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Abstract

Two decades after their invention, the IBM
word-based translation models, widely avail-
able in the GIZA++ toolkit, remain the dom-
inant approach to word alignment and an in-
tegral part of many statistical translation sys-
tems. Although many models have surpassed
them in accuracy, none have supplanted them
in practice. In this paper, we propose a simple
extension to the IBM models: anℓ0 prior to en-
courage sparsity in the word-to-word transla-
tion model. We explain how to implement this
extension efficiently for large-scale data (also
released as a modification to GIZA++) and
demonstrate, in experiments on Czech, Ara-
bic, Chinese, and Urdu to English translation,
significant improvements over IBM Model 4
in both word alignment (up to+6.7 F1) and
translation quality (up to+1.4 Bleu).

1 Introduction

Automatic word alignment is a vital component of
nearly all current statistical translation pipelines. Al-
though state-of-the-art translation models use rules
that operate on units bigger than words (like phrases
or tree fragments), they nearly always use word
alignments to drive extraction of those translation
rules. The dominant approach to word alignment has
been the IBM models (Brown et al., 1993) together
with the HMM model (Vogel et al., 1996). These
models are unsupervised, making them applicable
to any language pair for which parallel text is avail-
able. Moreover, they are widely disseminated in the
open-source GIZA++ toolkit (Och and Ney, 2004).
These properties make them the default choice for
most statistical MT systems.

In the decades since their invention, many mod-
els have surpassed them in accuracy, but none has
supplanted them in practice. Some of these models
are partially supervised, combining unlabeled paral-
lel text with manually-aligned parallel text (Moore,
2005; Taskar et al., 2005; Riesa and Marcu, 2010).
Although manually-aligned data is very valuable, it
is only available for a small number of language
pairs. Other models are unsupervised like the IBM
models (Liang et al., 2006; Graça et al., 2010; Dyer
et al., 2011), but have not been as widely adopted as
GIZA++ has.

In this paper, we propose a simple extension to
the IBM/HMM models that is unsupervised like the
IBM models, is as scalable as GIZA++ because it is
implemented on top of GIZA++, and provides sig-
nificant improvements in both alignment and trans-
lation quality. It extends the IBM/HMM models by
incorporating anℓ0 prior, inspired by the princi-
ple of minimum description length (Barron et al.,
1998), to encourage sparsity in the word-to-word
translation model (Section 2.2). This extension fol-
lows our previous work on unsupervised part-of-
speech tagging (Vaswani et al., 2010), but enables
it to scale to the large datasets typical in word
alignment, using an efficient training method based
on projected gradient descent (Section 2.3). Ex-
periments on Czech-, Arabic-, Chinese- and Urdu-
English translation (Section 3) demonstrate consis-
tent significant improvements over IBM Model 4 in
both word alignment (up to+6.7 F1) and transla-
tion quality (up to+1.4 Bleu). Our implementation
has been released as a simple modification to the
GIZA++ toolkit that can be used as a drop-in re-
placement for GIZA++ in any existing MT pipeline.



2 Method

We start with a brief review of the IBM and HMM
word alignment models, then describe how to extend
them with a smoothedℓ0 prior and how to efficiently
train them.

2.1 IBM Models and HMM

Given a French stringf = f1 · · · f j · · · fm and an
English stringe = e1 · · ·ei · · · eℓ, these models de-
scribe the process by which the French string is
generated by the English string via the alignment
a = a1, . . . ,a j , . . . ,am. Eacha j is a hidden vari-
ables, indicating which English wordea j the French
word f j is aligned to.

In IBM Model 1–2 and the HMM model, the joint
probability of the French sentence and alignment
given the English sentence is

P(f, a | e) =
m

∏

j=1

d(a j | a j−1, j)t( f j | ea j ). (1)

The parameters of these models are the distortion
probabilitiesd(a j | a j−1, j) and the translation prob-
abilities t( f j | ea j ). The three models differ in their
estimation ofd, but the differences do not concern us
here. All three models, as well as IBM Models 3–5,
share the samet. For further details of these models,
the reader is referred to the original papers describ-
ing them (Brown et al., 1993; Vogel et al., 1996).

Let θ stand for all the parameters of the model.
The standard training procedure is to find the param-
eter values that maximize the likelihood, or, equiv-
alently, minimize the negative log-likelihood of the
observed data:

θ̂ = arg min
θ

(

− logP(f | e, θ)
)

(2)

= arg min
θ
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(3)

This is done using the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977).

2.2 MAP-EM with the ℓ0-norm

Maximum likelihood training is prone to overfitting,
especially in models with many parameters. In word
alignment, one well-known manifestation of overfit-
ting is that rare words can act as “garbage collectors”

(Moore, 2004), aligning to many unrelated words.
This hurts alignment precision and rule-extraction
recall. Previous attempted remedies include early
stopping, smoothing (Moore, 2004), and posterior
regularization (Graça et al., 2010).

We have previously proposed another simple
remedy to overfitting in the context of unsuper-
vised part-of-speech tagging (Vaswani et al., 2010),
which is to minimize the size of the model using a
smoothedℓ0 prior. Applying this prior to an HMM
improves tagging accuracy for both Italian and En-
glish.

Here, our goal is to apply a similar prior in a
word-alignment model to the word-to-word transla-
tion probabilitiest( f | e). We leave the distortion
models alone, since they are not very large, and there
is not much reason to believe that we can profit from
compacting them.

With the addition of theℓ0 prior, the MAP (maxi-
muma posteriori) objective function is

θ̂ = arg min
θ

(

− logP(f | e, θ)P(θ)
)

(4)

where

P(θ) ∝ exp
(

−α‖θ‖
β

0

)

(5)

and

‖θ‖
β

0 =
∑

e, f

(

1− exp
−t( f | e)
β

)

(6)

is a smoothed approximation of theℓ0-norm. The
hyperparameterβ controls the tightness of the ap-
proximation, as illustrated in Figure 1. Substituting
back into (4) and dropping constant terms, we get
the following optimization problem: minimize

− logP(f | e, θ) − α
∑

e, f

exp
−t( f | e)
β

(7)

subject to the constraints
∑

f

t( f | e) = 1 for all e. (8)

We can carry out the optimization in (7) with the
MAP-EM algorithm (Bishop, 2006). EM and MAP-
EM share the same E-step; the difference lies in the
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Figure 1: Theℓ0-norm (top curve) and smoothed approx-
imations (below) forβ = 0.05,0.1,0.2.

M-step. For vanilla EM, the M-step is:

θ̂ = arg min
θ
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(9)

again subject to the constraints (8). The count
C(e, f ) is the number of times thatf occurs aligned
to e. For MAP-EM, it is:

θ̂ = arg min
θ

(

−
∑

e, f

E[C(e, f )] log t( f | e) −

α
∑

e, f

exp
−t( f | e)
β

) (10)

This optimization problem is non-convex, and we
do not know of a closed-form solution. Previously
(Vaswani et al., 2010), we used ALGENCAN, a non-
linear optimization toolkit, but this solution does not
scale well to the number of parameters involved in
word alignment models. Instead, we use a simpler
and more scalable method which we describe in the
next section.

2.3 Projected gradient descent

Following Schoenemann (2011b), we use projected
gradient descent (PGD) to solve the M-step (but
with the ℓ0-norm instead of theℓ1-norm). Gradient
projection methods are attractive solutions to con-
strained optimization problems, particularly when
the constraints on the parameters are simple (Bert-
sekas, 1999). LetF(θ) be the objective function in

(10); we seek to minimize this function. As in pre-
vious work (Vaswani et al., 2010), we optimize each
set of parameters{t(· | e)} separately for each En-
glish word typee. The inputs to the PGD are the
expected countsE[C(e, f )] and the current word-to-
word conditional probabilitiesθ. We run PGD forK
iterations, producing a sequence of intermediate pa-
rameter vectorsθ1, . . . , θk, . . . , θK . Each iteration has
two steps, a projection step and a line search.

Projection step In this step, we compute:

θ
k
=

[

θk − s∇F(θk)
]∆

(11)

This movesθ in the direction of steepest descent
(∇F) with step sizes, and then the function [·]∆

projects the resulting point onto the simplex; that
is, it finds the nearest point that satisfies the con-
straints (8).

The gradient∇F(θk) is

∂F
∂t( f | e)

= −
E[C( f ,e)]

t( f | e)
+
α

β
exp
−t( f | e)
β

(12)

In contrast to Schoenemann (2011b), we use an
O(n logn) algorithm for the projection step due to
Duchi et. al. (2008), shown in Pseudocode 1.

Pseudocode 1 Project input vectoru ∈ Rn onto the
probability simplex.

v = u sorted in non-decreasing order
ρ = 0
for i = 1 ton do

if vi −
1
i

(

∑i
r=1 vr − 1

)

> 0 then
ρ = i

end if
end for
η = 1

ρ

(

∑ρ

r=1 vr − 1
)

wr = max{vr − η,0} for 1 ≤ r ≤ n
return w

Line search Next, we move to a point betweenθk

andθ
k

that satisfies theArmijo condition,

F(θk + δm) ≤ F(θk) + σ
(

∇F(θk) · δm
)

(13)

whereδm = γm(θ
k
− θk) andσ andγ are both con-

stants in (0,1). We try valuesm = 1,2, . . . until the
Armijo condition (13) is satisfied or the limitm= 20



Pseudocode 2 Find a point betweenθk andθ
k

that
satisfies the Armijo condition.

Fmin = F(θk)
θmin = θ

k

for m= 1 to 20do
δm = γ

m
(

θ
k
− θk

)

if F(θk + δm) < Fmin then
Fmin = F(θk + δm)
θmin = θ

k + δm
end if
if F(θk + δm) ≤ F(θk) + σ

(

∇F(θk) · δm
)

then
break

end if
end for
θk+1 = θmin

return θk+1

is reached. (Note that we don’t allowm= 0 because
this can causeθk + δm to land on the boundary of
the probability simplex, where the objective func-
tion is undefined.) Then we setθk+1 to the point in
{θk} ∪ {θk + δm | 1 ≤ m ≤ 20} that minimizesF.
The line search algorithm is summarized in Pseu-
docode 2.

In our implementation, we setγ = 0.5 andσ =
0.5. We keeps fixed for all PGD iterations; we ex-
perimented withs ∈ {0.1,0.5} and did not observe
significant changes in F-score. We run the projection
step and line search alternately for at mostK itera-
tions, terminating early if there is no change inθk

from one iteration to the next. We setK = 35 for the
large Arabic-English experiment; for all other con-
ditions, we setK = 50. These choices were made to
balance efficiency and accuracy. We found that val-
ues ofK between 30 and 75 were generally reason-
able.

3 Experiments

To demonstrate the effect of theℓ0-norm on the IBM
models, we performed experiments on four trans-
lation tasks: Arabic-English, Chinese-English, and
Urdu-English from the NIST Open MT Evaluation,
and the Czech-English translation from the Work-
shop on Machine Translation (WMT) shared task.
We measured the accuracy of word alignments gen-
erated by GIZA++ with and without theℓ0-norm,

and also translation accuracy of systems trained us-
ing the word alignments. Across all tests, we found
strong improvements from adding theℓ0-norm.

3.1 Training

We have implemented our algorithm as an open-
source extension to GIZA++.1 Usage of the exten-
sion is identical to standard GIZA++, except that the
user can switch theℓ0 prior on or off, and adjust the
hyperparametersα andβ.

For vanilla EM, we ran five iterations of Model 1,
five iterations of HMM, and ten iterations of
Model 4. For our approach, we first ran one iter-
ation of Model 1, followed by four iterations of
Model 1 with smoothedℓ0, followed by five itera-
tions of HMM with smoothedℓ0. Finally, we ran ten
iterations of Model 4.2

We used the following parallel data:

• Chinese-English: selected data from the con-
strained task of the NIST 2009 Open MT Eval-
uation.3

• Arabic-English: all available data for the
constrained track of NIST 2009, excluding
United Nations proceedings (LDC2004E13),
ISI Automatically Extracted Parallel Text
(LDC2007E08), and Ummah newswire text
(LDC2004T18), for a total of 5.4+4.3 mil-
lion words. We also experimented on a larger
Arabic-English parallel text of 44+37 million
words from the DARPA GALE program.

• Urdu-English: all available data for the con-
strained track of NIST 2009.

1The code can be downloaded from the first author’s website
athttp://www.isi.edu/˜avaswani/giza-pp-l0.html.

2GIZA++ allows changing some heuristic parameters for
efficient training. Currently, we set two of these to zero:
mincountincrease andprobcutoff. In the default setting,
both are set to 10−7. We setprobcutoff to 0 because we would
like the optimization to learn the parameter values. For a fair
comparison, we applied the same setting to our vanilla EM
training as well. To test, we ran GIZA++ with the default set-
ting on the smaller of our two Arabic-English datasets with the
same number of iterations and found no change in F-score.

3LDC catalog numbers LDC2003E07, LDC2003E14,
LDC2005E83, LDC2005T06, LDC2006E24, LDC2006E34,
LDC2006E85, LDC2006E86, LDC2006E92, and
LDC2006E93.
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       u        liú
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  u        hěn
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             wán

u             yı̌hòu
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           u  le

       u      sı̀ge

        u     diāobǎo
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Figure 2: Smoothed-ℓ0 alignments (red circles) correct many errors in the baseline GIZA++ alignments (black
squares), as shown in four Chinese-English examples (the red circles are almost perfect for these examples, except
for minor mistakes such as liu-shūq̄ıng and meeting-z̀aizùo in (a) and .-, in (c)). In particular, the baseline system
demonstrates typical “garbage-collection” phenomena in proper name “shuqing” in both languages in (a), number
“4000” and word “ĺaib̄ın” (lit. “guest”) in (b), word “troublesome” and “l̀ulù” (lit. “land-route”) in (c), and “block-
houses” and “dīaob̌ao” (lit. “bunker”) in (d). We found this garbage-collection behavior to be especially common with
proper names, numbers, and uncommon words in both languages. Most interestingly, in (c), our smoothed-ℓ0 system
correctly aligns “extremely” to “ȟen ȟen ȟen ȟen” (lit. “very very very very”) which is rare in the bitext.



task data (M) system align F1 (%) word trans (M) φ̃sing. Bleu (%)
2008 2009 2010

Chi-Eng 9.6+12
baseline 73.2 3.5 6.2 28.7
ℓ0-norm 76.5 2.0 3.3 29.5

difference +3.3 −43% −47% +0.8

Ara-Eng 5.4+4.3
baseline 65.0 3.1 4.5 39.8 42.5
ℓ0-norm 70.8 1.8 1.8 41.1 43.7

difference +5.9 −39% −60% +1.3 +1.2

Ara-Eng 44+37
baseline 66.2 15 5.0 41.6 44.9
ℓ0-norm 71.8 7.9 1.8 42.5 45.3

difference +5.6 −47% −64% +0.9 +0.4

Urd-Eng 1.7+1.5
baseline 1.7 4.5 25.3∗ 29.8
ℓ0-norm 1.2 2.2 25.9∗ 31.2

difference −29% −51% +0.6∗ +1.4

Cze-Eng 2.1+2.3
baseline 65.6 1.5 3.0 17.3 18.0
ℓ0-norm 72.3 1.0 1.4 17.9 18.4

difference +6.7 −33% −53% +0.6 +0.4

Table 1: Adding theℓ0-norm to the IBM models improves both alignment and translation accuracy across four different
language pairs. Theword transcolumn also shows that the number of distinct word translations (i.e., the size of the
lexical weighting table) is reduced. Thẽφsing. column shows the average fertility of once-seen source words. For
Czech-English, the year refers to the WMT shared task; for allother language pairs, the year refers to the NIST Open
MT Evaluation.∗Half of this test set was also used for tuning feature weights.

• Czech-English: A corpus of 4 million words of
Czech-English data from the News Commen-
tary corpus.4

We set the hyperparametersα and β by tuning
on gold-standard word alignments (to maximize F1)
when possible. For Arabic-English and Chinese-
English, we used 346 and 184 hand-aligned sen-
tences from LDC2006E86 and LDC2006E93. Sim-
ilarly, for Czech-English, 515 hand-aligned sen-
tences were available (Bojar and Prokopová, 2006).
But for Urdu-English, since we did not have any
gold alignments, we usedα = 10 andβ = 0.05. We
did not choose a largeα, as the dataset was small,
and we chose a conservative value forβ.

We ran word alignment in both directions and
symmetrized usinggrow-diag-final (Koehn et al.,
2003). For models with the smoothedℓ0 prior, we
tunedα andβ separately in each direction.

3.2 Alignment

First, we evaluated alignment accuracy directly by
comparing against gold-standard word alignments.

4This data is available athttp://statmt.org/wmt10.

The results are shown in thealignment F1col-
umn of Table 1. We used balanced F-measure rather
than alignment error rate as our metric (Fraser and
Marcu, 2007).

Following Dyer et al. (2011), we also measured
the average fertility,φ̃sing., of once-seen source
words in the symmetrized alignments. Our align-
ments show smaller fertility for once-seen words,
suggesting that they suffer from “garbage collec-
tion” effects less than the baseline alignments do.

The fact that we had to use hand-aligned data to
tune the hyperparametersα and β means that our
method is no longer completely unsupervised. How-
ever, our observation is that alignment accuracy is
actually fairly robust to the choice of these hyperpa-
rameters, as shown in Table 2. As we will see below,
we still obtained strong improvements in translation
quality when hand-aligned data was unavailable.

We also tried generating 50 word classes using
the tool provided in GIZA++. We found that adding
word classes improved alignment quality a little, but
more so for the baseline system (see Table 3). We
used the alignments generated by training with word
classes for our translation experiments.



β model
α

0 10 25 50 75 100 250 500 750

–
HMM 47.5
M4 52.1

0.5
HMM 46.3 48.4 52.8 55.7 57.5 61.5 62.662.7
M4 51.7 53.7 56.4 58.6 59.8 63.3 64.4 64.8

0.1
HMM 55.6 60.4 61.6 62.1 61.9 61.8 60.2 60.1
M4 58.2 62.4 64.0 64.4 64.8 65.5 65.665.9

0.05
HMM 59.1 61.4 62.4 62.5 62.3 60.8 58.7 57.7
M4 61.0 63.5 64.6 65.3 65.3 65.4 65.7 65.7

0.01
HMM 59.7 61.6 60.0 59.5 58.7 56.9 55.7 54.7
M4 62.9 65.0 65.1 65.2 65.1 65.4 65.3 65.4

0.005
HMM 58.1 59.0 58.3 57.6 57.0 55.9 53.9 51.7
M4 62.0 64.1 64.5 64.5 64.5 65.0 64.8 64.6

0.001
HMM 51.7 52.1 51.4 49.3 50.4 46.8 45.4 44.0
M4 59.8 61.3 61.5 61.0 61.8 61.2 61.0 61.2

Table 2: Almost all hyperparameter settings achieve higherF-scores than the baseline IBM Model 4 and HMM model
for Arabic-English alignment (α = 0).

word classes?
direction system no yes

P( f | e)
baseline 49.0 52.1
ℓ0-norm 63.9 65.9

difference +14.9 +13.8

P(e | f )
baseline 64.3 65.2
ℓ0-norm 69.2 70.3

difference +4.9 +5.1

Table 3: Adding word classes improves the F-score in
both directions for Arabic-English alignment by a little,
for the baseline system more so than ours.

Figure 2 shows four examples of Chinese-
English alignment, comparing the baseline with our
smoothed-ℓ0 method. In all four cases, the base-
line produces incorrect extra alignments that prevent
good translation rules from being extracted while
the smoothed-ℓ0 results are correct. In particular, the
baseline system demonstrates typical “garbage col-
lection” behavior (Moore, 2004) in all four exam-
ples.

3.3 Translation

We then tested the effect of word alignments on
translation quality using the hierarchical phrase-
based translation system Hiero (Chiang, 2007). We
used a fairly standard set of features: seven in-
herited from Pharaoh (Koehn et al., 2003), a sec-

setting align F1 (%) Bleu (%)
t( f | e) t(e | f ) 2008 2009

1st 1st 70.8 41.1 43.7
1st 2nd 70.7 41.1 43.8
2nd 1st 70.7 40.7 44.1
2nd 2nd 70.9 41.1 44.2

Table 4: Optimizing hyperparameters on alignment F1
score does not necessarily lead to optimal Bleu. The
first two columns indicate whether we used the first- or
second-best alignments in each direction (according to
F1); the third column shows the F1 of the symmetrized
alignments, whose corresponding Bleu scores are shown
in the last two columns.

ond language model, and penalties for the glue
rule, identity rules, unknown-word rules, and two
kinds of number/name rules. The feature weights
were discriminatively trained using MIRA (Chi-
ang et al., 2008). We used two 5-gram language
models, one on the combined English sides of
the NIST 2009 Arabic-English and Chinese-English
constrained tracks (385M words), and another on
2 billion words of English.

For each language pair, we extracted grammar
rules from the same data that were used for word
alignment. The development data that were used for
discriminative training were: for Chinese-English
and Arabic-English, data from the NIST 2004 and
NIST 2006 test sets, plus newsgroup data from the



GALE program (LDC2006E92); for Urdu-English,
half of the NIST 2008 test set; for Czech-English,
a training set of 2051 sentences provided by the
WMT10 translation workshop.

The results are shown in the Bleu column of Ta-
ble 1. We used case-insensitive IBM Bleu (closest
reference length) as our metric. Significance test-
ing was carried out using bootstrap resampling with
1000 samples (Koehn, 2004; Zhang et al., 2004).

All of the tests showed significant improvements
(p < 0.01), ranging from+0.4 Bleu to +1.4 Bleu.
For Urdu, even though we didn’t have manual align-
ments to tune hyperparameters, we got significant
gains over a good baseline. This is promising for lan-
guages that do not have any manually aligned data.

Ideally, one would want to tuneα andβ to max-
imize Bleu. However, this is prohibitively expen-
sive, especially if we must tune them separately
in each alignment direction before symmetrization.
We ran some contrastive experiments to investi-
gate the impact of hyperparameter tuning on trans-
lation quality. For the smaller Arabic-English cor-
pus, we symmetrized all combinations of the two
top-scoring alignments (according to F1) in each di-
rection, yielding four sets of alignments. Table 4
shows Bleu scores for translation models learned
from these alignments. Unfortunately, we find that
optimizing F1 is not optimal for Bleu—using the
second-best alignments yields a further improve-
ment of 0.5 Bleu on the NIST 2009 data, which is
statistically significant (p < 0.05).

4 Related Work

Schoenemann (2011a), taking inspiration from Bo-
drumlu et al. (2009), uses integer linear program-
ming to optimize IBM Model 1–2 and the HMM
with the ℓ0-norm. This method, however, does not
outperform GIZA++. In later work, Schoenemann
(2011b) used projected gradient descent for theℓ1-
norm. Here, we have adopted his use of projected
gradient descent, but using a smoothedℓ0-norm.

Liang et al. (2006) show how to train IBM mod-
els in both directions simultaneously by adding a
term to the log-likelihood that measures the agree-
ment between the two directions. Graça et al. (2010)
explore modifications to the HMM model that en-
courage bijectivity and symmetry. The modifications

take the form of constraints on the posterior dis-
tribution over alignments that is computed during
the E-step. Mermer and Saraçlar (2011) explore a
Bayesian version of IBM Model 1, applying sparse
Dirichlet priors tot. However, because this method
requires the use of Monte Carlo methods, it is not
clear how well it can scale to larger datasets.

5 Conclusion

We have extended the IBM models and HMM model
by the addition of anℓ0 prior to the word-to-word
translation model, which compacts the word-to-
word translation table, reducing overfitting, and, in
particular, the “garbage collection” effect. We have
shown how to perform MAP-EM with this prior
efficiently, even for large datasets. The method is
implemented as a modification to the open-source
toolkit GIZA++, and we have shown that it signif-
icantly improves translation quality across four dif-
ferent language pairs. Even though we have used a
small set of gold-standard alignments to tune our
hyperparameters, we found that performance was
fairly robust to variation in the hyperparameters, and
translation performance was good even when gold-
standard alignments were unavailable. We hope that
our method, due to its simplicity, generality, and ef-
fectiveness, will find wide application for training
better statistical translation systems.
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