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Abstract

This paper proposes a data-driven method
for concept-to-text generation, the task of
automatically producing textual output from
non-linguistic input. A key insight in our ap-
proach is to reduce the tasks of content se-
lection (“what to say”) and surface realization
(“how to say”) into a common parsing prob-
lem. We define a probabilistic context-free
grammar that describes the structure of the in-
put (a corpus of database records and text de-
scribing some of them) and represent it com-
pactly as a weighted hypergraph. The hyper-
graph structure encodes exponentially many
derivations, which we rerank discriminatively
using local and global features. We propose a
novel decoding algorithm for finding the best
scoring derivation and generating in this set-
ting. Experimental evaluation on the ATIS do-
main shows that our model outperforms a
competitive discriminative system both using
BLEU and in a judgment elicitation study.

1 Introduction

Concept-to-text generation broadly refers to the
task of automatically producing textual output from
non-linguistic input such as databases of records,
logical form, and expert system knowledge bases
(Reiter and Dale, 2000). A variety of concept-to-
text generation systems have been engineered over
the years, with considerable success (e.g., Dale et
al. (2003), Reiter et al. (2005), Green (2006), Turner
et al. (2009)). Unfortunately, it is often difficult
to adapt them across different domains as they rely
mostly on handcrafted components.

In this paper we present a data-driven ap-
proach to concept-to-text generation that is domain-
independent, conceptually simple, and flexible. Our
generator learns from a set of database records and
textual descriptions (for some of them). An exam-
ple from the air travel domain is shown in Figure 1.
Here, the records provide a structured representation
of the flight details (e.g., departure and arrival time,
location), and the text renders some of this infor-
mation in natural language. Given such input, our
model determines which records to talk about (con-
tent selection) and which words to use for describing
them (surface realization). Rather than breaking up
the generation process into a sequence of local deci-
sions, we perform both tasks jointly. A key insight
in our approach is to reduce content selection and
surface realization into a common parsing problem.
Specifically, we define a probabilistic context-free
grammar (PCFG) that captures the structure of the
database and its correspondence to natural language.
This grammar represents multiple derivations which
we encode compactly using a weighted hypergraph
(or packed forest), a data structure that defines a
weight for each tree.

Following a generative approach, we could first
learn the weights of the PCFG by maximising the
joint likelihood of the model and then perform gen-
eration by finding the best derivation tree in the hy-
pergraph. The performance of this baseline system
could be potentially further improved using discrim-
inative reranking (Collins, 2000). Typically, this
method first creates a list of n-best candidates from
a generative model, and then reranks them with arbi-
trary features (both local and global) that are either
not computable or intractable to compute within the
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Database:

Flight

from to
denver boston

Day Number

number dep/ar
9 departure

Month

month dep/ar
august departure

Condition

arg1 arg2 type
arrival time 1600 <

Search

type what
query flight

λ−expression:

Text:

λx. f light(x)∧ f rom(x,denver)∧ to(x,boston)∧day number(x,9)∧month(x,august)∧
less than(arrival time(x),1600)

Give me the flights leaving Denver August ninth coming back to Boston before 4pm.

Figure 1: Example of non-linguistic input as a structured database and logical form and its corresponding text. We
omit record fields that have no value, for the sake of brevity.

baseline system.
An appealing alternative is to rerank the hyper-

graph directly (Huang, 2008). As it compactly en-
codes exponentially many derivations, we can ex-
plore a much larger hypothesis space than would
have been possible with an n-best list. Importantly,
in this framework non-local features are computed
at all internal hypergraph nodes, allowing the de-
coder to take advantage of them continuously at all
stages of the generation process. We incorporate
features that are local with respect to a span of a
sub-derivation in the packed forest; we also (approx-
imately) include features that arbitrarily exceed span
boundaries, thus capturing more global knowledge.
Experimental results on the ATIS domain (Dahl et
al., 1994) demonstrate that our model outperforms
a baseline based on the best derivation and a state-
of-the-art discriminative system (Angeli et al., 2010)
by a wide margin.

Our contributions in this paper are threefold: we
recast concept-to-text generation in a probabilistic
parsing framework that allows to jointly optimize
content selection and surface realization; we repre-
sent parse derivations compactly using hypergraphs
and illustrate the use of an algorithm for generating
(rather than parsing) in this framework; finally, the
application of discriminative reranking to concept-
to-text generation is novel to our knowledge and as
our experiments show beneficial.

2 Related Work

Early discriminative approaches to text generation
were introduced in spoken dialogue systems, and
usually tackled content selection and surface re-
alization separately. Ratnaparkhi (2002) concep-
tualized surface realization (from a fixed meaning
representation) as a classification task. Local and
non-local information (e.g., word n-grams, long-

range dependencies) was taken into account with the
use of features in a maximum entropy probability
model. More recently, Wong and Mooney (2007)
describe an approach to surface realization based on
synchronous context-free grammars. The latter are
learned using a log-linear model with minimum er-
ror rate training (Och, 2003).

Angeli et al. (2010) were the first to propose a
unified approach to content selection and surface re-
alization. Their model operates over automatically
induced alignments of words to database records
(Liang et al., 2009) and decomposes into a sequence
of discriminative local decisions. They first deter-
mine which records in the database to talk about,
then which fields of those records to mention, and
finally which words to use to describe the chosen
fields. Each of these decisions is implemented as
a log-linear model with features learned from train-
ing data. Their surface realization component per-
forms decisions based on templates that are automat-
ically extracted and smoothed with domain-specific
knowledge in order to guarantee fluent output.

Discriminative reranking has been employed in
many NLP tasks such as syntactic parsing (Char-
niak and Johnson, 2005; Huang, 2008), machine
translation (Shen et al., 2004; Li and Khudanpur,
2009) and semantic parsing (Ge and Mooney, 2006).
Our model is closest to Huang (2008) who also
performs forest reranking on a hypergraph, using
both local and non-local features, whose weights
are tuned with the averaged perceptron algorithm
(Collins, 2002). We adapt forest reranking to gen-
eration and introduce several task-specific features
that boost performance. Although conceptually re-
lated to Angeli et al. (2010), our model optimizes
content selection and surface realization simultane-
ously, rather than as a sequence. The discriminative
aspect of two models is also fundamentally different.
We have a single reranking component that applies
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throughout, whereas they train different discrimina-
tive models for each local decision.

3 Problem Formulation

We assume our generator takes as input a set of
database records d and produces text w that verbal-
izes some of these records. Each record r ∈ d has a
type r.t and a set of fields f associated with it. Fields
have different values f .v and types f .t (i.e., integer
or categorical). For example, in Figure 1, flight is a
record type with fields from and to. The values of
these fields are denver and boston and their type is
categorical.

During training, our algorithm is given a corpus
consisting of several scenarios, i.e., database records
paired with texts like those shown in Figure 1. The
database (and accompanying texts) are next con-
verted into a PCFG whose weights are learned from
training data. PCFG derivations are represented as
a weighted directed hypergraph (Gallo et al., 1993).
The weights on the hyperarcs are defined by a vari-
ety of feature functions, which we learn via a dis-
criminative online update algorithm. During test-
ing, we are given a set of database records with-
out the corresponding text. Using the learned fea-
ture weights, we compile a hypergraph specific to
this test input and decode it approximately (Huang,
2008). The hypergraph representation allows us
to decompose the feature functions and compute
them piecemeal at each hyperarc (or sub-derivation),
rather than at the root node as in conventional n-best
list reranking. Note that the algorithm does not sep-
arate content selection from surface realization, both
subtasks are optimized jointly through the proba-
bilistic parsing formulation.

3.1 Grammar Definition

We capture the structure of the database with a num-
ber of CFG rewrite rules, in a similar way to how
Liang et al. (2009) define Markov chains in their
hierarchical model. These rules are purely syn-
tactic (describing the intuitive relationship between
records, records and fields, fields and corresponding
words), and could apply to any database with sim-
ilar structure irrespectively of the semantics of the
domain.

Our grammar is defined in Table 1 (rules (1)–(9)).
Rule weights are governed by an underlying multi-
nomial distribution and are shown in square brack-

1. S→ R(start) [Pr = 1]

2. R(ri.t)→ FS(r j,start) R(r j.t) [P(r j.t |ri.t) ·λ]

3. R(ri.t)→ FS(r j,start) [P(r j.t |ri.t) ·λ]

4. FS(r,r. fi)→ F(r,r. f j) FS(r,r. f j) [P( f j | fi)]

5. FS(r,r. fi)→ F(r,r. f j) [P( f j | fi)]

6. F(r,r. f )→W(r,r. f ) F(r,r. f ) [P(w |w−1,r,r. f )]

7. F(r,r. f )→W(r,r. f ) [P(w |w−1,r,r. f )]

8. W(r,r. f )→ α [P(α |r,r. f , f .t, f .v)]

9. W(r,r. f )→ g( f .v)
[P(g( f .v).mode |r,r. f , f .t = int)]

Table 1: Grammar rules and their weights shown in
square brackets.

ets. Non-terminal symbols are in capitals and de-
note intermediate states; the terminal symbol α

corresponds to all words seen in the training set,
and g( f .v) is a function for generating integer num-
bers given the value of a field f . All non-terminals,
save the start symbol S, have one or more constraints
(shown in parentheses), similar to number and gen-
der agreement constraints in augmented syntactic
rules.

Rule (1) denotes the expansion from the start
symbol S to record R, which has the special start
type (hence the notation R(start)). Rule (2) de-
fines a chain between two consecutive records ri
and r j. Here, FS(r j,start) represents the set
of fields of the target r j, following the source
record R(ri). For example, the rule R(search1.t)→
FS( f light1,start)R( f light1.t) can be interpreted as
follows. Given that we have talked about search1,
we will next talk about f light1 and thus emit its
corresponding fields. R( f light1.t) is a non-terminal
place-holder for the continuation of the chain of
records, and start in FS is a special boundary field
between consecutive records. The weight of this rule
is the bigram probability of two records conditioned
on their type, multiplied with a normalization fac-
tor λ. We have also defined a null record type i.e., a
record that has no fields and acts as a smoother for
words that may not correspond to a particular record.
Rule (3) is simply an escape rule, so that the parsing
process (on the record level) can finish.

Rule (4) is the equivalent of rule (2) at the field
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level, i.e., it describes the chaining of two con-
secutive fields fi and f j. Non-terminal F(r,r. f )
refers to field f of record r. For example, the rule
FS( f light1, f rom) → F( f light1, to)FS( f light1, to),
specifies that we should talk about the field to of
record f light1, after talking about the field f rom.
Analogously to the record level, we have also in-
cluded a special null field type for the emission of
words that do not correspond to a specific record
field. Rule (6) defines the expansion of field F to
a sequence of (binarized) words W, with a weight
equal to the bigram probability of the current word
given the previous word, the current record, and
field.

Rules (8) and (9) define the emission of words and
integer numbers from W, given a field type and its
value. Rule (8) emits a single word from the vocabu-
lary of the training set. Its weight defines a multino-
mial distribution over all seen words, for every value
of field f , given that the field type is categorical or
the special null field. Rule (9) is identical but for
fields whose type is integer. Function g( f .v) gener-
ates an integer number given the field value, using
either of the following six ways (Liang et al., 2009):
identical to the field value, rounding up or rounding
down to a multiple of 5, rounding off to the clos-
est multiple of 5 and finally adding or subtracting
some unexplained noise.1 The weight is a multino-
mial over the six generation function modes, given
the record field f .

The CFG in Table 1 will produce many deriva-
tions for a given input (i.e., a set of database records)
which we represent compactly using a hypergraph or
a packed forest (Klein and Manning, 2001; Huang,
2008). Simplified examples of this representation
are shown in Figure 2.

3.2 Hypergraph Reranking

For our generation task, we are given a set of
database records d, and our goal is to find the best
corresponding text w. This corresponds to the best
grammar derivation among a set of candidate deriva-
tions represented implicitly in the hypergraph struc-
ture. As shown in Table 1, the mapping from d to w
is unknown. Therefore, all the intermediate multino-
mial distributions, described in the previous section,
define a hidden correspondence structure h, between
records, fields, and their values. We find the best

1The noise is modeled as a geometric distribution.

Algorithm 1: Averaged Structured Perceptron
Input: Training scenarios: (di,w∗,h+

i )N
i=1

1 α← 0
2 for t← 1 . . .T do
3 for i← 1 . . .N do
4 (ŵ, ĥ) = argmaxw,h α ·Φ(di,wi,hi)

5 if (w∗i ,h
+
i ) 6= (ŵi, ĥi) then

6 α← α+Φ(di,w∗i ,h
+
i )−Φ(di, ŵi, ĥi)

7 return 1
T ∑

T
t=1

1
N ∑

N
i=1 αi

t

scoring derivation (ŵ, ĥ) by maximizing over con-
figurations of h:

(ŵ, ĥ) = argmax
w,h

α ·Φ(d,w,h)

We define the score of (ŵ, ĥ) as the dot product
between a high dimensional feature representation
Φ = (Φ1, . . . ,Φm) and a weight vector α.

We estimate the weights α using the averaged
structured perceptron algorithm (Collins, 2002),
which is well known for its speed and good perfor-
mance in similar large-parameter NLP tasks (Liang
et al., 2006; Huang, 2008). As shown in Algo-
rithm 1, the perceptron makes several passes over
the training scenarios, and in each iteration it com-
putes the best scoring (ŵ, ĥ) among the candidate
derivations, given the current weights α. In line 6,
the algorithm updates α with the difference (if any)
between the feature representations of the best scor-
ing derivation (ŵ, ĥ) and the the oracle derivation
(w∗,h+). Here, ŵ is the estimated text, w∗ the gold-
standard text, ĥ is the estimated latent configuration
of the model and h+ the oracle latent configuration.
The final weight vector α is the average of weight
vectors over T iterations and N scenarios. This av-
eraging procedure avoids overfitting and produces
more stable results (Collins, 2002).

In the following, we first explain how we decode
in this framework, i.e., find the best scoring deriva-
tion (Section 3.3) and discuss our definition for the
oracle derivation (w∗,h+) (Section 3.4). Our fea-
tures are described in Section 4.2.

3.3 Hypergraph Decoding
Following Huang (2008), we also distinguish fea-
tures into local, i.e., those that can be computed
within the confines of a single hyperedge, and non-
local, i.e., those that require the prior visit of nodes
other than their antecedents. For example, the
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Alignment feature in Figure 2(a) is local, and thus
can be computed a priori, but the Word Trigrams
is not; in Figure 2(b) words in parentheses are sub-
generations created so far at each word node; their
combination gives rise to the trigrams serving as
input to the feature. However, this combination
may not take place at their immediate ancestors,
since these may not be adjacent nodes in the hy-
pergraph. According to the grammar in Table 1,
there is no direct hyperedge between nodes repre-
senting words (W) and nodes representing the set of
fields these correspond to (FS); rather, W and FS are
connected implicitly via individual fields (F). Note,
that in order to estimate the trigram feature at the
FS node, we need to carry word information in the
derivations of its antecedents, as we go bottom-up.2

Given these two types of features, we can then
adapt Huang’s (2008) approximate decoding algo-
rithm to find (ŵ, ĥ). Essentially, we perform bottom-
up Viterbi search, visiting the nodes in reverse topo-
logical order, and keeping the k-best derivations for
each. The score of each derivation is a linear com-
bination of local and non-local features weights. In
machine translation, a decoder that implements for-
est rescoring (Huang and Chiang, 2007) uses the lan-
guage model as an external criterion of the good-
ness of sub-translations on account of their gram-
maticality. Analogously here, non-local features in-
fluence the selection of the best combinations, by
introducing knowledge that exceeds the confines of
the node under consideration and thus depend on
the sub-derivations generated so far. (e.g., word tri-
grams spanning a field node rely on evidence from
antecedent nodes that may be arbitrarily deeper than
the field’s immediate children).

Our treatment of leaf nodes (see rules (8) and (9))
differs from the way these are usually handled in
parsing. Since in generation we must emit rather
than observe the words, for each leaf node we there-
fore output the k-best words according to the learned
weights α of the Alignment feature (see Sec-
tion 4.2), and continue building our sub-generations
bottom-up. This generation task is far from triv-
ial: the search space on the word level is the size of
the vocabulary and each field of a record can poten-
tially generate all words. Also, note that in decoding
it is useful to have a way to score different output

2We also store field information to compute structural fea-
tures, described in Section 4.2.

lengths |w|. Rather than setting w to a fixed length,
we rely on a linear regression predictor that uses the
counts of each record type per scenario as features
and is able to produce variable length texts.

3.4 Oracle Derivation

So far we have remained agnostic with respect to
the oracle derivation (w∗,h+). In other NLP tasks
such as syntactic parsing, there is a gold-standard
parse, that can be used as the oracle. In our gener-
ation setting, such information is not available. We
do not have the gold-standard alignment between the
database records and the text that verbalizes them.
Instead, we approximate it using the existing de-
coder to find the best latent configuration h+ given
the observed words in the training text w∗.3 This is
similar in spirit to the generative alignment model of
Liang et al. (2009).

4 Experimental Design

In this section we present our experimental setup for
assessing the performance of our model. We give
details on our dataset, model parameters and fea-
tures, the approaches used for comparison, and ex-
plain how system output was evaluated.

4.1 Dataset

We conducted our experiments on the Air Travel In-
formation System (ATIS) dataset (Dahl et al., 1994)
which consists of transcriptions of spontaneous ut-
terances of users interacting with a hypothetical on-
line flight booking system. The dataset was orig-
inally created for the development of spoken lan-
guage systems and is partitioned in individual user
turns (e.g., flights from orlando to milwaukee, show
flights from orlando to milwaukee leaving after six
o’clock) each accompanied with an SQL query to a
booking system and the results of this query. These
utterances are typically short expressing a specific
communicative goal (e.g., a question about the ori-
gin of a flight or its time of arrival). This inevitably
results in small scenarios with a few words that of-
ten unambiguously correspond to a single record. To
avoid training our model on a somewhat trivial cor-
pus, we used the dataset introduced in Zettlemoyer

3In machine translation, Huang (2008) provides a soft al-
gorithm that finds the forest oracle, i.e., the parse among the
reranked candidates with the highest Parseval F-score. How-
ever, it still relies on the gold-standard reference translation.
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and Collins (2007) instead, which combines the ut-
terances of a single user in one scenario and con-
tains 5,426 scenarios in total; each scenario corre-
sponds to a (manually annotated) formal meaning
representation (λ-expression) and its translation in
natural language.

Lambda expressions were automatically con-
verted into records, fields and values following the
conventions adopted in Liang et al. (2009).4 Given
a lambda expression like the one shown in Figure 1,
we first create a record for each variable and constant
(e.g., x, 9, august). We then assign record types ac-
cording to the corresponding class types (e.g., vari-
able x has class type flight). Next, fields and val-
ues are added from predicates with two arguments
with the class type of the first argument matching
that of the record type. The name of the predicate
denotes the field, and the second argument denotes
the value. We also defined special record types, such
as condition and search. The latter is introduced for
every lambda operator and assigned the categorical
field what with the value flight which refers to the
record type of variable x.

Contrary to datasets used in previous generation
studies (e.g., ROBOCUP (Chen and Mooney, 2008)
and WEATHERGOV (Liang et al., 2009)), ATIS has a
much richer vocabulary (927 words); each scenario
corresponds to a single sentence (average length
is 11.2 words) with 2.65 out of 19 record types
mentioned on average. Following Zettlemoyer and
Collins (2007), we trained on 4,962 scenarios and
tested on ATIS NOV93 which contains 448 examples.

4.2 Features

Broadly speaking, we defined two types of features,
namely lexical and structural ones. In addition,
we used a generatively trained PCFG as a baseline
feature and an alignment feature based on the co-
occurrence of records (or fields) with words.

Baseline Feature This is the log score of a gen-
erative decoder trained on the PCFG from Table 1.
We converted the grammar into a hypergraph, and
learned its probability distributions using a dynamic
program similar to the inside-outside algorithm (Li
and Eisner, 2009). Decoding was performed approx-

4The resulting dataset and a technical report describ-
ing the mapping procedure in detail are available from
http://homepages.inf.ed.ac.uk/s0793019/index.php?
page=resources

imately via cube pruning (Chiang, 2007), by inte-
grating a trigram language model extracted from the
training set (see Konstas and Lapata (2012) for de-
tails). Intuitively, the feature refers to the overall
goodness of a specific derivation, applied locally in
every hyperedge.

Alignment Features Instances of this feature fam-
ily refer to the count of each PCFG rule from Ta-
ble 1. For example, the number of times rule
R(search1.t)→ FS( f light1,start)R( f light1.t) is in-
cluded in a derivation (see Figure 2(a))

Lexical Features These features encourage gram-
matical coherence and inform lexical selection over
and above the limited horizon of the language model
captured by Rules (6)–(9). They also tackle anoma-
lies in the generated output, due to the ergodicity of
the CFG rules at the record and field level:

Word Bigrams/Trigrams This is a group of
non-local feature functions that count word n-grams
at every level in the hypergraph (see Figure 2(b)).
The integration of words in the sub-derivations is
adapted from Chiang (2007).

Number of Words per Field This feature function
counts the number of words for every field, aiming
to capture compound proper nouns and multi-word
expressions, e.g., fields from and to frequently corre-
spond to two or three words such as ‘new york’ and
‘salt lake city’ (see Figure 2(d)).

Consecutive Word/Bigram/Trigram This feature
family targets adjacent repetitions of the same word,
bigram or trigram, e.g., ‘show me the show me the
flights’.

Structural Features Features in this category tar-
get primarily content selection and influence appro-
priate choice at the field level:

Field bigrams/trigrams Analogously to the lexical
features mentioned above, we introduce a series of
non-local features that capture field n-grams, given
a specific record. For example the record flight in the
air travel domain typically has the values <from to>
(see Figure 2(c)). The integration of fields in sub-
derivations is implemented in fashion similar to the
integration of words.

Number of Fields per Record This feature family
is a coarser version of the Field bigrams/trigrams
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R(search1.t)

FS(flight1.t,start) R(flight1.t)

FS0,3(search1.t,start)

w0(search1.t,type) · · · w1,2(search1.t,what) show
me

what
· · ·


 me the

me f lights
the f lights

· · ·



FS2,6(flight1.t,start)

F2,4(flight1.t,from) FS4,6(flight1.t,from)

F4,6(flight1.t,to)
ε

| 2 words |

(b)Word Trigrams (non-local)
<show me the>, <show me flights>, etc.

(a)Alignment Features (local)
<R(srch1.t)→ FS(fl1.t,st) R(fl1.t)>

(c)Field Bigrams (non-local)
<from to> | flight

(d)Number of Words per Field (local)
<2 | from>

Figure 2: Simplified hypergraph examples with corresponding local and non-local features.

feature, which is deemed to be sparse for rarely-seen
records.

Field with No Value Although records in the ATIS

database schema have many fields, only a few are
assigned a value in any given scenario. For exam-
ple, the flight record has 13 fields, of which only 1.7
(on average) have a value. Practically, in a genera-
tive model this kind of sparsity would result in very
low field recall. We thus include an identity feature
function that explicitly counts whether a particular
field has a value.

4.3 Evaluation
We evaluated three configurations of our
model. A system that only uses the top scor-
ing derivation in each sub-generation and in-
corporates only the baseline and alignment
features (1-BEST+BASE+ALIGN). Our sec-
ond system considers the k-best derivations
and additionally includes lexical features
(k-BEST+BASE+ALIGN+LEX). The number of
k-best derivations was set to 40 and estimated
experimentally on held-out data. And finally,
our third system includes the full feature set
(k-BEST+BASE+ALIGN+LEX+STR). Note, that
the second and third system incorporate non-local
features, hence the use of k-best derivation lists.5

We compared our model to Angeli et al. (2010)
whose approach is closest to ours.6

We evaluated system output automatically, using
the BLEU-4 modified precision score (Papineni et

5Since the addition of these features, essentially incurs
reranking, it follows that the systems would exhibit the exact
same performance as the baseline system with 1-best lists.

6We are grateful to Gabor Angeli for providing us with the
code of his system.

al., 2002) with the human-written text as reference.
We also report results with the METEOR score
(Banerjee and Lavie, 2005), which takes into ac-
count word re-ordering and has been shown to cor-
relate better with human judgments at the sentence
level. In addition, we evaluated the generated text by
eliciting human judgments. Participants were pre-
sented with a scenario and its corresponding verbal-
ization (see Figure 3) and were asked to rate the lat-
ter along two dimensions: fluency (is the text gram-
matical and overall understandable?) and semantic
correctness (does the meaning conveyed by the text
correspond to the database input?). The subjects
used a five point rating scale where a high number
indicates better performance. We randomly selected
12 documents from the test set and generated out-
put with two of our models (1-BEST+BASE+ALIGN
and k-BEST+BASE+ALIGN+LEX+STR) and Angeli
et al.’s (2010) model. We also included the original
text (HUMAN) as a gold standard. We thus obtained
ratings for 48 (12× 4) scenario-text pairs. The study
was conducted over the Internet, using Amazon Me-
chanical Turk, and was completed by 51 volunteers,
all self reported native English speakers.

5 Results

Table 2 summarizes our results. As can be seen, in-
clusion of lexical features gives our decoder an ab-
solute increase of 6.73% in BLEU over the 1-BEST
system. It also outperforms the discriminative sys-
tem of Angeli et al. (2010). Our lexical features
seem more robust compared to their templates. This
is especially the case with infrequent records, where
their system struggles to learn any meaningful infor-
mation. Addition of the structural features further
boosts performance. Our model increases by 8.69%
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System BLEU METEOR
1-BEST+BASE+ALIGN 21.93 34.01
k-BEST+BASE+ALIGN+LEX 28.66 45.18
k-BEST+BASE+ALIGN+LEX+STR 30.62 46.07
ANGELI 26.77 42.41

Table 2: BLEU-4 and METEOR results on ATIS.

over the 1-BEST system and 3.85% over ANGELI in
terms of BLEU. We observe a similar trend when
evaluating system output with METEOR. Differ-
ences in magnitude are larger with the latter metric.

The results of our human evaluation study are
shown in Table 5. We carried out an Analysis of
Variance (ANOVA) to examine the effect of system
type (1-BEST, k-BEST, ANGELI, and HUMAN) on
the fluency and semantic correctness ratings. Means
differences were compared using a post-hoc Tukey
test. The k-BEST system is significantly better than
the 1-BEST and ANGELI (a < 0.01) both in terms
of fluency and semantic correctness. ANGELI is
significantly better than 1-BEST with regard to flu-
ency (a < 0.05) but not semantic correctness. There
is no statistically significant difference between the
k-BEST output and the original sentences (HUMAN).

Examples of system output are shown in Table 3.
They broadly convey similar meaning with the gold-
standard; ANGELI exhibits some long-range repeti-
tion, probably due to re-iteration of the same record
patterns. We tackle this issue with the inclusion of
non-local structural features. The 1-BEST system
has some grammaticality issues, which we avoid by
defining features over lexical n-grams and repeated
words. It is worth noting that both our system and
ANGELI produce output that is semantically com-
patible with but lexically different from the gold-
standard (compare please list the flights and show
me the flights against give me the flights). This is
expected given the size of the vocabulary, but raises
concerns regarding the use of automatic metrics for
the evaluation of generation output.

6 Conclusions

We presented a discriminative reranking framework
for an end-to-end generation system that performs
both content selection and surface realization. Cen-
tral to our approach is the encoding of generation
as a parsing problem. We reformulate the input (a
set of database records and text describing some of

System FluencySemCor
1-BEST+BASE+ALIGN 2.70 3.05
k-BEST+BASE+ALIGN+LEX+STR 4.02 4.04
ANGELI 3.74 3.17
HUMAN 4.18 4.02

Table 3: Mean ratings for fluency and semantic correct-
ness (SemCor) on system output elicited by humans.
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B

E
S

T

give me the flights from phoenix to milwaukee on
wednesday evening

show me the flights from phoenix to milwaukee on
wednesday evening flights from phoenix to milwaukee

please list the flights from phoenix to milwaukee on
wednesday evening

on wednesday evening from from phoenix to
milwaukee on wednesday evening

Figure 3: Example of scenario input and system output.

them) as a PCFG and convert it to a hypergraph. We
find the best scoring derivation via forest reranking
using both local and non-local features, that we train
using the perceptron algorithm. Experimental eval-
uation on the ATIS dataset shows that our model at-
tains significantly higher fluency and semantic cor-
rectness than any of the comparison systems. The
current model can be easily extended to incorporate,
additional, more elaborate features. Likewise, it can
port to other domains with similar database struc-
ture without modification, such as WEATHERGOV

and ROBOCUP. Finally, distributed training strate-
gies have been developed for the perceptron algo-
rithm (McDonald et al., 2010), which would allow
our generator to scale to even larger datasets.

In the future, we would also like to tackle more
challenging domains (e.g., product descriptions) and
to enrich our generator with some notion of dis-
course planning. An interesting question is how to
extend the PCFG-based approach advocated here so
as to capture discourse-level document structure.
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