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Abstract In the decades since their invention, many mod-
els have surpassed them in accuracy, but none has
Two decades after their invention, the 1BM supplanted them in practice. Some of these models
word-based translation models, widely avail-  gre partially supervised, combining unlabeled paral-
ﬁgﬁt'gthe G'i'A: N tooék't'l.remam the ddom'. lel text with manually-aligned parallel text (Moore,
pproach to word alignment and an in- 2005; Taskar et al., 2005; Riesa and Marcu, 2010).

tegral part of many statistical translation sys- : . :
tems. Although many models have surpassed Although manually-aligned data is very valuable, it

them in accuracy, none have supplanted them S only available for a small number of language
in practice. In this paper, we propose a simple  pairs. Other models are unsupervised like the IBM

extension to thfe IBM models: dp prior to en- models (Liang et al., 2006; Graca et al., 2010; Dyer
courage sparsity in the word-to-word transla- et al., 2011), but have not been as widely adopted as
tion model. We explain how to implement this GIZA++ has.

extension #iciently for large-scale data (also
released as a modification to GIZA) and

demonstrate, in experiments on Czech, Ara- In this paper, we propose a simple extension to
bic, Chinese, and Urdu to Eng“sh translation, the |BM/HMM models that is UnSUperVised like the
significant improvements over IBM Model 4 IBM models, is as scalable as GIZA because it is

in both word alignment (up ta-6.7 F1) and implemented on top of GIZA+, and provides sig-
translation quality (up te-1.4 Bieu). nificant improvements in both alignment and trans-

lation quality. It extends the IBMHMM models by
incorporating anfy prior, inspired by the princi-
ple of minimum description length (Barron et al.,
Automatic word alignment is a vital component 0f1998), to encourage sparsity in the word-to-word
nearly all current statistical translation pipelines. Al{ranslation model (Section 2.2). This extension fol-
though state-of-the-art translation models use ruldsws our previous work on unsupervised part-of-
that operate on units bigger than words (like phrasespeech tagging (Vaswani et al., 2010), but enables
or tree fragments), they nearly always use worit to scale to the large datasets typical in word
alignments to drive extraction of those translatiomlignment, using anficient training method based
rules. The dominant approach to word alignment hasn projected gradient descent (Section 2.3). Ex-
been the IBM models (Brown et al., 1993) togetheperiments on Czech-, Arabic-, Chinese- and Urdu-
with the HMM model (Vogel et al., 1996). TheseEnglish translation (Section 3) demonstrate consis-
models are unsupervised, making them applicabtent significant improvements over IBM Model 4 in
to any language pair for which parallel text is avail-both word alignment (up ta-6.7 F1) and transla-
able. Moreover, they are widely disseminated in thgon quality (up to+1.4 BLeu). Our implementation
open-source GIZA+ toolkit (Och and Ney, 2004). has been released as a simple modification to the
These properties make them the default choice f@1ZA++ toolkit that can be used as a drop-in re-
most statistical MT systems. placement for GIZA + in any existing MT pipeline.

1 Introduction



2 Method (Moore, 2004), aligning to many unrelated words.

. . . This hur lignment precision and rule-extraction
We start with a brief review of the IBM and HMM s hurts alignment precision and rule-extractio

) . recall. Previous attempted remedies include early
word alignment models, then describe how to extens opping, smoothing (Moore, 2004), and posterior
them with a smoothed} prior and how to #iciently ’ y ’

train th regularization (Gracga et al., 2010).
rain them. We have previously proposed another simple
21 IBM Modesand HMM remedy to overfitting in the context of unsuper-
Given a French string = fi---fj--- f, and an vised part-of-speech tagging (Vaswani et al., 2010),
) . which is to minimize the size of the model using a
English stringe = e;--- g - - - &, these models de- . . . .
- . .~ .smoothedy prior. Applying this prior to an HMM
scribe the process by which the French string is ) .
. : : . improves tagging accuracy for both Italian and En-
generated by the English string via the alignmen lish
a = a,...,4aj,...,an. Eacha; is a hidden vari- gisn.

ables, indicating which English woe, the French Here,' our goal s to apply a similar prior in a
- ! word-alignment model to the word-to-word transla-
word f; is aligned to.

In IBM Model 1-2 and the HMM model, the joint tion probabilitiest(f | €). We leave the distortion

probability of the French sentence and alignmenrpOdeIS alone, since they_are notvery large, an_d there
. . : IS not much reason to believe that we can profit from
given the English sentence is

compacting them.

m _ With the addition of the prior, the MAP (maxi-
P(f.ale) = l_[d(aj | aj-1, )t(fjl €). (1) muma posterior) objective function is

i=1

6 = arg min(-log P(f | e, 6)P(6 4
The parameters of these models are the distortion ge (~logP(f | & 6)P(6) )

probabilitiesd(a; | aj_1, j) and the translation prob-
abilitiest(f; | ey). The three models fier in their where
estimation ofd, but the diferences do not concern us
here. All three models, as well as IBM Models 3-5, P(6) o exp(—a||9||€) ()
share the samie For further details of these models,
the reader is referred to the original papers descrignd
ing them (Brown et al., 1993; Vogel et al., 1996).

Let 6 stand for all the parameters of the model. ||9||€ = Z (1 — exp
The standard training procedure is to find the param- ef
eter values that maximize the likelihood, or, equiv-

alently, minimize the negative log-likelihood of the's @ smoothed approximation .Of tifg-norm. The
observed data: hyperparameteg controls the tightness of the ap-

proximation, as illustrated in Figure 1. Substituting
8 = argmin(- log P(f | &,6)) (2) backinto (4) and dropping constant terms, we get
0 the following optimization problem: minimize

—t(f | ¢

_t(f | &)
; ) 6)

=arg min| —lo P(f,ale o 3
J g;( led)| (3

—logP(f |&6) - a > exp )
ef ﬂ
This is done using the Expectation-Maximization )
(EM) algorithm (Dempster et al., 1977). subject to the constraints
22 MAP-EM with the £o-norm Duflg=1 foralle (8)

f
Maximum likelihood training is prone to overfitting,

especially in models with many parameters. In word We can carry out the optimization in (7) with the
alignment, one well-known manifestation of overfit-MAP-EM algorithm (Bishop, 2006). EM and MAP-
ting is that rare words can act as “garbage collector€M share the same E-step; théfeience lies in the



(10); we seek to minimize this function. As in pre-

! vious work (Vaswani et al., 2010), we optimize each
08l i set of parameterd(- | €)} separately for each En-
glish word typee. The inputs to the PGD are the
061 o expected countg[C(e, f)] and the current word-to-
word conditional probabilitied. We run PGD foiK
0.4 - - iterations, producing a sequence of intermediate pa-
rameter vectorg?, ..., 6%, ..., 6X. Each iteration has
02| A two steps, a projection step and a line search.
ol i Projection step In this step, we compute:
| | | | | |

0O 02 04 06 08 1 gk:[gk_ SVF(Qk)]A (11)

Figure 1: Thefo-norm (top curve) and smoothed aIOIDrOX_This movesé in the direction of steepest descent
imations (below) fog = 0.05,0.1,0.2. (VF) with step sizes, and then the function]f
projects the resulting point onto the simplex; that
is, it finds the nearest point that satisfies the con-
straints (8).

The gradienWF(6%) is

M-step. For vanilla EM, the M-step is:

0 = arg min[— > EIC(e f)]logt(f | e)] (9)
% ef

OF__ _ElC(f.o] o Al

= + —ex
: _ _ or(f 1 e (fle B B
again subject to the constraints (8). The count
C(e, f) is the number of times thatoccurs aligned N contrast to Schoenemann (2011Db), we use an
to e. For MAP-EM. it is: O(nlogn) algorithm for the projection step due to

Duchi et. al. (2008), shown in Pseudocode 1.

(12)

o= arg@mir(— Z E[C(e. fllogt(f | €) - Pseudocode 1 Project input vectou € R" onto the
o (10) probability simplex.
a Z exp muUl e)) v = u sorted in non-decreasing order
ef B p=0

for i=1ton do

This optimization problem is non-convex, and we ;. _ 1 ( V- 1) > 0then
do not know of a closed-form solution. Previously o=
(Vaswanietal., 2010), we used ALGENCAN, anon-  gnqif
linear optimization toolkit, but this solution does not  gnq for
scale well to the number of parameters involved in ;, _ 1 (Zf_l Vi — 1)
word alignment models. Instead, we use a simpler . :pmax{_vr —p,0forl<r<n
and more scalable method which we describe inthe yegtyrn w

next section.

2.3 Projected gradient descent Linesearch Next, we move to a point betweeh

Following Schoenemann (2011b), we use projecte@hdék that satisfies thérmijo condition

gradient descent (PGD) to solve the M-step (but

with the fo-norm instead of the&;-norm). Gradient F(6% + 6m) < F(6¥) + O'(VF(HK) : 5m) (13)

projection methods are attractive solutions to con- )

strained optimization problems, particularly wherwheres,, = y™(6 — 6%) ando andy are both con-
the constraints on the parameters are simple (Begtants in (01). We try valuesn = 1,2, ... until the

sekas, 1999). Lef(0) be the objective function in Armijo condition (13) is satisfied or the limih = 20



Pseudocode 2 Find a point betwees and@k that and also translation accuracy of systems trained us-
satisfies the Armijo condition. ing the word alignments. Across all tests, we found

strong improvements from adding thgnorm.

Fmin = E(Qk)
Omin = 0 3.1 Training
for m=1to 20do
O = ,ymfak_gk We have implemented our algorithm as an open-

source extension to GIZA+.! Usage of the exten-
sion is identical to standard GlZA+, except that the
user can switch thé& prior on or df, and adjust the
hyperparametersg andg.

Fmin = F(Qk + (Sm)
Omin = o + Om

end if
. For vanilla EM, we ran five iterations of Model 1
if F(6X + 6m) < F(6% VF(6%) - 6m) then e ’ S ;
bf |+ m) < F( )+U( (@) m) five iterations of HMM, and ten iterations of
. Model 4. For our approach, we first ran one iter-
end if . . .
end for ation of Model 1, followed by four iterations of
okl — g Model 1 with smoothed), followed by five itera-
retur_n g‘k'ﬂl tions of HMM with smoothedy. Finally, we ran ten

iterations of Model 4.
We used the following parallel data:

is reached. (Note that we don't allaw= 0 because

this can causé® + 6, to land on the boundary of ¢ Chinese-English: selected data from the con-
the probability simplex, where the objective func-  strained task of the NIST 2009 Open MT Eval-
tion is undefined.) Then we séf™! to the point in uation?

{5} U {6% + 6m | 1 < m < 20} that minimizesF.

The line search algorithm is summarized in Pseu- ® Arabic-English: all available data for the

docode 2. constrained track of NIST 2009, excluding
In our implementation, we set = 0.5 ando = United Natio_ns proceedings (LDC2004E13),
0.5. We keeps fixed for all PGD iterations; we ex- ISI Automatically Extracted Parallel Text

perimented withs € {0.1,0.5} and did not observe (LDC2007E08), and Ummah newswire text
significant changes in F-score. We run the projection ~ (LDC2004T18), for a total of 544.3 mil-

step and line search alternately for at missitera- lion words. We also experimented on a larger
tions, terminating early if there is no changedh Arabic-English parallel text of 4437 million
from one iteration to the next. We sét= 35 for the words from the DARPA GALE program.

large Arabic-English experiment; for all other con- . )

ditions, we seK = 50. These choices were made to ¢ Urdu-English: all available data for the con-

balance #iiciency and accuracy. We found that val-  Strained track of NIST 2009.

ues ofK between 30 and 75 were generally reason-  ithe code can be downloaded from the first author's website

able. athttp://www.isi.edu/~avaswani/giza-pp-10.html.
2GlZA++ allows changing some heuristic parameters for

3 Experiments efficient training. Currently, we set two of these to zero:

mincountincrease andprobcutoff. In the default setting,

To demonstrate thefect of thefp-norm on the IBM both are set to 1. We setprobcutoff to 0 because we would

. like the optimization to learn the parameter values. For a fair
models, we performed experiments on four tral’]sc_omparison, we applied the same setting to our vanilla EM

lation tasks: Arabic-English, Chinese-English, angaining as well. To test, we ran GIzA with the default set-
Urdu-English from the NIST Open MT Evaluation, ting on the smaller of our two Arabic-English datasets with the
and the Czech-English translation from the Worksame number of iterations and found no change in F-score.

. . SLDC catalog numbers LDC2003E07, LDC2003E14,
shop on Machine Translation (WMT) shared task. ;500583 | DC2005T06, LDC2006E24, LDC2006E34,
We measured the accuracy of word alignments geppc2oosEss, LDC2006E86, LDC2006E92, and

erated by GIZA-+ with and without thefg-norm, LDC2006E93.
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Figure 2: Smoothed, alignments (red circles) correct many errors in the basetdiZA++ alignments (black
squares), as shown in four Chinese-English examples (theireles are almost perfect for these examples, except
for minor mistakes such as liu4sfgng and meeting&zw in (a) and .-, in (c)). In particular, the baseline system
demonstrates typical “garbage-collection” phenomenarapg@r name “shuqing” in both languages in (a), number
“4000” and word “Bibin” (lit. “guest”) in (b), word “troublesome” and tlu” (lit. “land-route”) in (c), and “block-
houses” and “diokao” (lit. “bunker”) in (d). We found this garbage-colleatidbehavior to be especially common with
proper names, numbers, and uncommon words in both langudgss interestingly, in (c), our smoothefg-system
correctly aligns “extremely” to “Bn Fen kén Fen” (lit. “very very very very”) which is rare in the bitext.



task data (M)| system | align F1 (%) | word trans (M) &Sing BLeu (%)
2008 2009 2010
baseline 73.2 35 6.2 28.7
Chi-Eng  9.6-12 {o-norm 76.5 2.0 3.3 29.5
difference +3.3 -43% -47% | +0.8
baseline 65.0 3.1 45 39.8 425
Ara-Eng 5.44.3 | {g-norm 70.8 1.8 1.8 411 437
difference +5.9 -39% -60% | +1.3 +1.2
baseline 66.2 15 5.0 41.6 44.9
Ara-Eng 4437 {o-norm 71.8 7.9 1.8 425 453
difference +5.6 —47% -64% | +09 +04
baseline 1.7 4.5 25.3 29.8
Urd-Eng 1.41.5 | {fy-norm 1.2 2.2 25.9° 31.2
difference -29% -51% | +0.6* +14
baseline 65.6 1.5 3.0 17.3 18.0
Cze-Eng 2.32.3 | {fg-norm 72.3 1.0 1.4 179 184
difference +6.7 -33% -53% +06 +04

Table 1: Adding th&y-norm to the IBM models improves both alignment and trarstediccuracy across fourférent
language pairs. Theord transcolumn also shows that the number of distinct word trarsfati(i.e., the size of the
lexical weighting table) is reduced. Ty column shows the average fertility of once-seen source svdedr
Czech-English, the year refers to the WMT shared task; fatb#r language pairs, the year refers to the NIST Open
MT Evaluation.*Half of this test set was also used for tuning feature weights

e Czech-English: A corpus of 4 million words of The results are shown in thalignment F1col-
Czech-English data from the News Commenumn of Table 1. We used balanced F-measure rather
tary corpus’ than alignment error rate as our metric (Fraser and

' Marcu, 2007).
We set the hyperparametessand 5 by tning  gq)10ing Dyer et al. (2011), we also measured
on gold-standard word allg_nmentg (to maX|m|_ze Fl?he average fertility,g?sing, of once-seen source
when possible. For Arabic-English and Chinesegq g in the symmetrized alignments. Our align-

English, we used 346 and 184 hand-aligned sefents show smaller fertility for once-seen words,

tences from LDC2006E86 and LDC2006E93. Sim'suggesting that they fier from “garbage collec-

llarly, for Czech-English, 515 hand-aligned sensjo . efects less than the baseline alignments do.
tences were available (Bojar and Prokopp2006). The fact that we had to use hand-aligned data to

But for Urdu-English, since we did not have anytune the hvperoarameteasand 8 means that our
gold alignments, we used = 10 and3 = 0.05. We yperp B

. method is no longer completely unsupervised. How-
did not choose a large, as the dataset was small, T . .
: ever, our observation is that alignment accuracy is
and we chose a conservative valuegor

We ran word alignment in both directions andactually fairly robust_to the choice of the_se hyperpa-
. : L rameters, as shown in Table 2. As we will see below,
symmetrized usinggrow-diag-final (Koehn et al., . . . . :
. . we still obtained strong improvements in translation
2003). For models with the smoothég prior, we : ) .
. L quality when hand-aligned data was unavailable.
tuneda andg separately in each direction. _ _ _
We also tried generating 50 word classes using
3.2 Alignment the tool provided in GIZA+. We found that adding
First, we evaluated alignment accuracy directly bivnord classes |mproveql alignment quality a little, but
. : . ore so for the baseline system (see Table 3). We
comparing against gold-standard word alignments. i . .
used the alignments generated by training with word
4This data is available &fttp://statmt.org/wmt10. classes for our translation experiments.



a
B jmodel| o 15 25 50 75 100 250 500 750
HMM | 475
B M4 | 52.1
05 | HMM 463 484 528 557 575 615 62.627
: M4 51.7 537 56.4 586 59.8 63.3 644 64.8
01 | AMM 556 604 616 621 619 618 602 60.1
: M4 582 62.4 640 644 648 655 65.665.9
005 | AMM 50.1 614 624 625 623 608 587 57.7
M4 610 635 646 653 653 654 657 657
001 | FMM 50.7 616 600 595 587 569 557 547
M4 629 650 65.1 652 651 654 653 654
0.005 | MM 581 59.0 583 57.6 570 559 539 517
M4 620 641 645 645 645 650 648 64.6
0.001 MM 517 521 514 493 504 468 454 44.0
M4 50.8 61.3 615 61.0 61.8 61.2 61.0 61.2

Table 2: Almost all hyperparameter settings achieve highstores than the baseline IBM Model 4 and HMM model
for Arabic-English alignmento = 0).

word classes? setting align F1 (%)| Breu (%)

direction system no yes t(fle tle|f) 2008 2009
baseline | 49.0 | 52.1 1st 1st 70.8 41.1 437

P(f | e £o-norm 63.9 65.9 1st 2nd 70.7 41.1 438
difference| +14.9 | +138 2nd 1st 70.7 40.7 441
baseline | 64.3 | 65.2 2nd 2nd 70.9 411 44.2

P(e| f) fo-norm 69.2 70.3
difference| +4.9 | +5.1 Table 4: Optimizing hyperparameters on alignment F1

score does not necessarily lead to optimakB The

Table 3: Adding word classes improves the F-score ifirst two columns indicate whether we used the first- or

both directions for Arabic-English alignment by a little, Second-best alignments in each direction (according to
for the baseline system more so than ours. F1); the third column shows the F1 of the symmetrized

alignments, whose correspondingeB scores are shown
in the last two columns.

Figure 2 shows four examples of Chinese-

English alignment, comparing the baseline with OUE language model, and penalties for the glue
smoothedto method. In all four cases, the base'rule, identity rules, unknown-word rules, and two

line produces incorrect extra alignments that prevept 4s of numbename rules. The feature weights

good translation rules from being extragted whilg, .o discriminatively trained using MIRA (Chi-
the smoothedy results are correct. In particular, theang et al., 2008). We used two 5-gram language

baseline system demonstrates typical “garbage quﬁodels, one on the combined English sides of

lection” behavior (Moore, 2004) in all four eXam- the NIST 2009 Arabic-English and Chinese-English
ples. constrained tracks (385M words), and another on
2 billion words of English.

For each language pair, we extracted grammar
We then tested thefiect of word alignments on rules from the same data that were used for word
translation quality using the hierarchical phrasealignment. The development data that were used for
based translation system Hiero (Chiang, 2007). Wdiscriminative training were: for Chinese-English
used a fairly standard set of features: seven irand Arabic-English, data from the NIST 2004 and
herited from Pharaoh (Koehn et al., 2003), a sedNIST 2006 test sets, plus newsgroup data from the

3.3 Trandation



GALE program (LDC2006E92); for Urdu-English, take the form of constraints on the posterior dis-

half of the NIST 2008 test set; for Czech-Englishfribution over alignments that is computed during

a training set of 2051 sentences provided by thine E-step. Mermer and Saraclar (2011) explore a

WMT10 translation workshop. Bayesian version of IBM Model 1, applying sparse
The results are shown in thes® column of Ta- Dirichlet priors tot. However, because this method

ble 1. We used case-insensitive IBMH3 (closest requires the use of Monte Carlo methods, it is not

reference length) as our metric. Significance testlear how well it can scale to larger datasets.

ing was carried out using bootstrap resampling with .

1000 samples (Koehn, 2004; Zhang et al., 2004). © Conclusion

All of the tests showed significant improvementsp/e have extended the IBM models and HMM model
(p < 0.01), ranging from+0.4 Bieu to +1.4 Bieu. by the addition of arfy prior to the word-to-word
For Urdu, even though we didn’t have manual aligntranslation model, which compacts the word-to-
ments to tune hyperparameters, we got significaRjord translation table, reducing overfitting, and, in
gains over agood baseline. This is promising for larparticular, the “garbage collectiontect. We have
guages that do not have any manually aligned datashown how to perform MAP-EM with this prior

Ideally, one would want to tune andg to max- efficiently, even for large datasets. The method is
imize BLeu. However, this is prohibitively expen- implemented as a modification to the open-source
sive, especially if we must tune them separatelyoolkit GIZA++, and we have shown that it signif-
in each alignment direction before symmetrizationicantly improves translation quality across four dif-
We ran some contrastive experiments to investferent language pairs. Even though we have used a
gate the impact of hyperparameter tuning on trangmall set of gold-standard alignments to tune our
lation quality. For the smaller Arabic-English cor-hyperparameters, we found that performance was
pus, we symmetrized all combinations of the twdairly robust to variation in the hyperparameters, and
top-scoring alignments (according to F1) in each ditranslation performance was good even when gold-
rection, yielding four sets of alignments. Table 4standard alignments were unavailable. We hope that
shows Beu scores for translation models learnecbur method, due to its simplicity, generality, and ef-
from these alignments. Unfortunately, we find thafectiveness, will find wide application for training
optimizing F1 is not optimal for Beu—using the better statistical translation systems.
second-best alignments vyields a further improve-
ment of 05 BLeu on the NIST 2009 data, which is Acknowledgments

statistically significantj§ < 0.05). We are indebted to Thomas Schoenemann for ini-

tial discussions and pilot experiments that led to
this work, and to the anonymous reviewers for
Schoenemann (2011a), taking inspiration from gotheir valuable comments. We thank Jason Riesa for

drumlu et al. (2009), uses integer linear programQrOViding the Arabic-English and Chinese-English
ming to optimize IBM Model 1-2 and the HMM hand-aligned data and the alignment visualization

with the ¢o-norm. This method, however, does nof©0l: and Chris Dyer for the Czech-English hand-
outperform GIZA+. In later work, Schoenemann aligned data. This research was supported in part
(2011b) used projected gradient descent foréhe by DARPA under contract DOI-NBC D11AP00244

norm. Here, we have adopted his use of projected'd @ Google Faculty Research Award to L. H.

gradient descent, but using a smootligehorm.
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