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Abstract

This paper presents a novel method to suggest
long word reorderings to a phrase-based SMT
decoder. We address language pairs where
long reordering concentrates on few patterns,
and use fuzzy chunk-based rules to predict
likely reorderings for these phenomena. Then
we use reordered n-gram LMs to rank the re-
sulting permutations and select the n-best for
translation. Finally we encode these reorder-
ings by modifying selected entries of the dis-
tortion cost matrix, on a per-sentence basis.
In this way, we expand the search space by a
much finer degree than if we simply raised the
distortion limit. The proposed techniques are
tested on Arabic-English and German-English
using well-known SMT benchmarks.

1 Introduction
Despite the large research effort devoted to the mod-
eling of word reordering, this remains one of the
main obstacles to the development of accurate SMT
systems for many language pairs. On one hand, the
phrase-based approach (PSMT) (Och, 2002; Zens et
al., 2002; Koehn et al., 2003), with its shallow and
loose modeling of linguistic equivalences, appears
as the most competitive choice for closely related
language pairs with similar clause structures, both
in terms of quality and of efficiency. On the other,
tree-based approaches (Wu, 1997; Yamada, 2002;
Chiang, 2005) gain advantage, at the cost of higher
complexity and isomorphism assumptions, on lan-
guage pairs with radically different word orders.

Lying between these two extremes are language
pairs where most of the reordering happens locally,

and where long reorderings can be isolated and de-
scribed by a handful of linguistic rules. Notable
examples are the family-unrelated Arabic-English
and the related German-English language pairs. In-
terestingly, on these pairs, PSMT generally pre-
vails over tree-based SMT1, producing overall high-
quality outputs and isolated but critical reordering
errors that undermine the global sentence meaning.

Previous works on this type of language pairs have
mostly focused on source reordering prior to trans-
lation (Xia and McCord, 2004; Collins et al., 2005),
or on sophisticated reordering models integrated into
decoding (Koehn et al., 2005; Al-Onaizan and Pap-
ineni, 2006), achieving mixed results. To merge the
best of both approaches – namely, access to rich con-
text in the former and natural coupling of reorder-
ing and translation decisions in the latter – we intro-
duce modified distortion matrices: a novel method to
seamlessly provide to the decoder a set of likely long
reorderings pre-computed for a given input sentence.
Added to the usual space of local permutations de-
fined by a low distortion limit (DL), this results in a
linguistically informed definition of the search space
that simplifies the task of the in-decoder reordering
model, besides decreasing its complexity.

The paper is organized as follows. After review-
ing a selection of relevant works, we analyze salient
reordering patterns in Arabic-English and German-
English, and describe the corresponding chunk-
based reordering rule sets. In the following sections
we present a reordering selection technique based on

1A good comparison of phrase-based and tree-based ap-
proaches across language pairs with different reordering levels
can be found in (Zollmann et al., 2008).
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reordered n-gram LMs and, finally, explain the no-
tion of modified distortion matrices. In the last part
of the paper, we evaluate the proposed techniques on
two popular MT tasks.

2 Previous work

Pre-processing approaches to word reordering aim
at permuting input words in a way that minimizes
the reordering needed for translation: determinis-
tic reordering aims at finding a single optimal re-
ordering for each input sentence, which is then
translated monotonically (Xia and McCord, 2004)
or with a low DL (Collins et al., 2005; Habash,
2007); non-deterministic reordering encodes mul-
tiple alternative reorderings into a word lattice and
lets a monotonic decoder find the best path accord-
ing to its models (Zhang et al., 2007; Crego and
Habash, 2008; Elming and Habash, 2009; Niehues
and Kolss, 2009). The latter approaches are ideally
conceived as alternative to in-decoding reordering,
and therefore require an exhaustive reordering rule
set. Two recent works (Bisazza and Federico, 2010;
Andreas et al., 2011) opt instead for a hybrid way:
rules are used to generate multiple likely reorder-
ings, but only for a specific phenomenon – namely
verb-initial clauses in Arabic. This yields sparse re-
ordering lattices that can be translated with a regular
decoder performing additional reordering.

Reordering rules for pre-processing are either
manually written (Collins et al., 2005) or automat-
ically learned from syntactic parses (Xia and Mc-
Cord, 2004; Habash, 2007; Elming and Habash,
2009), shallow syntax chunks (Zhang et al., 2007;
Crego and Habash, 2008) or part-of-speech labels
(Niehues and Kolss, 2009). Similarly to hybrid ap-
proaches, in this work we use few linguistically in-
formed rules to generate multiple reorderings for se-
lected phenomena but, as a difference, we do not
employ lattices to represent them. We also include a
competitive in-decoding reordering model in all the
systems used to evaluate our methods.

Another large body of work is devoted to the mod-
eling of reordering decisions inside decoding, based
on a decomposition of the problem into a sequence
of basic reordering steps. Existing approaches range
from basic linear distortion to more complex models
that are conditioned on the words being translated.

The linear distortion model (Koehn et al., 2003)
encourages monotonic translations by penalizing
source position jumps proportionally to their length.
If used alone, this model is inadequate for language
pairs with different word orders. Green et al. (2010)
tried to improve it with a future distortion cost es-
timate. Thus they were able to preserve baseline
performance at a very high DL, but not to improve
it. Lexicalized phrase orientation models (Tillmann,
2004; Koehn et al., 2005; Zens and Ney, 2006; Gal-
ley and Manning, 2008) predict the orientation of a
phrase with respect to the last translated one. These
models are known to well handle local reordering
and are widely adopted by the PSMT community.
However, they are unsuitable to model long reorder-
ing as they classify as “discontinuous” every phrase
that does not immediately follow or precede the last
translated one. Lexicalized distortion models pre-
dict the jump from the last translated word to the
next one, with a class for each possible jump length
(Al-Onaizan and Papineni, 2006), or bin of lengths
(Green et al., 2010). These models are conceived to
deal with long reordering, but can easily suffer from
data sparseness, especially for longer jumps occur-
ring less frequently.

Following a typical sequence modeling approach,
Feng et al. (2010) train n-gram language models on
source data previously reordered in accordance to
the target language translation. This method does
not directly model reordering decisions, but rather
word sequences produced by them. Despite their
high perplexities, reordered LMs yield some im-
provements when integrated to a PSMT baseline that
already includes a discriminative phrase orientation
model (Zens and Ney, 2006). In this work we use
similar models to rank sets of chunk permutations.

Attempting to improve the reordering space def-
inition, Yahyaei and Monz (2010) train a classifier
to guess the most likely jump length at each source
position, then use its predictions to dynamically set
the DL. Translation improvements are obtained on a
simple task with mostly short sentences (BTEC).

Modifying the distortion function, as proposed in
this paper, makes it possible to expand the pemuta-
tion search space by a much finer degree than vary-
ing the DL does.
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3 Long reordering patterns

Our study focuses on Arabic-English and German-
English: two language pairs characterized by uneven
distributions of word-reordering phenomena, with
long-range movements concentrating on few pat-
terns. In Arabic-English, the internal order of most
noun phrases needs to be reversed during translation,
which is generally well handled by phrase-internal
reordering or local distortion. At the constituent
level, instead, Arabic admits both SV(O) and VS(O)
orders, the latter causing problematic long reorder-
ings. Common errors due to this issue are the ab-
sence of main verb in the English translation, or the
placement of the main verb before its own subject.
In both cases, adequacy is seriously compromised.
In German-English, the noun phrase structure is
similar between source and target languages. How-
ever, at the constituent level, the verb-second order
of German main clauses conflicts with the rigid SVO
structure of English, as does the clause-final verb
position of German subordinate clauses. As a fur-
ther complication, German compound verbs are split
apart so that the non-finite element (main verb) can
appear long after the inflected auxiliary or modal.

Thanks to sophisticated reordering models, state-
of-the-art PSMT systems are generally good at han-
dling local reordering phenomena that are not cap-
tured by phrase-internal reordering. However, they
typically fail to predict long reorderings. We believe
this is mainly not the fault of the reordering mod-
els, but rather of a too coarse definition of the search
space. To have a concrete idea, consider that a small
change of the DL from 5 to 6 words, in a sentence
of 8, makes the number of explorable permutations
increase from about 9,000 to 22,000. Existing mod-
els cannot be powerful enough to deal with such a
rapidly growing search space.

As a result, decoding at very high DLs is not
a good solution for these language pairs. Indeed,
decent performances are obtained within a low or
medium DL, but this obviously comes at the expense
of long reorderings, which are often crucial to pre-
serve the general meaning of a translated sentence.
For instance, taking English as the target language,
it is precisely the relative positioning of predicate ar-
guments that determines their role, in the absence of
case markers. Thus, a wrongly reordered verb with

minor impact on automatic scores, can be judged
very badly by a human evaluator.

We will now describe two rule sets aimed at cap-
turing these reordering phenomena.

4 Shallow syntax reordering rules

To compute the source reorderings, we use chunk-
based rules following Bisazza and Federico (2010).
Shallow syntax chunking is indeed a lighter and
simpler task compared to full parsing, and it can
be used to constrain the number of reorderings in
a softer way. While rules based on full parses
are generally deterministic, chunk-based rules are
non-deterministic or fuzzy, as they generate sev-
eral permutations for each matching sequence2. Be-
sides defining a unique segmentation of the sen-
tence, chunk annotation provides other useful infor-
mation that can be used by the rules – namely chunk
type and POS tags3.

For Arabic-English we apply the rules proposed
by Bisazza and Federico (2010) aimed at transform-
ing VS(O) sentences into SV(O). Reorderings are
generated by moving each verb chunk (VC), alone
or with its following chunk, by 1 to 6 chunks to the
right. The maximum movement of each VC is lim-
ited to the position of the next VC, so that neigh-
boring verb-reordering sequences may not overlap.
This rule set was shown to cover most (99.5%) of
the verb reorderings observed in a parallel news cor-
pus, including those where the verb must be moved
along with an adverbial or a complement.

For German-English we propose a set of three
rules4 aimed at arranging the German constituents
in SVO order:

• infinitive: move each infinitive VC right after a
preceding punctuation;

• subordinate: if a VC is immediately followed
by a punctuation, place it after a preceding sub-
ordinating conjunction (KOUS) or substitutive
relative pronoun (PRELS);

2Chunk annotation does not identify subject and comple-
ment boundaries, nor the relations among constituents that are
needed to deterministically rearrange a sentence in SVO order.

3We use AMIRA (Diab et al., 2004) to annotate Arabic and
Tree Tagger (Schmid, 1994) to annotate German.

4A similar rule set was previously used to produce chunk
reordering lattices in (Hardmeier et al., 2010).
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(b) German broken verb chunk: three permutations

Figure 1: Examples of chunk permutations generated by shallow syntax reordering rules. Chunk types: CC conjunc-
tion, VC verb (auxiliary/past participle), PC preposition, NC noun, Pct punctuation.

• broken verb chunk: join each finite VC (auxil-
iary or modal) with the nearest following non-
finite VC (infinitive or participle). Place the re-
sulting block in any position between the orig-
inal position of the finite verb and that of the
non-finite verb5.

The application of chunk reordering rules is illus-
trated by Fig. 1: in the Arabic sentence (a), the sub-
ject ‘dozens of militants’ is preceded by the main
verb ‘took part’ and its argument ‘to the march’. The
rules generate 5 permutations for one matching se-
quence (chunks 2 to 5), out of which the 5th is the
best for translation. The German sentence (b) con-
tains a broken VC with the inflected auxiliary ‘has’
separated from the past participle ‘initiated’. Here,
the rules generate 3 permutations for the chunk se-
quence 2 to 5, corresponding to likely locations of
the merged verb phrase, the 1st being optimal.

By construction, both rule sets generate a limited
number of permutations per matching sequence: in

5To bound the number of reorderings, we use the follow-
ing heuristics. In ‘infinitive’ at most 3 punctuations preceding
the VC are considered. In ‘subordinate’ 1 to 3 chunks are left
between the conjunction (or pronoun) and the moved VC to ac-
count for the subject. In ‘broken VC’ if the distance between the
finite and non-finite verb is more than 10 chunks, only the first
5 and last 5 positions of the verb-to-verb span are considered.

Arabic at most 12 for each VC; in German at most 3
for each infinitive VC and for each VC-punctuation
sequence, at most 10 for each broken VC. Empiri-
cally, this yields on average 22 reorderings per sen-
tence in the NIST-MT Arabic benchmark dev06-NW
and 3 on the WMT German benchmark test08. Ara-
bic rules are indeed more noisy, which is not surpris-
ing as reordering is triggered by any verb chunk.

5 Reordering selection

The number of chunk-based reorderings per sen-
tence varies according to the rule set, to the size of
chunks and to the context. A high degree of fuzzi-
ness can complicate the decoding process, leaving
too much work to the in-decoding reordering model.
A solution to this problem is using an external model
to score the rule-generated reorderings and discard
the less probable ones. In such a way, a further part
of reordering complexity is taken out of decoding.

At this end, instead of using a Support Vector Ma-
chine classifier as was done in (Bisazza et al., 2011),
we apply reordered n-gram models that are lighter-
weight and more suitable for a ranking task.

Differently from Feng et al. (2010), we train our
models on partially reordered data and at the level of
chunks. Chunks can be represented simply by their
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type label (such as VC or NC), but also by a com-
bination of the type and head word, to obtain finer
lexicalized distributions. LMs trained on different
chunk representations can also be applied jointly, by
log-linear combination.

We perform reordering selection as follows:

1. Chunk-based reordering rules are applied de-
terministically to the source side of the parallel
training data, using word alignment to choose
the optimal permutation (“oracle reordering”)6.

2. One or several chunk-level 5-gram LMs are
trained on such reordered data, using different
chunk representation modes.

3. Reordering rules are applied to the test sen-
tences and the resulting sets of rule-matching
sequence permutations are scored by the LMs.
The n-best reorderings of each rule-matching
sequence are selected for translation.

In experiments not reported here, we obtained
accurate rankings by scoring source permutations
with a uniformly weighted combination of two LMs
trained on chunk types and on chunk-type+head-
word, respectively. In particular, 3-best reorderings
of each rule-matching sequence yield reordering re-
calls of 77.2% in Arabic and 89.3% in German.

6 Modified distortion matrices
We present here a novel technique to encode likely
long reorderings of an input sentence, which can be
seamlessly integrated into the PSMT framework.

During decoding, the distance between source po-
sitions is used for two main purposes: (i) generating
a distortion penalty for the current hypothesis and
(ii) determining the set of source positions that can
be covered at the next hypothesis expansion. We can
then tackle the coarseness of both distortion penalty
and reordering constraints, by replacing the distance
function with a function defined ad hoc for each in-
put sentence.

Distortion can be thought of as a matrix assigning
a positive integer to any ordered pair of source posi-
tions (sx, sy). In the linear distortion model this is

6Following Bisazza and Federico (2010), the optimal re-
ordering for a source sentence is the one that minimizes dis-
tortion in the word alignment to a target translation, measured
by number of swaps and sum of distortion costs.

defined as:
DL(sx, sy) = |sy − sx − 1|

so that moving to the right by 1 position costs 0 and
by 2 positions costs 1. Moving to the left by 1 posi-
tion costs 2 and by 2 positions costs 3, and so on. At
the level of phrases, distortion is computed between
the last word of the last translated phrase and the
first word of the next phrase. We retain this equa-
tion as the core distortion function for our model.
Then, we modify entries in the matrix such that the
distortion cost is minimized for the decoding paths
pre-computed with the reordering rules.

Given a source sentence and its set of rule-
generated permutations, the linear distortion matrix
is modified as follows:

1. non-monotonic jumps (i.e. ordered pairs
(si, si+1) such that si+1− si "= 1) are extracted
from the permutations;

2. then, for each extracted pair, the corresponding
point in the matrix is assigned the lowest possi-
ble distortion cost, that is 0 if si < si+1 and 2
if si > si+1. We call these points shortcuts.

Although this technique is approximate and can
overgenerate minimal-distortion decoding paths7, it
practically works when the number of encoded per-
mutations per sequence is limited. This makes mod-
ifed distortion matrices particularly suitable to en-
code just those reorderings that are typically missed
by phrase-based decoders (see Sect. 3).

Since in this work we use chunk-based rules, we
also have to convert chunk-to-chunk jumps into
word-to-word shortcuts. We propose two ways to
do this, given an ordered pair of chunks (cx,cy):

mode A×A : create a shortcut from each word of
cx to each word of cy;

mode L×F : create only one shortcut from the last
word of cx to the first of cy.

The former solution admits more chunk-internal per-
mutations with the same minimal distortion cost,
whereas the latter implies that the first word of a re-
ordered chunk is covered first and the last is covered
last.

7In fact, any decoding path that includes a jump marked as
shortcut benefits from the same distortion discount in that point.
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Figure 2: Modified distortion matrix (mode A×A) of the
German sentence given in Fig. 1. The chunk reordering
shown on top generates three shortcuts corresponding to
the 0’s and 2’s highlighted in the matrix.

Fig. 2 shows the distortion matrix of the German
sentence of Fig. 1, with starting positions as columns
and landing positions as rows. Suppose we want to
encode the reordering shown on top of Fig. 2, cor-
responding to the merging of the broken VC ‘hat ...
eingeleitet’. This permutation contains three jumps:
(2,5), (5,3) and (4,6). Converted to word-level in
A×A mode, these yield five word shortcuts8: one
for the onward jump (2,5) assigned 0 distortion; two
for the backward jump (5,3), assigned 2; and two for
the onward jump (4,6), also assigned 0. The desired
reordering is now attainable within a DL of 2 words
instead of 5. The same process is then applied to
other permutations of the sentence.

If compared to the word reordering lattices used
by Bisazza and Federico (2010) and Andreas et al.
(2011), modified distortion matrices provide a more
compact, implicit way to encode likely reorderings
in a sentence-specific fashion. Matrix representation
does not require multiplication of nodes for the same

8In L×F mode, instead, each chunk-to-chunk jump would
yield exactly one word shortcut, for a total of three.

source word and is naturally compatible with the
PSMT decoder’s standard reordering mechanisms.

7 Evaluation

In this section we evaluate the impact of modified
distortion matrices on two news translation tasks.

Matrices were integrated into the Moses
toolkit (Koehn et al., 2007) using a sentence-
level XML markup. The list of word shortcuts
for each sentence is provided as an XML tag that
is parsed by the decoder to modify the distortion
matrix just before starting the search. As usual, the
distortion matrix is queried by the distortion penalty
generator and by the hypothesis expander9.

7.1 Experimental setup
For Arabic-English, we use the union of all in-
domain parallel corpora provided for the NIST-MT09
evaluation10 for a total of 986K sentences, 31M En-
glish words. The target LM is trained on the English
side of all available NIST-MT09 parallel data, UN in-
cluded (147M words). For development and test, we
use the newswire sections of the NIST benchmarks,
hereby called dev06-NW, eval08-NW and eval09-
NW: 1033, 813 and 586 sentences, respectively, each
provided with four reference translations.

The German-English system is instead trained
on WMT10 data: namely Europarl (v.5) plus News-
commentary-2010 for a total of 1.6M parallel sen-
tences, 43M English words. The target LM is trained
on the monolingual news data provided for the con-
strained track (1133M words). For development and
test, we use the WMT10 news benchmarks test08,
test09 and test10: 2051, 2525 and 2489 sentences,
respectively, with one reference translation.

Concerning pre-processing, we apply standard to-
kenization to the English data, while for Arabic we
use our in-house tokenizer that removes diacritics
and normalizes special characters. Arabic text is
then segmented with AMIRA (Diab et al., 2004) ac-
cording to the ATB scheme11. German tokenization

9Note that lexicalized reordering models use real word dis-
tances to compute the orientation class of a new hypothesis, thus
they are not affected by changes in the matrix.

10That is everything except the small GALE corpus and the
UN corpus. As reported by Green et al. (2010) the removal of
UN data does not affect baseline performances on news test.

11The Arabic Treebank tokenization scheme isolates con-
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and compound splitting is performed with Tree Tag-
ger (Schmid, 1994) and the Gertwol morphological
analyser (Koskenniemi and Haapalainen, 1994)12.

Using Moses we build competitive baselines on
the training data described above. Word alignment
is produced by the Berkeley Aligner (Liang et al.,
2006). The decoder is based on the log-linear com-
bination of a phrase translation model, a lexicalized
reordering model, a 6-gram target language model,
distortion cost, word and phrase penalties. The re-
ordering model is a hierarchical phrase orientation
model (Tillmann, 2004; Koehn et al., 2005; Galley
and Manning, 2008) trained on all the available par-
allel data. We choose the hierarchical variant, as it
was shown by its authors to outperform the default
word-based on an Arabic-English task. Finally, for
German, we enable the Moses option monotone-at-
punctuation which forbids reordering across punc-
tuation marks. The DL is initially set to 5 words
for Arabic-English and to 10 for German-English.
According to our experience, these are the optimal
settings for the evaluated tasks. Feature weights are
optimized by minimum error training (Och, 2003)
on the development sets (dev06-NW and test08).

7.2 Translation quality and efficiency results

We evaluate translations with BLEU (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005).
As these scores are only indirectly sensitive to word
order, we also compute KRS or Kendall Reorder-
ing Score (Birch et al., 2010; Bisazza et al., 2011)
which is a positive score based on the Kendall’s
Tau distance between the source-output and source-
reference permutations. To isolate the impact of our
techniques on problematic reordering, we extract
from each test set the sentences that got permuted
by “oracle reordering” (see Sect. 5). These consti-
tute about a half of the Arabic sentences, and about
a third of the German. We refer to the KRS com-
puted on these test subsets as KRS(R). Statistically
significant differences are assessed by approximate
randomization as in (Riezler and Maxwell, 2005)13.

Tab. 1 reports results obtained by varying the DL

junctions w+ and f+, prepositions l+, k+, b+, future marker
s+, pronominal suffixes, but not the article Al+.

12http://www2.lingsoft.fi/cgi-bin/gertwol
13Translation scores and significance tests are computed with

the tools multeval (Clark et al., 2011) and sigf (Padó, 2006).

and modifying the distortion function. To evalu-
ate the reordering selection technique, we also com-
pare the encoding of all rule-generated reorderings
against only the 3 best per rule-matching sequence,
as ranked by our best performing reordered LM (see
end of Sect. 5). We mark the DL with a ‘+’ to denote
that some longer jumps are being allowed by modi-
fied distortion. Run times refer to the translation of
the first 100 sentences of eval08-NW and test09 by
a 4-core processor.

Arabic-English. As anticipated, raising the DL
does not improve, but rather worsen performances.
The decrease in BLEU and METEOR reported with
DL=8 is not significant, but the decrease in KRS is
both significant and large. Efficiency is heavily af-
fected, with a 42% increase of the run time.

Results in the row “allReo” are obtained by encod-
ing all the rule-generated reorderings in L×F chunk-
to-word conversion mode. Except for some gains in
KRS reported on eval08-NW, most of the scores are
lower or equal to the baseline. Such inconsistent be-
haviour is probably due to the low precision of the
Arabic rule set, pointed out in Sect. 4.

Finally, we arrive to the performance of 3-best re-
orderings per sequence. With L×F we obtain sev-
eral improvements, but it’s with A×A that we are
able to beat the baseline according to all metrics.
BLEU and METEOR improvements are rather small
but significant and consistent across test sets, the
best gain being reported on eval09-NW (+.9 BLEU).
Most importantly, substantial word order improve-
ments are achieved on both full test sets (+.7/+.6
KRS) and selected subsets (+.7/+.6 KRS(R)). Ac-
cording to these figures, word order is affected only
in the sentences that contain problematic reordering.
This is good evidence, suggesting that the decoder
does not get “confused” by spurious shortcuts.

Looking at run times, we can say that modified
distortion matrices are a very efficient way to ad-
dress long reordering. Even when all the generated
reorderings are encoded, translation time increases
only by 4%. Reordering selection naturally helps to
further reduce decoding overload. As for conversion
modes, A×A yields slightly higher run times than
L×F because it generates more shortcuts.

German-English. In this task we manage to im-
prove translation quality with a setting that is almost
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(a) Arabic to English

eval08-nw eval09-nw runtime
Distortion Function DL bleu met krs krs(R) bleu met krs krs(R) (s)

† plain [baseline] 5 44.5 34.9 81.6 82.9 49.9 38.0 84.1 84.4 1038
plain 8 44.2◦ 34.8 80.7• 82.2• 49.8 37.9 83.3• 83.5• 1470

† modified: allReo, L×F 5+ 44.4 34.9 82.2• 83.7• 49.9 37.8• 84.3 84.4 1078
modified: 3bestReo, L×F 5+ 44.5 35.1• 82.3• 83.5• 50.7• 38.1 84.8• 85.0• 1052

† modified: 3bestReo, A×A 5+ 44.8◦ 35.1• 82.3• 83.6• 50.8• 38.2• 84.7• 85.0• 1072

(b) German to English

test09 test10 runtime
Distortion Function DL bleu met krs krs(R) bleu met krs krs(R) (s)

† plain [baseline] 10 18.8 27.5 65.8 66.7 20.1 29.4 68.7 68.9 629
plain 20 18.4• 27.4• 63.6• 65.2 • 19.8• 29.3• 66.3• 66.6• 792
plain 4 18.4• 27.4• 67.3• 66.9 19.6• 29.1• 70.2• 69.6• 345

† modified: allReo, L×F 4+ 19.1• 27.6• 67.6• 68.1• 20.4• 29.4 70.6• 70.7• 352
modified: 3bestReo, L×F 4+ 19.2• 27.7• 67.4• 68.1• 20.4• 29.4 70.4• 70.6• 351

† modified: 3bestReo, A×A 4+ 19.2• 27.7• 67.4• 68.4• 20.6• 29.5◦ 70.4• 70.7• 357

Table 1: Impact of modified distortion matrices on translation quality, measured with BLEU, METEOR and KRS
(all in percentage form, higher scores mean higher quality). The settings used for weight tuning are marked with †.
Statistically significant differences wrt the baseline are marked with • at the p ≤ .05 level and ◦ at the p ≤ .10 level.

twice as fast as the baseline. As shown by the first
part of the table, the best baseline results are ob-
tained with a rather high DL, that is 10 (only KRS
improves with a lower DL). However, with modified
distortion, the best results according to all metrics
are obtained with a DL of 4.

Looking at the rest of the table, we see that re-
ordering selection is not as crucial as in Arabic-
English. This is in line with the properties of the
more precise German reordering rule set (two rules
out of three generate at most 3 reorderings per se-
quence). Considering all scores, the last setting
(3-best reordering and A×A) appears as the best
one, achieving the following gains over the base-
line: +.4/+.5 BLEU, +.2/+.1 METEOR, +1.6/+1.7
KRS and +1.7/+1.8 KRS(R). The agreement ob-
served among such diverse metrics makes us con-
fident about the goodness of the approach.

8 Conclusions

In Arabic-English and German-English, long re-
ordering concentrates on specific patterns describ-
able by a small number of linguistic rules. By
means of non-deterministic chunk reordering rules,
we have generated likely permutations of the test

sentences and ranked them with n-gram LMs trained
on pre-reordered data. We have then introduced the
notion of modified distortion matrices to naturally
encode a set of likely reorderings in the decoder
input. Modified distortion allows for a finer and
more linguistically informed definition of the search
space, which is reflected in better translation outputs
and more efficient decoding.

We expect that further improvements may be
achieved by refining the Arabic reordering rules with
specific POS tags and lexical cues. We also plan
to evaluate modified distortion matrices in conjunc-
tion with a different type of in-decoding reorder-
ing model such as the one proposed by Green et
al. (2010). Finally, we may try to exploit not only
the ranking, but also the scores produced by the re-
ordered LMs, as an additional decoding feature.
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