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Abstract

Most previous graph-based parsing models in-
crease decoding complexity when they use
high-order features due to exact-inference de-
coding. In this paper, we present an approach
to enriching high-order feature representations
for graph-based dependency parsing models
using a dependency language model and beam
search. The dependency language model is
built on a large-amount of additional auto-
parsed data that is processed by a baseline
parser. Based on the dependency language
model, we represent a set of features for the
parsing model. Finally, the features are effi-
ciently integrated into the parsing model dur-
ing decoding using beam search. Our ap-
proach has two advantages. Firstly we utilize
rich high-order features defined over a view
of large scope and additional large raw cor-
pus. Secondly our approach does not increase
the decoding complexity. We evaluate the pro-
posed approach on English and Chinese data.
The experimental results show that our new
parser achieves the best accuracy on the Chi-
nese data and comparable accuracy with the
best known systems on the English data.

1 Introduction

In recent years, there are many data-driven mod-
els that have been proposed for dependency parsing
(McDonald and Nivre, 2007). Among them, graph-
based dependency parsing models have achieved
state-of-the-art performance for a wide range of lan-
guages as shown in recent CoNLL shared tasks
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(Buchholz and Marsi, 2006; Nivre et al., 2007).
In the graph-based models, dependency parsing is
treated as a structured prediction problem in which
the graphs are usually represented as factored struc-
tures. The information of the factored structures de-
cides the features that the models can utilize. There
are several previous studies that exploit high-order
features that lead to significant improvements.

McDonald et al. (2005) and Covington (2001)
develop models that represent first-order features
over a single arc in graphs. By extending the first-
order model, McDonald and Pereira (2006) and Car-
reras (2007) exploit second-order features over two
adjacent arcs in second-order models. Koo and
Collins (2010) further propose a third-order model
that uses third-order features. These models utilize
higher-order feature representations and achieve bet-
ter performance than the first-order models. But this
achievement is at the cost of the higher decoding
complexity, from O(n2) to O(n4), where n is the
length of the input sentence. Thus, it is very hard to
develop higher-order models further in this way.

How to enrich high-order feature representations
without increasing the decoding complexity for
graph-based models becomes a very challenging
problem in the dependency parsing task. In this pa-
per, we solve this issue by enriching the feature rep-
resentations for a graph-based model using a depen-
dency language model (DLM) (Shen et al., 2008).
The N-gram DLM has the ability to predict the next
child based on the N-1 immediate previous children
and their head (Shen et al., 2008). The basic idea
behind is that we use the DLM to evaluate whether a
valid dependency tree (McDonald and Nivre, 2007)
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is well-formed from a view of large scope. The pars-
ing model searches for the final dependency trees
by considering the original scores and the scores of
DLM.

In our approach, the DLM is built on a large
amount of auto-parsed data, which is processed
by an original first-order parser (McDonald et al.,
2005). We represent the features based on the DLM.
The DLM-based features can capture the N-gram in-
formation of the parent-children structures for the
parsing model. Then, they are integrated directly
in the decoding algorithms using beam-search. Our
new parsing model can utilize rich high-order fea-
ture representations but without increasing the com-
plexity.

To demonstrate the effectiveness of the proposed
approach, we conduct experiments on English and
Chinese data. The results indicate that the approach
greatly improves the accuracy. In summary, we
make the following contributions:

• We utilize the dependency language model to
enhance the graph-based parsing model. The
DLM-based features are integrated directly into
the beam-search decoder.

• The new parsing model uses the rich high-order
features defined over a view of large scope and
and additional large raw corpus, but without in-
creasing the decoding complexity.

• Our parser achieves the best accuracy on the
Chinese data and comparable accuracy with the
best known systems on the English data.

2 Dependency language model

Language models play a very important role for sta-
tistical machine translation (SMT). The standard N-
gram based language model predicts the next word
based on theN−1 immediate previous words. How-
ever, the traditional N-gram language model can
not capture long-distance word relations. To over-
come this problem, Shen et al. (2008) proposed a
dependency language model (DLM) to exploit long-
distance word relations for SMT. The N-gram DLM
predicts the next child of a head based on theN − 1
immediate previous children and the head itself. In
this paper, we define a DLM, which is similar to the
one of Shen et al. (2008), to score entire dependency
trees.

An input sentence is denoted byx =
(x0, x1, ..., xi, ..., xn), where x0 = ROOT and
does not depend on any other token inx and each
token xi refers to a word. Lety be a depen-
dency tree forx andH(y) be a set that includes the
words that have at least one dependent. For each
xh ∈ H(y), we have a dependency structureDh =
(xLk, ...xL1, xh, xR1...xRm), wherexLk, ...xL1 are
the children on the left side from the farthest to the
nearest andxR1...xRm are the children on the right
side from the nearest to the farthest. Probability
P (Dh) is defined as follows:

P (Dh) = PL(Dh)× PR(Dh) (1)

HerePL andPR are left and right side generative
probabilities respectively. Suppose, we use a N-
gram dependency language model.PL is defined as
follows:

PL(Dh) ≈ PLc(xL1|xh)

×PLc(xL2|xL1, xh)

×... (2)

×PLc(xLk|xL(k−1), ..., xL(k−N+1), xh)

where the approximation is based on thenth order
Markov assumption. The right side probability is
similar. For a dependency tree, we calculate the
probability as follows:

P (y) =
∏

xh∈H(y)

P (Dh) (3)

In this paper, we use a linear model to calculate
the scores for the parsing models (defined in Section
3.1). Accordingly, we reform Equation 3. We define
fDLM as a high-dimensional feature representation
which is based on arbitrary features ofPLc, PRc and
x. Then, the DLM score of treey is in turn computed
as the inner product offDLM with a corresponding
weight vectorwDLM .

scoreDLM (y) = fDLM · wDLM (4)

3 Parsing with dependency language
model

In this section, we propose a parsing model which
includes the dependency language model by extend-
ing the model of McDonald et al. (2005).
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3.1 Graph-based parsing model

The graph-based parsing model aims to search for
the maximum spanning tree (MST) in a graph (Mc-
Donald et al., 2005). We write(xi, xj) ∈ y

if there is a dependency in treey from word xi
to word xj (xi is the head andxj is the depen-
dent). A graph, denoted byGx, consists of a set
of nodesVx = {x0, x1, ..., xi, ..., xn} and a set of
arcs (edges)Ex = {(xi, xj)|i 6= j, xi ∈ Vx, xj ∈
(Vx − x0)}, where the nodes inVx are the words
in x. Let T (Gx) be the set of all the subgraphs of
Gx that are valid dependency trees (McDonald and
Nivre, 2007) for sentencex.

The formulation defines the score of a depen-
dency treey ∈ T (Gx) to be the sum of the edge
scores,

s(x, y) =
∑

g∈y

score(w, x, g) (5)

whereg is a spanning subgraph ofy. g can be a
single dependency or adjacent dependencies. Then
y is represented as a set of factors. The model
scores each factor using a weight vectorw that con-
tains the weights for the features to be learned dur-
ing training using the Margin Infused Relaxed Algo-
rithm (MIRA) (Crammer and Singer, 2003; McDon-
ald and Pereira, 2006). The scoring function is

score(w, x, g) = f(x, g) · w (6)

where f(x, g) is a high-dimensional feature repre-
sentation which is based on arbitrary features ofg

andx.
The parsing model finds amaximum spanning

tree (MST), which is the highest scoring tree in
T (Gx). The task of the decoding algorithm for a
given sentencex is to findy∗,

y∗ = arg max
y∈T (Gx)

s(x, y) = arg max
y∈T (Gx)

∑

g∈y

score(w, x, g)

3.2 Add DLM scores

In our approach, we consider the scores of the DLM
when searching for the maximum spanning tree.
Then for a given sentencex, we findy∗DLM ,

y∗DLM = arg max
y∈T (Gx)

(
∑

g∈y

score(w, x, g)+scoreDLM (y))

After adding the DLM scores, the new parsing
model can capture richer information. Figure 1 illus-
trates the changes. In the original first-order parsing
model, we only utilize the information of single arc
(xh, xL(k−1)) for xL(k−1) as shown in Figure 1-(a).
If we use 3-gram DLM, we can utilize the additional
information of the two previous children (nearer to
xh thanxL(k−1)): xL(k−2) andxL(k−3) as shown in
Figure 1-(b).

Figure 1: Adding the DLM scores to the parsing model

3.3 DLM-based feature templates

We define DLM-based features forDh =
(xLk, ...xL1, xh, xR1...xRm). For each childxch on
the left side, we havePLc(xch|HIS), whereHIS
refers to theN − 1 immediate previous right chil-
dren and headxh. Similarly, we havePRc(xch|HIS)
for each child on the right side. LetPu(xch|HIS)
(Pu(ch) in short) be one of the above probabilities.
We use the map functionΦ(Pu(ch)) to obtain the
predefined discrete value (defined in Section 5.3).
The feature templates are outlined in Table 1, where
TYPE refers to one of the types:PL or PR, h pos
refers to the part-of-speech tag ofxh, h word refers
to the lexical form ofxh, ch pos refers to the part-of-
speech tag ofxch, and chword refers to the lexical
form of xch.

4 Decoding

In this section, we turn to the problem of adding the
DLM in the decoding algorithm. We propose two
ways: (1) Rescoring, in which we rescore the K-
best list with the DLM-based features; (2) Intersect,
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< Φ(Pu(ch)),TYPE >

< Φ(Pu(ch)),TYPE, h pos >

< Φ(Pu(ch)),TYPE, h word >

< Φ(Pu(ch)),TYPE, ch pos >

< Φ(Pu(ch)),TYPE, ch word >

< Φ(Pu(ch)),TYPE, h pos, ch pos >

< Φ(Pu(ch)),TYPE, h word, ch word >

Table 1: DLM-based feature templates

in which we add the DLM-based features in the de-
coding algorithm directly.

4.1 Rescoring

We add the DLM-based features into the decoding
procedure by using the rescoring technique used in
(Shen et al., 2008). We can use an original parser
to produce the K-best list. This method has the po-
tential to be very fast. However, because the perfor-
mance of this method is restricted to the K-best list,
we may have to set K to a high number in order to
find the best parsing tree (with DLM) or a tree ac-
ceptably close to the best (Shen et al., 2008).

4.2 Intersect

Then, we add the DLM-based features in the decod-
ing algorithm directly. The DLM-based features are
generated online during decoding.

For our parser, we use the decoding algorithm
of McDonald et al. (2005). The algorithm was ex-
tensions of the parsing algorithm of (Eisner, 1996),
which was a modified version of the CKY chart
parsing algorithm. Here, we describe how to add
the DLM-based features in the first-order algorithm.
The second-order and higher-order algorithms can
be extended by the similar way.

The parsing algorithm independently parses the
left and right dependents of a word and combines
them later. There are two types of chart items (Mc-
Donald and Pereira, 2006): 1) acomplete item in
which the words are unable to accept more depen-
dents in a certain direction; and 2) anincomplete
item in which the words can accept more dependents
in a certain direction. In the algorithm, we create
both types of chart items with two directions for all
the word pairs in a given sentence. The direction of
a dependency is from the head to the dependent. The
right (left) direction indicates the dependent is on the
right (left) side of the head. Larger chart items are

created from pairs of smaller ones in a bottom-up
style. In the following figures, complete items are
represented by triangles and incomplete items are
represented by trapezoids. Figure 2 illustrates the
cubic parsing actions of the algorithm (Eisner, 1996)
in the right direction, wheres, r, andt refer to the
start and end indices of the chart items. In Figure
2-(a), all the items on the left side are complete and
the algorithm creates the incomplete item (trapezoid
on the right side) ofs – t. This action builds a de-
pendency relation froms to t. In Figure 2-(b), the
item of s – r is incomplete and the item ofr – t is
complete. Then the algorithm creates the complete
item of s – t. In this action, all the children ofr are
generated. In Figure 2, the longer vertical edge in a
triangle or a trapezoid corresponds to the subroot of
the structure (spanning chart). For example,s is the
subroot of the spans – t in Figure 2-(a). For the left
direction case, the actions are similar.

Figure 2: Cubic parsing actions of Eisner (Eisner, 1996)

Then, we add the DLM-based features into the
parsing actions. Because the parsing algorithm is
in the bottom-up style, the nearer children are gen-
erated earlier than the farther ones of the same head.
Thus, we calculate the left or right side probabil-
ity for a new child when a new dependency rela-
tion is built. For Figure 2-(a), we add the features of
PRc(xt|HIS). Figure 3 shows the structure, where
cRs refers to the current children (nearer thanxt) of
xs. In the figure, HIS includescRs andxs.

Figure 3: Add DLM-based features in cubic parsing
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We use beam search to choose the one having the
overall best score as the final parse, where K spans
are built at each step (Zhang and Clark, 2008). At
each step, we perform the parsing actions in the cur-
rent beam and then choose the best K resulting spans
for the next step. The time complexity of the new de-
coding algorithm isO(Kn3) while the original one
isO(n3), wheren is the length of the input sentence.
With the rich feature set in Table 1, the running time
of Intersect is longer than the time of Rescoring. But
Intersect considers more combination of spans with
the DLM-based features than Rescoring that is only
given a K-best list.

5 Implementation Details

5.1 Baseline parser

We implement our parsers based on the MSTParser1,
a freely available implementation of the graph-based
model proposed by (McDonald and Pereira, 2006).
We train a first-order parser on the training data (de-
scribed in Section 6.1) with the features defined in
McDonald et al. (2005). We call this first-order
parser Baseline parser.

5.2 Build dependency language models

We use a large amount of unannotated data to build
the dependency language model. We first perform
word segmentation (if needed) and part-of-speech
tagging. After that, we obtain the word-segmented
sentences with the part-of-speech tags. Then the
sentences are parsed by the Baseline parser. Finally,
we obtain the auto-parsed data.

Given the dependency trees, we estimate the prob-
ability distribution by relative frequency:

Pu(xch|HIS) =
count(xch,HIS)

∑

x′

ch

count(x′

ch
,HIS)

(7)

No smoothing is performed because we use the
mapping function for the feature representations.

5.3 Mapping function

We can define different mapping functions for the
feature representations. Here, we use a simple way.
First, the probabilities are sorted in decreasing order.
Let No(Pu(ch)) be the position number ofPu(ch)
in the sorted list. The mapping function is:

1http://mstparser.sourceforge.net

Φ(Pu(ch)) =

{

PH if No(Pu(ch)) ≤ TOP10
PM if TOP10< No(Pu(ch)) ≤ TOP30
PL if TOP30< No(Pu(ch))
PO if Pu(ch)) = 0

where TOP10 and TOP 30 refer to the position num-
bers of top 10% and top 30% respectively. The num-
bers, 10% and 30%, are tuned on the development
sets in the experiments.

6 Experiments

We conducted experiments on English and Chinese
data.

6.1 Data sets

For English, we used the Penn Treebank (Marcus et
al., 1993) in our experiments. We created a stan-
dard data split: sections 2-21 for training, section
22 for development, and section 23 for testing. Tool
“Penn2Malt”2 was used to convert the data into de-
pendency structures using a standard set of head
rules (Yamada and Matsumoto, 2003). Following
the work of (Koo et al., 2008), we used the MX-
POST (Ratnaparkhi, 1996) tagger trained on training
data to provide part-of-speech tags for the develop-
ment and the test set, and used 10-way jackknifing
to generate part-of-speech tags for the training set.
For the unannotated data, we used the BLLIP corpus
(Charniak et al., 2000) that contains about 43 million
words of WSJ text.3 We used the MXPOST tagger
trained on training data to assign part-of-speech tags
and used the Baseline parser to process the sentences
of the BLLIP corpus.

For Chinese, we used the Chinese Treebank
(CTB) version 4.04 in the experiments. We also used
the “Penn2Malt” tool to convert the data and cre-
ated a data split: files 1-270 and files 400-931 for
training, files 271-300 for testing, and files 301-325
for development. We used gold standard segmenta-
tion and part-of-speech tags in the CTB. The data
partition and part-of-speech settings were chosen to
match previous work (Chen et al., 2008; Yu et al.,
2008; Chen et al., 2009). For the unannotated data,
we used the XINCMN portion of Chinese Giga-
word5 Version 2.0 (LDC2009T14) (Huang, 2009),

2http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html
3We ensured that the text used for extracting subtrees did not

include the sentences of the Penn Treebank.
4http://www.cis.upenn.edu/˜chinese/.
5We excluded the sentences of the CTB data from the Giga-

word data
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which has approximately 311 million words whose
segmentation and POS tags are given. We discarded
the annotations due to the differences in annotation
policy between CTB and this corpus. We used the
MMA system (Kruengkrai et al., 2009) trained on
the training data to perform word segmentation and
POS tagging and used the Baseline parser to parse
all the sentences in the data.

6.2 Features for basic and enhanced parsers

The previous studies have defined four types of
features: (FT1) the first-order features defined in
McDonald et al. (2005), (FT2SB) the second-order
parent-siblings features defined in McDonald and
Pereira (2006), (FT2GC) the second-order parent-
child-grandchild features defined in Carreras (2007),
and (FT3) the third-order features defined in (Koo
and Collins, 2010).

We used the first- and second-order parsers of
the MSTParser as the basic parsers. Then we en-
hanced them with other higher-order features us-
ing beam-search. Table 2 shows the feature set-
tings of the systems, where MST1/2 refers to the ba-
sic first-/second-order parser and MSTB1/2 refers to
the enhanced first-/second-order parser. MSTB1 and
MSTB2 used the same feature setting, but used dif-
ferent order models. This resulted in the difference
of using FT2SB (beam-search in MSTB1 vs exact-
inference in MSTB2). We used these four parsers as
the Baselines in the experiments.

System Features
MST1 (FT1)
MSTB1 (FT1)+(FT2SB+FT2GC+FT3)
MST2 (FT1+FT2SB)
MSTB2 (FT1+FT2SB)+(FT2GC+FT3)

Table 2: Baseline parsers

We measured the parser quality by the unlabeled
attachment score (UAS), i.e., the percentage of to-
kens (excluding all punctuation tokens) with the cor-
rect HEAD. In the following experiments, we used
“Inter” to refer to the parser with Intersect, and
“Rescore” to refer to the parser with Rescoring.

6.3 Development experiments

Since the setting of K (for beam search) affects our
parsers, we studied its influence on the development

set for English. We added the DLM-based features
to MST1. Figure 4 shows the UAS curves on the
development set, where K is beam size for Inter-
sect and K-best for Rescoring, the X-axis represents
K, and the Y-axis represents the UAS scores. The
parsing performance generally increased as the K
increased. The parser with Intersect always outper-
formed the one with Rescoring.
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Figure 4: The influence of K on the development data

K 1 2 4 8 16
English 157.1 247.4 351.9 462.3 578.2

Table 3: The parsing times on the development set (sec-
onds for all the sentences)

Table 3 shows the parsing times of Intersect on
the development set for English. By comparing the
curves of Figure 4, we can see that, while using
larger K reduced the parsing speed, it improved the
performance of our parsers. In the rest of the ex-
periments, we set K=8 in order to obtain the high
accuracy with reasonable speed and used Intersect
to add the DLM-based features.

N 0 1 2 3 4
English 91.30 91.87 92.52 92.72 92.72
Chinese 87.36 87.96 89.33 89.92 90.40

Table 4: Effect of different N-gram DLMs

Then, we studied the effect of adding different N-
gram DLMs to MST1. Table 4 shows the results.
From the table, we found that the parsing perfor-
mance roughly increased as the N increased. When
N=3 and N=4, the parsers obtained the same scores
for English. For Chinese, the parser obtained the
best score when N=4. Note that the size of the Chi-
nese unannotated data was larger than that of En-
glish. In the rest of the experiments, we used 3-gram
for English and 4-gram for Chinese.
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6.4 Main results on English data

We evaluated the systems on the testing data for En-
glish. The results are shown in Table 5, where -
DLM refers to adding the DLM-based features to the
Baselines. The parsers using the DLM-based fea-
tures consistently outperformed the Baselines. For
the basic models (MST1/2), we obtained absolute
improvements of 0.94 and 0.63 points respectively.
For the enhanced models (MSTB1/2), we found that
there were 0.63 and 0.66 points improvements re-
spectively. The improvements were significant in
McNemar’s Test (p < 10−5)(Nivre et al., 2004).

Order1 UAS Order2 UAS
MST1 90.95 MST2 91.71
MST-DLM1 91.89 MST-DLM2 92.34
MSTB1 91.92 MSTB2 92.10
MSTB-DLM1 92.55 MSTB-DLM2 92.76

Table 5: Main results for English

6.5 Main results on Chinese data

The results are shown in Table 6, where the abbrevi-
ations used are the same as those in Table 5. As in
the English experiments, the parsers using the DLM-
based features consistently outperformed the Base-
lines. For the basic models (MST1/2), we obtained
absolute improvements of 4.28 and 3.51 points re-
spectively. For the enhanced models (MSTB1/2),
we got 3.00 and 2.93 points improvements respec-
tively. We obtained large improvements on the Chi-
nese data. The reasons may be that we use the very
large amount of data and 4-gram DLM that captures
high-order information. The improvements were
significant in McNemar’s Test (p < 10−7).

Order1 UAS Order2 UAS
MST1 86.38 MST2 88.11
MST-DLM1 90.66 MST-DLM2 91.62
MSTB1 88.38 MSTB2 88.66
MSTB-DLM1 91.38 MSTB-DLM2 91.59

Table 6: Main results for Chinese

6.6 Compare with previous work on English

Table 7 shows the performance of the graph-based
systems that were compared, where McDonald06
refers to the second-order parser of McDonald

and Pereira (2006), Koo08-standard refers to the
second-order parser with the features defined in
Koo et al. (2008), Koo10-model1 refers to the
third-order parser with model1 of Koo and Collins
(2010), Koo08-dep2c refers to the second-order
parser with cluster-based features of (Koo et al.,
2008), Suzuki09 refers to the parser of Suzuki et
al. (2009), Chen09-ord2s refers to the second-order
parser with subtree-based features of Chen et al.
(2009), and Zhou11 refers to the second-order parser
with web-derived selectional preference features of
Zhou et al. (2011).

The results showed that our MSTB-DLM2 ob-
tained the comparable accuracy with the previous
state-of-the-art systems. Koo10-model1 (Koo and
Collins, 2010) used the third-order features and
achieved the best reported result among the super-
vised parsers. Suzuki2009 (Suzuki et al., 2009) re-
ported the best reported result by combining a Semi-
supervised Structured Conditional Model (Suzuki
and Isozaki, 2008) with the method of (Koo et al.,
2008). However, their decoding complexities were
higher than ours and we believe that the performance
of our parser can be further enhanced by integrating
their methods with our parser.

Type System UAS Cost

G
McDonald06 91.5 O(n3)

Koo08-standard 92.02 O(n4)
Koo10-model1 93.04 O(n4)

S

Koo08-dep2c 93.16 O(n4)
Suzuki09 93.79 O(n4)

Chen09-ord2s 92.51 O(n3)
Zhou11 92.64 O(n4)

D MSTB-DLM2 92.76 O(Kn3)

Table 7: Relevant results for English. G denotes the su-
pervised graph-based parsers, S denotes the graph-based
parsers with semi-supervised methods, D denotes our
new parsers

6.7 Compare with previous work on Chinese

Table 8 shows the comparative results, where
Chen08 refers to the parser of (Chen et al., 2008),
Yu08 refers to the parser of (Yu et al., 2008), Zhao09
refers to the parser of (Zhao et al., 2009), and
Chen09-ord2s refers to the second-order parser with
subtree-based features of Chen et al. (2009). The
results showed that our score for this data was the
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best reported so far and significantly higher than the
previous scores.

System UAS
Chen08 86.52

Yu08 87.26
Zhao09 87.0

Chen09-ord2s 89.43
MSTB-DLM2 91.59

Table 8: Relevant results for Chinese

7 Analysis

Dependency parsers tend to perform worse on heads
which have many children. Here, we studied the ef-
fect of DLM-based features for this structure. We
calculated the number of children for each head and
listed the accuracy changes for different numbers.
We compared the MST-DLM1 and MST1 systems
on the English data. The accuracy is the percentage
of heads having all the correct children.

Figure 5 shows the results for English, where the
X-axis represents the number of children, the Y-
axis represents the accuracies, OURS refers to MST-
DLM1, and Baseline refers to MST1. For example,
for heads having two children, Baseline obtained
89.04% accuracy while OURS obtained 89.32%.
From the figure, we found that OURS achieved bet-
ter performance consistently in all cases and when
the larger the number of children became, the more
significant the performance improvement was.
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Figure 5: Improvement relative to numbers of children

8 Related work

Several previous studies related to our work have
been conducted.

Koo et al. (2008) used a clustering algorithm to
produce word clusters on a large amount of unan-
notated data and represented new features based on
the clusters for dependency parsing models. Chen
et al. (2009) proposed an approach that extracted
partial tree structures from a large amount of data
and used them as the additional features to im-
prove dependency parsing. They approaches were
still restricted in a small number of arcs in the
graphs. Suzuki et al. (2009) presented a semi-
supervised learning approach. They extended a
Semi-supervised Structured Conditional Model (SS-
SCM)(Suzuki and Isozaki, 2008) to the dependency
parsing problem and combined their method with
the approach of Koo et al. (2008). In future work,
we may consider apply their methods on our parsers
to improve further.

Another group of methods are the co-
training/self-training techniques. McClosky et
al. (2006) presented a self-training approach for
phrase structure parsing. Sagae and Tsujii (2007)
used the co-training technique to improve perfor-
mance. First, two parsers were used to parse the
sentences in unannotated data. Then they selected
some sentences which have the same trees produced
by those two parsers. They retrained a parser on
newly parsed sentences and the original labeled
data. We are able to use the output of our systems
for co-training/self-training techniques.

9 Conclusion

We have presented an approach to utilizing the de-
pendency language model to improve graph-based
dependency parsing. We represent new features
based on the dependency language model and in-
tegrate them in the decoding algorithm directly us-
ing beam-search. Our approach enriches the feature
representations but without increasing the decoding
complexity. When tested on both English and Chi-
nese data, our parsers provided very competitive per-
formance compared with the best systems on the En-
glish data and achieved the best performance on the
Chinese data in the literature.
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