer based semantic parser. Drawing this con-
nection facilitates a greater flow of ideas in the
research community, allowing semantic parsing to
leverage ideas from other work with tree automata,
while making clearer how seemingly isolated ef-
forts might relate to one another. We demonstrate
this by both building on previous work in train-
ing tree transducers using EM (Graehl et al., 2008),

7Numbers differ slightly here from previously published re-
sults due to the fact that we have standardized the inputs to the
different systems.

TEST geo880 - 600 train/280 test
German Greek

Acc F1 Acc F1
UBL-S 75.0 75.0 73.6 73.7
WASP 65.7 • 74.9 70.7 • 78.6
re-hybrid 62.1 68.5 69.3 74.6
tsVB-hand • 74.6 74.6 •75.4 75.4

English Thai
UBL-S 82.1 82.1 66.4 66.4
WASP 71.1 77.7 71.4 75.0
re-hybrid 76.8 • 81.0 73.6 76.7
tsVB-hand • 79.3 79.3 • 78.2 • 78.2

geo250 - 10 fold cross-val
English Spanish

UBL-S 80.4 80.6 79.7 80.1
WASP 70.0 80.8 72.4 81.0
re-hybrid 74.8 82.6 78.8 • 86.2
tsVB-hand • 83.2 • 83.2 • 80.0 80.0

Japanese Turkish
UBL-S 80.5 80.6 74.2 74.9
WASP 74.4 • 82.9 62.4 75.9
re-hybrid 76.8 82.4 66.8 • 77.5
tsVB-hand • 78.0 78.0 • 75.6 75.6

Table 2: Accuracy and F1 score comparisons on the
geo880 and geo250 test sets. Highest scores are in
bold, while the highest among thetree based models are
marked with a bullet. The dotted line separates the tree
based from non-tree based models.7

and describing a general purpose variational infer-
ence algorithm for adapting tree transducers to the
Bayesian framework. The new VB algorithm re-
sults in an overall performance improvement for the
transducer over EM training, and the general effec-
tiveness of the approach is further demonstrated by
the Bayesian transducer achieving highest accuracy
among other tree transformation based approaches.
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