
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 440–448,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Bayesian Symbol-Refined Tree Substitution Grammars
for Syntactic Parsing

Hiroyuki Shindo† Yusuke Miyao‡ Akinori Fujino† Masaaki Nagata†

†NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan

{shindo.hiroyuki,fujino.akinori,nagata.masaaki}@lab.ntt.co.jp
‡National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
yusuke@nii.ac.jp

Abstract

We propose Symbol-Refined Tree Substitu-
tion Grammars (SR-TSGs) for syntactic pars-
ing. An SR-TSG is an extension of the con-
ventional TSG model where each nonterminal
symbol can be refined (subcategorized) to fit
the training data. We aim to provide a unified
model where TSG rules and symbol refine-
ment are learned from training data in a fully
automatic and consistent fashion. We present
a novel probabilistic SR-TSG model based
on the hierarchical Pitman-Yor Process to en-
code backoff smoothing from a fine-grained
SR-TSG to simpler CFG rules, and develop
an efficient training method based on Markov
Chain Monte Carlo (MCMC) sampling. Our
SR-TSG parser achieves an F1 score of 92.4%
in the Wall Street Journal (WSJ) English Penn
Treebank parsing task, which is a 7.7 point im-
provement over a conventional Bayesian TSG
parser, and better than state-of-the-art discrim-
inative reranking parsers.

1 Introduction

Syntactic parsing has played a central role in natural
language processing. The resulting syntactic analy-
sis can be used for various applications such as ma-
chine translation (Galley et al., 2004; DeNeefe and
Knight, 2009), sentence compression (Cohn and La-
pata, 2009; Yamangil and Shieber, 2010), and ques-
tion answering (Wang et al., 2007). Probabilistic
context-free grammar (PCFG) underlies many sta-
tistical parsers, however, it is well known that the
PCFG rules extracted from treebank data via maxi-
mum likelihood estimation do not perform well due
to unrealistic context freedom assumptions (Klein
and Manning, 2003).

In recent years, there has been an increasing inter-
est in tree substitution grammar (TSG) as an alter-
native to CFG for modeling syntax trees (Post and
Gildea, 2009; Tenenbaum et al., 2009; Cohn et al.,
2010). TSG is a natural extension of CFG in which
nonterminal symbols can be rewritten (substituted)
with arbitrarily large tree fragments. These tree frag-
ments have great advantages over tiny CFG rules
since they can capture non-local contexts explic-
itly such as predicate-argument structures, idioms
and grammatical agreements (Cohn et al., 2010).
Previous work on TSG parsing (Cohn et al., 2010;
Post and Gildea, 2009; Bansal and Klein, 2010) has
consistently shown that a probabilistic TSG (PTSG)
parser is significantly more accurate than a PCFG
parser, but is still inferior to state-of-the-art parsers
(e.g., the Berkeley parser (Petrov et al., 2006) and
the Charniak parser (Charniak and Johnson, 2005)).
One major drawback of TSG is that the context free-
dom assumptions still remain at substitution sites,
that is, TSG tree fragments are generated that are
conditionally independent of all others given root
nonterminal symbols. Furthermore, when a sentence
is unparsable with large tree fragments, the PTSG
parser usually uses naive CFG rules derived from
its backoff model, which diminishes the benefits ob-
tained from large tree fragments.

On the other hand, current state-of-the-art parsers
use symbol refinement techniques (Johnson, 1998;
Collins, 2003; Matsuzaki et al., 2005). Symbol
refinement is a successful approach for weaken-
ing context freedom assumptions by dividing coarse
treebank symbols (e.g. NP and VP) into sub-
categories, rather than extracting large tree frag-
ments. As shown in several studies on TSG pars-
ing (Zuidema, 2007; Bansal and Klein, 2010), large

440

tree fragments and symbol refinement work comple-
mentarily for syntactic parsing. For example, Bansal
and Klein (2010) have reported that deterministic
symbol refinement with heuristics helps improve the
accuracy of a TSG parser.

In this paper, we propose Symbol-Refined Tree
Substitution Grammars (SR-TSGs) for syntactic
parsing. SR-TSG is an extension of the conventional
TSG model where each nonterminal symbol can be
refined (subcategorized) to fit the training data. Our
work differs from previous studies in that we focus
on a unified model where TSG rules and symbol re-
finement are learned from training data in a fully au-
tomatic and consistent fashion. We also propose a
novel probabilistic SR-TSG model with the hierar-
chical Pitman-Yor Process (Pitman and Yor, 1997),
namely a sort of nonparametric Bayesian model, to
encode backoff smoothing from a fine-grained SR-
TSG to simpler CFG rules, and develop an efficient
training method based on blocked MCMC sampling.

Our SR-TSG parser achieves an F1 score of
92.4% in the WSJ English Penn Treebank pars-
ing task, which is a 7.7 point improvement over a
conventional Bayesian TSG parser, and superior to
state-of-the-art discriminative reranking parsers.

2 Background and Related Work

Our SR-TSG work is built upon recent work on
Bayesian TSG induction from parse trees (Post and
Gildea, 2009; Cohn et al., 2010). We firstly review
the Bayesian TSG model used in that work, and then
present related work on TSGs and symbol refine-
ment.

A TSG consists of a 4-tuple, G = (T,N, S,R),
where T is a set of terminal symbols, N is a set of
nonterminal symbols, S ∈ N is the distinguished
start nonterminal symbol and R is a set of produc-
tions (a.k.a. rules). The productions take the form
of elementary trees i.e., tree fragments of height
≥ 1. The root and internal nodes of the elemen-
tary trees are labeled with nonterminal symbols, and
leaf nodes are labeled with either terminal or nonter-
minal symbols. Nonterminal leaves are referred to
as frontier nonterminals, and form the substitution
sites to be combined with other elementary trees.

A derivation is a process of forming a parse tree.
It starts with a root symbol and rewrites (substi-

tutes) nonterminal symbols with elementary trees
until there are no remaining frontier nonterminals.
Figure 1a shows an example parse tree and Figure
1b shows its example TSG derivation. Since differ-
ent derivations may produce the same parse tree, re-
cent work on TSG induction (Post and Gildea, 2009;
Cohn et al., 2010) employs a probabilistic model of
a TSG and predicts derivations from observed parse
trees in an unsupervised way.

A Probabilistic Tree Substitution Grammar
(PTSG) assigns a probability to each rule in the
grammar. The probability of a derivation is defined
as the product of the probabilities of its component
elementary trees as follows.

p (e) =
∏

x→e∈e

p (e |x) ,

where e = (e1, e2, . . .) is a sequence of elemen-
tary trees used for the derivation, x = root (e) is the
root symbol of e, and p (e |x) is the probability of
generating e given its root symbol x. As in a PCFG,
e is generated conditionally independent of all oth-
ers given x.

The posterior distribution over elementary trees
given a parse tree t can be computed by using the
Bayes’ rule:

p (e |t) ∝ p (t |e) p (e) .

where p (t |e) is either equal to 1 (when t and e
are consistent) or 0 (otherwise). Therefore, the task
of TSG induction from parse trees turns out to con-
sist of modeling the prior distribution p (e). Recent
work on TSG induction defines p (e) as a nonpara-
metric Bayesian model such as the Dirichlet Pro-
cess (Ferguson, 1973) or the Pitman-Yor Process to
encourage sparse and compact grammars.

Several studies have combined TSG induction and
symbol refinement. An adaptor grammar (Johnson
et al., 2007a) is a sort of nonparametric Bayesian
TSG model with symbol refinement, and is thus
closely related to our SR-TSG model. However,
an adaptor grammar differs from ours in that all its
rules are complete: all leaf nodes must be termi-
nal symbols, while our model permits nonterminal
symbols as leaf nodes. Furthermore, adaptor gram-
mars have largely been applied to the task of unsu-
pervised structural induction from raw texts such as

441

(a) (b) (c)

Figure 1: (a) Example parse tree. (b) Example TSG derivation of (a). (c) Example SR-TSG derivation of
(a). The refinement annotation is hyphenated with a nonterminal symbol.

morphology analysis, word segmentation (Johnson
and Goldwater, 2009), and dependency grammar in-
duction (Cohen et al., 2010), rather than constituent
syntax parsing.

An all-fragments grammar (Bansal and Klein,
2010) is another variant of TSG that aims to uti-
lize all possible subtrees as rules. It maps a TSG
to an implicit representation to make the grammar
tractable and practical for large-scale parsing. The
manual symbol refinement described in (Klein and
Manning, 2003) was applied to an all-fragments
grammar and this improved accuracy in the English
WSJ parsing task. As mentioned in the introduc-
tion, our model focuses on the automatic learning of
a TSG and symbol refinement without heuristics.

3 Symbol-Refined Tree Substitution
Grammars

In this section, we propose Symbol-Refined Tree
Substitution Grammars (SR-TSGs) for syntactic
parsing. Our SR-TSG model is an extension of
the conventional TSG model where every symbol of
the elementary trees can be refined to fit the train-
ing data. Figure 1c shows an example of SR-TSG
derivation. As with previous work on TSG induc-
tion, our task is the induction of SR-TSG deriva-
tions from a corpus of parse trees in an unsupervised
fashion. That is, we wish to infer the symbol sub-
categories of every node and substitution site (i.e.,
nodes where substitution occurs) from parse trees.
Extracted rules and their probabilities can be used to
parse new raw sentences.

3.1 Probabilistic Model
We define a probabilistic model of an SR-TSG based
on the Pitman-Yor Process (PYP) (Pitman and Yor,
1997), namely a sort of nonparametric Bayesian
model. The PYP produces power-law distributions,
which have been shown to be well-suited for such
uses as language modeling (Teh, 2006b), and TSG
induction (Cohn et al., 2010). One major issue as
regards modeling an SR-TSG is that the space of the
grammar rules will be very sparse since SR-TSG al-
lows for arbitrarily large tree fragments and also an
arbitrarily large set of symbol subcategories. To ad-
dress the sparseness problem, we employ a hierar-
chical PYP to encode a backoff scheme from the SR-
TSG rules to simpler CFG rules, inspired by recent
work on dependency parsing (Blunsom and Cohn,
2010).

Our model consists of a three-level hierarchy. Ta-
ble 1 shows an example of the SR-TSG rule and its
backoff tree fragments as an illustration of this three-
level hierarchy. The topmost level of our model is a
distribution over the SR-TSG rules as follows.

e |xk ∼ Gxk

Gxk
∼ PYP

(
dxk

, θxk
, P sr-tsg (· |xk)

)
,

where xk is a refined root symbol of an elemen-
tary tree e, while x is a raw nonterminal symbol
in the corpus and k = 0, 1, . . . is an index of the
symbol subcategory. Suppose x is NP and its sym-
bol subcategory is 0, then xk is NP0. The PYP has
three parameters: (dxk

, θxk
, P sr-tsg). P sr-tsg (· |xk)

442

SR-TSG SR-CFG RU-CFG

Table 1: Example three-level backoff.

is a base distribution over infinite space of symbol-
refined elementary trees rooted with xk, which pro-
vides the backoff probability of e. The remaining
parameters dxk

and θxk
control the strength of the

base distribution.
The backoff probability P sr-tsg (e |xk) is given by

the product of symbol-refined CFG (SR-CFG) rules
that e contains as follows.

P sr-tsg (e |xk) =
∏

f∈F (e)

scf
×
∏

i∈I(e)

(1− sci
)

× H (cfg-rules (e |xk))

α |xk ∼ Hxk

Hxk
∼ PYP

(
dx, θx, P

sr-cfg (· |xk)
)
,

where F (e) is a set of frontier nonterminal nodes
and I (e) is a set of internal nodes in e. cf and ci
are nonterminal symbols of nodes f and i, respec-
tively. sc is the probability of stopping the expan-
sion of a node labeled with c. SR-CFG rules are
CFG rules where every symbol is refined, as shown
in Table 1. The function cfg-rules (e |xk) returns
the SR-CFG rules that e contains, which take the
form of xk → α. Each SR-CFG rule α rooted
with xk is drawn from the backoff distribution Hxk

,
and Hxk

is produced by the PYP with parameters:(
dx, θx, P

sr-cfg). This distribution over the SR-CFG
rules forms the second level hierarchy of our model.

The backoff probability of the SR-CFG rule,
P sr-cfg (α |xk), is given by the root-unrefined CFG
(RU-CFG) rule as follows,

P sr-cfg (α |xk) = I (root-unrefine (α |xk))

α |x ∼ Ix

Ix ∼ PYP
(
d′x, θ

′
x, P

ru-cfg (· |x)
)
,

where the function root-unrefine (α |xk) returns
the RU-CFG rule of α, which takes the form of x→
α. The RU-CFG rule is a CFG rule where the root
symbol is unrefined and all leaf nonterminal sym-
bols are refined, as shown in Table 1. Each RU-CFG
rule α rooted with x is drawn from the backoff distri-
bution Ix, and Ix is produced by a PYP. This distri-
bution over the RU-CFG rules forms the third level
hierarchy of our model. Finally, we set the back-
off probability of the RU-CFG rule, P ru-cfg (α |x),
so that it is uniform as follows.

P ru-cfg (α |x) =
1

|x→ ·|
.

where |x→ ·| is the number of RU-CFG rules
rooted with x. Overall, our hierarchical model en-
codes backoff smoothing consistently from the SR-
TSG rules to the SR-CFG rules, and from the SR-
CFG rules to the RU-CFG rules. As shown in (Blun-
som and Cohn, 2010; Cohen et al., 2010), the pars-
ing accuracy of the TSG model is strongly affected
by its backoff model. The effects of our hierarchical
backoff model on parsing performance are evaluated
in Section 5.

4 Inference

We use Markov Chain Monte Carlo (MCMC) sam-
pling to infer the SR-TSG derivations from parse
trees. MCMC sampling is a widely used approach
for obtaining random samples from a probability
distribution. In our case, we wish to obtain deriva-
tion samples of an SR-TSG from the posterior dis-
tribution, p (e |t,d,θ, s).

The inference of the SR-TSG derivations corre-
sponds to inferring two kinds of latent variables:
latent symbol subcategories and latent substitution

443

sites. We first infer latent symbol subcategories for
every symbol in the parse trees, and then infer latent
substitution sites stepwise. During the inference of
symbol subcategories, every internal node is fixed as
a substitution site. After that, we unfix that assump-
tion and infer latent substitution sites given symbol-
refined parse trees. This stepwise learning is simple
and efficient in practice, but we believe that the joint
learning of both latent variables is possible, and we
will deal with this in future work. Here we describe
each inference algorithm in detail.

4.1 Inference of Symbol Subcategories
For the inference of latent symbol subcategories, we
adopt split and merge training (Petrov et al., 2006)
as follows. In each split-merge step, each symbol
is split into at most two subcategories. For exam-
ple, every NP symbol in the training data is split into
either NP0 or NP1 to maximize the posterior prob-
ability. After convergence, we measure the loss of
each split symbol in terms of the likelihood incurred
when removing it, then the smallest 50% of the
newly split symbols as regards that loss are merged
to avoid overfitting. The split-merge algorithm ter-
minates when the total number of steps reaches the
user-specified value.

In each splitting step, we use two types of blocked
MCMC algorithm: the sentence-level blocked
Metroporil-Hastings (MH) sampler and the tree-
level blocked Gibbs sampler, while (Petrov et al.,
2006) use a different MLE-based model and the EM
algorithm. Our sampler iterates sentence-level sam-
pling and tree-level sampling alternately.

The sentence-level MH sampler is a recently pro-
posed algorithm for grammar induction (Johnson et
al., 2007b; Cohn et al., 2010). In this work, we apply
it to the training of symbol splitting. The MH sam-
pler consists of the following three steps: for each
sentence, 1) calculate the inside probability (Lari
and Young, 1991) in a bottom-up manner, 2) sample
a derivation tree in a top-down manner, and 3) ac-
cept or reject the derivation sample by using the MH
test. See (Cohn et al., 2010) for details. This sampler
simultaneously updates blocks of latent variables as-
sociated with a sentence, thus it can find MAP solu-
tions efficiently.

The tree-level blocked Gibbs sampler focuses on
the type of SR-TSG rules and simultaneously up-

dates all root and child nodes that are annotated
with the same SR-TSG rule. For example, the
sampler collects all nodes that are annotated with
S0 → NP1VP2, then updates those nodes to an-
other subcategory such as S0 → NP2VP0 according
to the posterior distribution. This sampler is simi-
lar to table label resampling (Johnson and Goldwa-
ter, 2009), but differs in that our sampler can update
multiple table labels simultaneously when multiple
tables are labeled with the same elementary tree.
The tree-level sampler also simultaneously updates
blocks of latent variables associated with the type of
SR-TSG rules, thus it can find MAP solutions effi-
ciently.

4.2 Inference of Substitution Sites

After the inference of symbol subcategories, we
use Gibbs sampling to infer the substitution sites of
parse trees as described in (Cohn and Lapata, 2009;
Post and Gildea, 2009). We assign a binary variable
to each internal node in the training data, which in-
dicates whether that node is a substitution site or not.
For each iteration, the Gibbs sampler works by sam-
pling the value of each binary variable in random
order. See (Cohn et al., 2010) for details.

During the inference, our sampler ignores
the symbol subcategories of internal nodes of
elementary trees since they do not affect the
derivation of the SR-TSG. For example, the
elementary trees “(S0 (NP0 NNP0) VP0)” and
“(S0 (NP1 NNP0) VP0)” are regarded as being the
same when we calculate the generation probabilities
according to our model. This heuristics is help-
ful for finding large tree fragments and learning
compact grammars.

4.3 Hyperparameter Estimation

We treat hyperparameters {d,θ} as random vari-
ables and update their values for every MCMC it-
eration. We place a prior on the hyperparameters as
follows: d ∼ Beta (1, 1), θ ∼ Gamma (1, 1). The
values of d and θ are optimized with the auxiliary
variable technique (Teh, 2006a).

444

5 Experiment

5.1 Settings
5.1.1 Data Preparation

We ran experiments on the Wall Street Journal
(WSJ) portion of the English Penn Treebank data
set (Marcus et al., 1993), using a standard data
split (sections 2–21 for training, 22 for development
and 23 for testing). We also used section 2 as a
small training set for evaluating the performance of
our model under low-resource conditions. Hence-
forth, we distinguish the small training set (section
2) from the full training set (sections 2-21). The tree-
bank data is right-binarized (Matsuzaki et al., 2005)
to construct grammars with only unary and binary
productions. We replace lexical words with count
≤ 5 in the training data with one of 50 unknown
words using lexical features, following (Petrov et al.,
2006). We also split off all the function tags and
eliminated empty nodes from the data set, follow-
ing (Johnson, 1998).

5.1.2 Training and Parsing
For the inference of symbol subcategories, we

trained our model with the MCMC sampler by us-
ing 6 split-merge steps for the full training set and 3
split-merge steps for the small training set. There-
fore, each symbol can be subdivided into a maxi-
mum of 26 = 64 and 23 = 8 subcategories, respec-
tively. In each split-merge step, we initialized the
sampler by randomly splitting every symbol in two
subcategories and ran the MCMC sampler for 1000
iterations. After that, to infer the substitution sites,
we initialized the model with the final sample from
a run on the small training set, and used the Gibbs
sampler for 2000 iterations. We estimated the opti-
mal values of the stopping probabilities s by using
the development set.

We obtained the parsing results with the MAX-
RULE-PRODUCT algorithm (Petrov et al., 2006) by
using the SR-TSG rules extracted from our model.
We evaluated the accuracy of our parser by brack-
eting F1 score of predicted parse trees. We used
EVALB1 to compute the F1 score. In all our exper-
iments, we conducted ten independent runs to train
our model, and selected the one that performed best
on the development set in terms of parsing accuracy.

1http://nlp.cs.nyu.edu/evalb/

Model F1 (small) F1 (full)

CFG 61.9 63.6

*TSG 77.1 85.0

SR-TSG (P sr-tsg) 73.0 86.4

SR-TSG (P sr-tsg, P sr-cfg) 79.4 89.7

SR-TSG (P sr-tsg, P sr-cfg, P ru-cfg) 81.7 91.1

Table 2: Comparison of parsing accuracy with the
small and full training sets. *Our reimplementation
of (Cohn et al., 2010).

Figure 2: Histogram of SR-TSG and TSG rule sizes
on the small training set. The size is defined as the
number of CFG rules that the elementary tree con-
tains.

5.2 Results and Discussion

5.2.1 Comparison of SR-TSG with TSG
We compared the SR-TSG model with the CFG

and TSG models as regards parsing accuracy. We
also tested our model with three backoff hierarchy
settings to evaluate the effects of backoff smoothing
on parsing accuracy. Table 2 shows the F1 scores
of the CFG, TSG and SR-TSG parsers for small and
full training sets. In Table 2, SR-TSG (P sr-tsg) de-
notes that we used only the topmost level of the hi-
erarchy. Similary, SR-TSG (P sr-tsg, P sr-cfg) denotes
that we used only the P sr-tsg and P sr-cfg backoff mod-
els.

Our best model, SR-TSG (P sr-tsg, P sr-cfg, P ru-cfg),
outperformed both the CFG and TSG models on
both the small and large training sets. This result
suggests that the conventional TSG model trained
from the vanilla treebank is insufficient to resolve

445

Model F1 (≤ 40) F1 (all)

TSG (no symbol refinement)

Post and Gildea (2009) 82.6 -

Cohn et al. (2010) 85.4 84.7

TSG with Symbol Refinement

Zuidema (2007) - *83.8

Bansal et al. (2010) 88.7 88.1

SR-TSG (single) 91.6 91.1
SR-TSG (multiple) 92.9 92.4

CFG with Symbol Refinement

Collins (1999) 88.6 88.2

Petrov and Klein (2007) 90.6 90.1

Petrov (2010) - 91.8

Discriminative

Carreras et al. (2008) - 91.1

Charniak and Johnson (2005) 92.0 91.4

Huang (2008) 92.3 91.7

Table 3: Our parsing performance for the testing set compared with those of other parsers. *Results for the
development set (≤ 100).

structural ambiguities caused by coarse symbol an-
notations in a training corpus. As we expected, sym-
bol refinement can be helpful with the TSG model
for further fitting the training set and improving the
parsing accuracy.

The performance of the SR-TSG parser was
strongly affected by its backoff models. For exam-
ple, the simplest model, P sr-tsg, performed poorly
compared with our best model. This result suggests
that the SR-TSG rules extracted from the training
set are very sparse and cannot cover the space of
unknown syntax patterns in the testing set. There-
fore, sophisticated backoff modeling is essential for
the SR-TSG parser. Our hierarchical PYP model-
ing technique is a successful way to achieve back-
off smoothing from sparse SR-TSG rules to simpler
CFG rules, and offers the advantage of automatically
estimating the optimal backoff probabilities from the
training set.

We compared the rule sizes and frequencies of
SR-TSG with those of TSG. The rule sizes of SR-

TSG and TSG are defined as the number of CFG
rules that the elementary tree contains. Figure 2
shows a histogram of the SR-TSG and TSG rule
sizes (by unrefined token) on the small training set.
For example, SR-TSG rules: S1 → NP0VP1 and
S0 → NP1VP2 were considered to be the same to-
ken. In Figure 2, we can see that there are almost
the same number of SR-TSG rules and TSG rules
with size = 1. However, there are more SR-TSG
rules than TSG rules with size ≥ 2. This shows
that an SR-TSG can use various large tree fragments
depending on the context, which is specified by the
symbol subcategories.

5.2.2 Comparison of SR-TSG with Other
Models

We compared the accuracy of the SR-TSG parser
with that of conventional high-performance parsers.
Table 3 shows the F1 scores of an SR-TSG and con-
ventional parsers with the full training set. In Ta-
ble 3, SR-TSG (single) is a standard SR-TSG parser,

446

and SR-TSG (multiple) is a combination of sixteen
independently trained SR-TSG models, following
the work of (Petrov, 2010).

Our SR-TSG (single) parser achieved an F1 score
of 91.1%, which is a 6.4 point improvement over
the conventional Bayesian TSG parser reported by
(Cohn et al., 2010). Our model can be viewed as
an extension of Cohn’s work by the incorporation
of symbol refinement. Therefore, this result con-
firms that a TSG and symbol refinement work com-
plementarily in improving parsing accuracy. Com-
pared with a symbol-refined CFG model such as the
Berkeley parser (Petrov et al., 2006), the SR-TSG
model can use large tree fragments, which strength-
ens the probability of frequent syntax patterns in
the training set. Indeed, the few very large rules of
our model memorized full parse trees of sentences,
which were repeated in the training set.

The SR-TSG (single) is a pure generative model
of syntax trees but it achieved results comparable to
those of discriminative parsers. It should be noted
that discriminative reranking parsers such as (Char-
niak and Johnson, 2005) and (Huang, 2008) are con-
structed on a generative parser. The reranking parser
takes the k-best lists of candidate trees or a packed
forest produced by a baseline parser (usually a gen-
erative model), and then reranks the candidates us-
ing arbitrary features. Hence, we can expect that
combining our SR-TSG model with a discriminative
reranking parser would provide better performance
than SR-TSG alone.

Recently, (Petrov, 2010) has reported that com-
bining multiple grammars trained independently
gives significantly improved performance over a sin-
gle grammar alone. We applied his method (referred
to as a TREE-LEVEL inference) to the SR-TSG
model as follows. We first trained sixteen SR-TSG
models independently and produced a 100-best list
of the derivations for each model. Then, we erased
the subcategory information of parse trees and se-
lected the best tree that achieved the highest likeli-
hood under the product of sixteen models. The com-
bination model, SR-TSG (multiple), achieved an F1
score of 92.4%, which is a state-of-the-art result for
the WSJ parsing task. Compared with discriminative
reranking parsers, combining multiple grammars by
using the product model provides the advantage that
it does not require any additional training. Several

studies (Fossum and Knight, 2009; Zhang et al.,
2009) have proposed different approaches that in-
volve combining k-best lists of candidate trees. We
will deal with those methods in future work.

Let us note the relation between SR-CFG, TSG
and SR-TSG. TSG is weakly equivalent to CFG and
generates the same set of strings. For example, the
TSG rule “S → (NP NNP) VP” with probability p
can be converted to the equivalent CFG rules as fol-
lows: “S → NPNNP VP ” with probability p and
“NPNNP → NNP” with probability 1. From this
viewpoint, TSG utilizes surrounding symbols (NNP
of NPNNP in the above example) as latent variables
with which to capture context information. The
search space of learning a TSG given a parse tree
is O (2n) where n is the number of internal nodes
of the parse tree. On the other hand, an SR-CFG
utilizes an arbitrary index such as 0, 1, . . . as latent
variables and the search space is larger than that of a
TSG when the symbol refinement model allows for
more than two subcategories for each symbol. Our
experimental results comfirm that jointly modeling
both latent variables using our SR-TSG assists accu-
rate parsing.

6 Conclusion

We have presented an SR-TSG, which is an exten-
sion of the conventional TSG model where each
symbol of tree fragments can be automatically sub-
categorized to address the problem of the condi-
tional independence assumptions of a TSG. We pro-
posed a novel backoff modeling of an SR-TSG
based on the hierarchical Pitman-Yor Process and
sentence-level and tree-level blocked MCMC sam-
pling for training our model. Our best model sig-
nificantly outperformed the conventional TSG and
achieved state-of-the-art result in a WSJ parsing
task. Future work will involve examining the SR-
TSG model for different languages and for unsuper-
vised grammar induction.

Acknowledgements

We would like to thank Liang Huang for helpful
comments and the three anonymous reviewers for
thoughtful suggestions. We would also like to thank
Slav Petrov and Hui Zhang for answering our ques-
tions about their parsers.

447

References

Mohit Bansal and Dan Klein. 2010. Simple, Accurate
Parsing with an All-Fragments Grammar. In In Proc.
of ACL, pages 1098–1107.

Phil Blunsom and Trevor Cohn. 2010. Unsupervised
Induction of Tree Substitution Grammars for Depen-
dency Parsing. In Proc. of EMNLP, pages 1204–1213.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. In Proc. of ACL, 1:173–180.

Shay B Cohen, David M Blei, and Noah A Smith. 2010.
Variational Inference for Adaptor Grammars. In In
Proc. of HLT-NAACL, pages 564–572.

Trevor Cohn and Mirella Lapata. 2009. Sentence Com-
pression as Tree Transduction. Journal of Artificial
Intelligence Research, 34:637–674.

Trevor Cohn, Phil Blunsom, and Sharon Goldwater.
2010. Inducing Tree-Substitution Grammars. Journal
of Machine Learning Research, 11:3053–3096.

Michael Collins. 2003. Head-Driven Statistical Mod-
els for Natural Language Parsing. Computational Lin-
guistics, 29:589–637.

Steve DeNeefe and Kevin Knight. 2009. Synchronous
Tree Adjoining Machine Translation. In Proc. of
EMNLP, page 727.

Thomas S Ferguson. 1973. A Bayesian Analysis of
Some Nonparametric Problems. Annals of Statistics,
1:209–230.

Victoria Fossum and Kevin Knight. 2009. Combining
Constituent Parsers. In Proc. of HLT-NAACL, pages
253–256.

Michel Galley, Mark Hopkins, Kevin Knight, Daniel
Marcu, Los Angeles, and Marina Del Rey. 2004.
What’s in a Translation Rule? Information Sciences,
pages 273–280.

Liang Huang. 2008. Forest Reranking : Discriminative
Parsing with Non-Local Features. In Proc. of ACL,
19104:0.

Mark Johnson and Sharon Goldwater. 2009. Improving
nonparameteric Bayesian inference: experiments on
unsupervised word segmentation with adaptor gram-
mars. In In Proc. of HLT-NAACL, pages 317–325.

Mark Johnson, Thomas L Griffiths, and Sharon Gold-
water. 2007a. Adaptor Grammars : A Frame-
work for Specifying Compositional Nonparametric
Bayesian Models. Advances in Neural Information
Processing Systems 19, 19:641–648.

Mark Johnson, Thomas L Griffiths, and Sharon Goldwa-
ter. 2007b. Bayesian Inference for PCFGs via Markov
chain Monte Carlo. In In Proc. of HLT-NAACL, pages
139–146.

Mark Johnson. 1998. PCFG Models of Linguistic Tree
Representations. Computational Linguistics, 24:613–
632.

Dan Klein and Christopher D Manning. 2003. Accurate
Unlexicalized Parsing. In Proc. of ACL, 1:423–430.

K Lari and S J Young. 1991. Applications of Stochas-
tic Context-Free Grammars Using the Inside–Outside
Algorithm. Computer Speech and Language, 5:237–
257.

Mitchell P Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19:313–330.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proc. of ACL, pages 75–82.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning Accurate, Compact, and In-
terpretable Tree Annotation. In Proc. of ACL, pages
433–440.

Slav Petrov. 2010. Products of Random Latent Variable
Grammars. In Proc. of HLT-NAACL, pages 19–27.

Jim Pitman and Marc Yor. 1997. The two-parameter
Poisson-Dirichlet distribution derived from a stable
subordinator. The Annals of Probability, 25:855–900.

Matt Post and Daniel Gildea. 2009. Bayesian Learning
of a Tree Substitution Grammar. In In Proc. of ACL-
IJCNLP, pages 45–48.

Yee Whye Teh. 2006a. A Bayesian Interpretation of
Interpolated Kneser-Ney. NUS School of Computing
Technical Report TRA2/06.

YW Teh. 2006b. A Hierarchical Bayesian Language
Model based on Pitman-Yor Processes. In Proc. of
ACL, 44:985–992.

J Tenenbaum, TJ O’Donnell, and ND Goodman. 2009.
Fragment Grammars: Exploring Computation and
Reuse in Language. MIT Computer Science and Arti-
ficial Intelligence Laboratory Technical Report Series.

Mengqiu Wang, Noah A Smith, and Teruko Mitamura.
2007. What is the Jeopardy Model ? A Quasi-
Synchronous Grammar for QA. In Proc. of EMNLP-
CoNLL, pages 22–32.

Elif Yamangil and Stuart M Shieber. 2010. Bayesian
Synchronous Tree-Substitution Grammar Induction
and Its Application to Sentence Compression. In In
Proc. of ACL, pages 937–947.

Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou Li.
2009. K-Best Combination of Syntactic Parsers. In
Proc. of EMNLP, pages 1552–1560.

Willem Zuidema. 2007. Parsimonious Data-Oriented
Parsing. In Proc. of EMNLP-CoNLL, pages 551–560.

448

