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Abstract

In this paper, we demonstrate that accu-
rate machine translation is possible without
the concept of “words,” treating MT as a
problem of transformation between character
strings. We achieve this result by applying
phrasal inversion transduction grammar align-
ment techniques to character strings to train
a character-based translation model, and us-
ing this in the phrase-based MT framework.
We also propose a look-ahead parsing algo-
rithm and substring-informed prior probabil-
ities to achieve more effective and efficient
alignment. In an evaluation, we demonstrate
that character-based translation can achieve
results that compare to word-based systems
while effectively translating unknown and un-
common words over several language pairs.

1 Introduction

Traditionally, the task of statistical machine trans-
lation (SMT) is defined as translating a source sen-
tence fJ

1 = {f1, . . . , fJ} to a target sentence eI
1 =

{e1, . . ., eI}, where each element of fJ
1 and eI

1 is
assumed to be a word in the source and target lan-
guages. However, the definition of a “word” is of-
ten problematic. The most obvious example of this
lies in languages that do not separate words with
white space such as Chinese, Japanese, or Thai, in
which the choice of a segmentation standard has
a large effect on translation accuracy (Chang et
al., 2008). Even for languages with explicit word
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boundaries, all machine translation systems perform
at least some precursory form of tokenization, split-
ting punctuation and words to prevent the sparsity
that would occur if punctuated and non-punctuated
words were treated as different entities. Sparsity
also manifests itself in other forms, including the
large vocabularies produced by morphological pro-
ductivity, word compounding, numbers, and proper
names. A myriad of methods have been proposed
to handle each of these phenomena individually,
including morphological analysis, stemming, com-
pound breaking, number regularization, optimizing
word segmentation, and transliteration, which we
outline in more detail in Section 2.

These difficulties occur because we are translat-
ing sequences of words as our basic unit. On the
other hand, Vilar et al. (2007) examine the possibil-
ity of instead treating each sentence as sequences of
characters to be translated. This method is attrac-
tive, as it is theoretically able to handle all sparsity
phenomena in a single unified framework, but has
only been shown feasible between similar language
pairs such as Spanish-Catalan (Vilar et al., 2007),
Swedish-Norwegian (Tiedemann, 2009), and Thai-
Lao (Sornlertlamvanich et al., 2008), which have
a strong co-occurrence between single characters.
As Vilar et al. (2007) state and we confirm, accu-
rate translations cannot be achieved when applying
traditional translation techniques to character-based
translation for less similar language pairs.

In this paper, we propose improvements to the
alignment process tailored to character-based ma-
chine translation, and demonstrate that it is, in fact,
possible to achieve translation accuracies that ap-
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proach those of traditional word-based systems us-
ing only character strings. We draw upon recent
advances in many-to-many alignment, which allows
for the automatic choice of the length of units to
be aligned. As these units may be at the charac-
ter, subword, word, or multi-word phrase level, we
conjecture that this will allow for better character
alignments than one-to-many alignment techniques,
and will allow for better translation of uncommon
words than traditional word-based models by break-
ing down words into their component parts.

We also propose two improvements to the many-
to-many alignment method of Neubig et al. (2011).
One barrier to applying many-to-many alignment
models to character strings is training cost. In the
inversion transduction grammar (ITG) framework
(Wu, 1997), which is widely used in many-to-many
alignment, search is cumbersome for longer sen-
tences, a problem that is further exacerbated when
using characters instead of words as the basic unit.
As a step towards overcoming this difficulty, we in-
crease the efficiency of the beam-search technique of
Saers et al. (2009) by augmenting it with look-ahead
probabilities in the spirit of A* search. Secondly,
we describe a method to seed the search process us-
ing counts of all substring pairs in the corpus to bias
the phrase alignment model. We do this by defining
prior probabilities based on these substring counts
within the Bayesian phrasal ITG framework.

An evaluation on four language pairs with differ-
ing morphological properties shows that for distant
language pairs, character-based SMT can achieve
translation accuracy comparable to word-based sys-
tems. In addition, we perform ablation studies,
showing that these results were not possible with-
out the proposed enhancements to the model. Fi-
nally, we perform a qualitative analysis, which finds
that character-based translation can handle unseg-
mented text, conjugation, and proper names in a uni-
fied framework with no additional processing.

2 Related Work on Data Sparsity in SMT

As traditional SMT systems treat all words as single
tokens without considering their internal structure,
major problems of data sparsity occur for less fre-
quent tokens. In fact, it has been shown that there
is a direct negative correlation between vocabulary

size (and thus sparsity) of a language and transla-
tion accuracy (Koehn, 2005). Sparsity causes trou-
ble for alignment models, both in the form of incor-
rectly aligned uncommon words, and in the form of
garbage collection, where uncommon words in one
language are incorrectly aligned to large segments
of the sentence in the other language (Och and Ney,
2003). Unknown words are also a problem during
the translation process, and the default approach is
to map them as-is into the target sentence.

This is a major problem in agglutinative lan-
guages such as Finnish or compounding languages
such as German. Previous works have attempted to
handle morphology, decompounding and regulariza-
tion through lemmatization, morphological analysis,
or unsupervised techniques (Nießen and Ney, 2000;
Brown, 2002; Lee, 2004; Goldwater and McClosky,
2005; Talbot and Osborne, 2006; Mermer and Akın,
2010; Macherey et al., 2011). It has also been noted
that it is more difficult to translate into morpho-
logically rich languages, and methods for modeling
target-side morphology have attracted interest in re-
cent years (Bojar, 2007; Subotin, 2011).

Another source of data sparsity that occurs in all
languages is proper names, which have been handled
by using cognates or transliteration to improve trans-
lation (Knight and Graehl, 1998; Kondrak et al.,
2003; Finch and Sumita, 2007), and more sophisti-
cated methods for named entity translation that com-
bine translation and transliteration have also been
proposed (Al-Onaizan and Knight, 2002).

Choosing word units is also essential for creat-
ing good translation results for languages that do
not explicitly mark word boundaries, such as Chi-
nese, Japanese, and Thai. A number of works have
dealt with this word segmentation problem in trans-
lation, mainly focusing on Chinese-to-English trans-
lation (Bai et al., 2008; Chang et al., 2008; Zhang et
al., 2008b; Chung and Gildea, 2009; Nguyen et al.,
2010), although these works generally assume that a
word segmentation exists in one language (English)
and attempt to optimize the word segmentation in
the other language (Chinese).

We have enumerated these related works to
demonstrate the myriad of data sparsity problems
and proposed solutions. Character-based transla-
tion has the potential to handle all of the phenom-
ena in the previously mentioned research in a single
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unified framework, requiring no language specific
tools such as morphological analyzers or word seg-
menters. However, while the approach is attractive
conceptually, previous research has only been shown
effective for closely related language pairs (Vilar et
al., 2007; Tiedemann, 2009; Sornlertlamvanich et
al., 2008). In this work, we propose effective align-
ment techniques that allow character-based transla-
tion to achieve accurate translation results for both
close and distant language pairs.

3 Alignment Methods

SMT systems are generally constructed from a par-
allel corpus consisting of target language sentences
E and source language sentences F . The first step
of training is to find alignments A for the words in
each sentence pair.

We represent our target and source sentences as
eI

1 and fJ
1 . ei and fj represent single elements of

the target and source sentences respectively. These
may be words in word-based alignment models or
single characters in character-based alignment mod-
els.1 We define our alignment as aK

1 , where each
element is a span ak = 〈s, t, u, v〉 indicating that the
target string es, . . . , et and source string fu, . . . , fv

are aligned to each-other.

3.1 One-to-Many Alignment
The most well-known and widely-used models for
bitext alignment are for one-to-many alignment, in-
cluding the IBM models (Brown et al., 1993) and
HMM alignment model (Vogel et al., 1996). These
models are by nature directional, attempting to find
the alignments that maximize the conditional prob-
ability of the target sentence P (eI

1|fJ
1 , aK

1 ). For
computational reasons, the IBM models are re-
stricted to aligning each word on the target side to
a single word on the source side. In the formal-
ism presented above, this means that each ei must
be included in at most one span, and for each span
u = v. Traditionally, these models are run in both
directions and combined using heuristics to create
many-to-many alignments (Koehn et al., 2003).

However, in order for one-to-many alignment
methods to be effective, each fj must contain

1Some previous work has also performed alignment using
morphological analyzers to normalize or split the sentence into
morpheme streams (Corston-Oliver and Gamon, 2004).

enough information to allow for effective alignment
with its corresponding elements in eI

1. While this is
often the case in word-based models, for character-
based models this assumption breaks down, as there
is often no clear correspondence between characters.

3.2 Many-to-Many Alignment

On the other hand, in recent years, there have been
advances in many-to-many alignment techniques
that are able to align multi-element chunks on both
sides of the translation (Marcu and Wong, 2002;
DeNero et al., 2008; Blunsom et al., 2009; Neu-
big et al., 2011). Many-to-many methods can be ex-
pected to achieve superior results on character-based
alignment, as the aligner can use information about
substrings, which may correspond to letters, mor-
phemes, words, or short phrases.

Here, we focus on the model presented by Neu-
big et al. (2011), which uses Bayesian inference in
the phrasal inversion transduction grammar (ITG,
Wu (1997)) framework. ITGs are a variety of syn-
chronous context free grammar (SCFG) that allows
for many-to-many alignment to be achieved in poly-
nomial time through the process of biparsing, which
we explain more in the following section. Phrasal
ITGs are ITGs that allow for non-terminals that can
emit phrase pairs with multiple elements on both
the source and target sides. It should be noted
that there are other many-to-many alignment meth-
ods that have been used for simultaneously discov-
ering morphological boundaries over multiple lan-
guages (Snyder and Barzilay, 2008; Naradowsky
and Toutanova, 2011), but these have generally been
applied to single words or short phrases, and it is not
immediately clear that they will scale to aligning full
sentences.

4 Look-Ahead Biparsing

In this work, we experiment with the alignment
method of Neubig et al. (2011), which can achieve
competitive accuracy with a much smaller phrase ta-
ble than traditional methods. This is important in
the character-based translation context, as we would
like to use phrases that contain large numbers of
characters without creating a phrase table so large
that it cannot be used in actual decoding. In this
framework, training is performed using sentence-
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Figure 1: (a) A chart with inside probabilities in boxes
and forward/backward probabilities marking the sur-
rounding arrows. (b) Spans with corresponding look-
aheads added, and the minimum probability underlined.
Lightly and darkly shaded spans will be trimmed when
the beam is log(P ) ≥ −3 and log(P ) ≥ −6 respectively.

wise block sampling, acquiring a sample for each
sentence by first performing bottom-up biparsing to
create a chart of probabilities, then performing top-
down sampling of a new tree based on the probabil-
ities in this chart.

An example of a chart used in this parsing can
be found in Figure 1 (a). Within each cell of the
chart spanning et

s and fv
u is an “inside” probabil-

ity I(as,t,u,v). This probability is the combination
of the generative probability of each phrase pair
Pt(e

t
s,f

v
u) as well as the sum the probabilities over

all shorter spans in straight and inverted order2

I(as,t,u,v) = Pt(e
t
s, f

v
u)

+
∑

s≤S≤t

∑
u≤U≤v

Px(str)I(as,S,u,U )I(aS,t,U,v)

+
∑

s≤S≤t

∑
u≤U≤v

Px(inv)I(as,S,U,v)I(aS,t,u,U )

where Px(str) and Px(inv) are the probability of
straight and inverted ITG productions.

While the exact calculation of these probabilities
can be performed in O(n6) time, where n is the

2Pt can be specified according to Bayesian statistics as de-
scribed by Neubig et al. (2011).

length of the sentence, this is impractical for all but
the shortest sentences. Thus it is necessary to use
methods to reduce the search space such as beam-
search based chart parsing (Saers et al., 2009) or
slice sampling (Blunsom and Cohn, 2010).3

In this section we propose the use of a look-ahead
probability to increase the efficiency of this chart
parsing. Taking the example of Saers et al. (2009),
spans are pushed onto a different queue based on
their size, and queues are processed in ascending or-
der of size. Agendas can further be trimmed based
on a histogram beam (Saers et al., 2009) or probabil-
ity beam (Neubig et al., 2011) compared to the best
hypothesis â. In other words, we have a queue dis-
cipline based on the inside probability, and all spans
ak where I(ak) < cI(â) are pruned. c is a constant
describing the width of the beam, and a smaller con-
stant probability will indicate a wider beam.

This method is insensitive to the existence of
competing hypotheses when performing pruning.
Figure 1 (a) provides an example of why it is unwise
to ignore competing hypotheses during beam prun-
ing. Particularly, the alignment “les/1960s” com-
petes with the high-probability alignment “les/the,”
so intuitively should be a good candidate for prun-
ing. However its probability is only slightly higher
than “années/1960s,” which has no competing hy-
potheses and thus should not be trimmed.

In order to take into account competing hypothe-
ses, we can use for our queue discipline not only the
inside probability I(ak), but also the outside proba-
bility O(ak), the probability of generating all spans
other than ak, as in A* search for CFGs (Klein and
Manning, 2003), and tic-tac-toe pruning for word-
based ITGs (Zhang and Gildea, 2005). As the cal-
culation of the actual outside probability O(ak) is
just as expensive as parsing itself, it is necessary to
approximate this with heuristic function O∗ that can
be calculated efficiently.

Here we propose a heuristic function that is de-
signed specifically for phrasal ITGs and is com-
putable with worst-case complexity of n2, compared
with the n3 amortized time of the tic-tac-toe pruning

3Applying beam-search before sampling will sample from
an improper distribution, although Metropolis-in-Gibbs sam-
pling (Johnson et al., 2007) can be used to compensate. How-
ever, we found that this had no significant effect on results, so
we omit the Metropolis-in-Gibbs step for experiments.
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algorithm described by (Zhang et al., 2008a). Dur-
ing the calculation of the phrase generation proba-
bilities Pt, we save the best inside probability I∗ for
each monolingual span.

I∗e (s, t) = max
{ã=〈s̃,t̃,ũ,ṽ〉;s̃=s,t̃=t}

Pt(ã)

I∗f (u, v) = max
{ã=〈s̃,t̃,ũ,ṽ〉;ũ=u,ṽ=v}

Pt(ã)

For each language independently, we calculate for-
ward probabilities α and backward probabilities β.
For example, αe(s) is the maximum probability of
the span (0, s) of e that can be created by concate-
nating together consecutive values of I∗e :

αe(s) = max
{S1,...,Sx}

I∗e (0, S1)I
∗
e (S1, S2) . . . I∗e (Sx, s).

Backwards probabilities and probabilities over f can
be defined similarly. These probabilities are calcu-
lated for e and f independently, and can be calcu-
lated in n2 time by processing each α in ascending
order, and each β in descending order in a fashion
similar to that of the forward-backward algorithm.
Finally, for any span, we define the outside heuristic
as the minimum of the two independent look-ahead
probabilities over each language

O∗(as,t,u,v) = min(αe(s) ∗ βe(t), αf (u) ∗ βf (v)).

Looking again at Figure 1 (b), it can be seen
that the relative probability difference between the
highest probability span “les/the” and the spans
“années/1960s” and “60/1960s” decreases, allowing
for tighter beam pruning without losing these good
hypotheses. In contrast, the relative probability of
“les/1960s” remains low as it is in conflict with a
high-probability alignment, allowing it to be dis-
carded.

5 Substring Prior Probabilities

While the Bayesian phrasal ITG framework uses
the previously mentioned phrase distribution Pt dur-
ing search, it also allows for definition of a phrase
pair prior probability Pprior(e

t
s, f

v
u), which can ef-

ficiently seed the search process with a bias towards
phrase pairs that satisfy certain properties. In this
section, we overview an existing method used to cal-
culate these prior probabilities, and also propose a
new way to calculate priors based on substring co-
occurrence statistics.

5.1 Word-based Priors

Previous research on many-to-many translation has
used IBM model 1 probabilities to bias phrasal
alignments so that phrases whose member words are
good translations are also aligned. As a representa-
tive of this existing method, we adopt a base mea-
sure similar to that used by DeNero et al. (2008):

Pm1(e, f) =M0(e, f)Ppois(|e|; λ)Ppois(|f |; λ)

M0(e, f) =(Pm1(f |e)Puni(e)Pm1(e|f)Puni(f))
1
2 .

Ppois is the Poisson distribution with the average
length parameter λ, which we set to 0.01. Pm1 is the
word-based (or character-based) Model 1 probabil-
ity, which can be efficiently calculated using the dy-
namic programming algorithm described by Brown
et al. (1993). However, for reasons previously stated
in Section 3, these methods are less satisfactory
when performing character-based alignment, as the
amount of information contained in a character does
not allow for proper alignment.

5.2 Substring Co-occurrence Priors

Instead, we propose a method for using raw sub-
string co-occurrence statistics to bias alignments to-
wards substrings that often co-occur in the entire
training corpus. This is similar to the method of
Cromieres (2006), but instead of using these co-
occurrence statistics as a heuristic alignment crite-
rion, we incorporate them as a prior probability in
a statistical model that can take into account mutual
exclusivity of overlapping substrings in a sentence.

We define this prior probability using three counts
over substrings c(e), c(f), and c(e, f). c(e) and
c(f) count the total number of sentences in which
the substrings e and f occur respectively. c(e, f) is
a count of the total number of sentences in which the
substring e occurs on the target side, and f occurs
on the source side. We perform the calculation of
these statistics using enhanced suffix arrays, a data
structure that can efficiently calculate all substrings
in a corpus (Abouelhoda et al., 2004).4

While suffix arrays allow for efficient calculation
of these statistics, storing all co-occurrence counts
c(e, f) is an unrealistic memory burden for larger

4Using the open-source implementation esaxx http://
code.google.com/p/esaxx/
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corpora. In order to reduce the amount of mem-
ory used, we discount every count by a constant d,
which we set to 5. This has a dual effect of reducing
the amount of memory needed to hold co-occurrence
counts by removing values for which c(e,f) < d, as
well as preventing over-fitting of the training data. In
addition, we heuristically prune values for which the
conditional probabilities P (e|f) or P (f |e) are less
than some fixed value, which we set to 0.1 for the
reported experiments.

To determine how to combine c(e), c(f), and
c(e, f) into prior probabilities, we performed pre-
liminary experiments testing methods proposed by
previous research including plain co-occurrence
counts, the Dice coefficient, and χ-squared statistics
(Cromieres, 2006), as well as a new method of defin-
ing substring pair probabilities to be proportional to
bidirectional conditional probabilities

Pcooc(e, f) = Pcooc(e|f)Pcooc(f |e)/Z

=

(
c(e,f)− d

c(f)− d

)(
c(e, f)− d

c(e)− d

)
/Z

for all substring pairs where c(e, f) > d and where
Z is a normalization term equal to

Z =
∑

{e,f ;c(e,f)>d}

Pcooc(e|f)Pcooc(f |e).

The experiments showed that the bidirectional con-
ditional probability method gave significantly better
results than all other methods, so we adopt this for
the remainder of our experiments.

It should be noted that as we are using discount-
ing, many substring pairs will be given zero proba-
bility according to Pcooc. As the prior is only sup-
posed to bias the model towards good solutions and
not explicitly rule out any possibilities, we linearly
interpolate the co-occurrence probability with the
one-to-many Model 1 probability, which will give
at least some probability mass to all substring pairs

Pprior(e, f) = λPcooc(e, f) + (1− λ)Pm1(e,f).

We put a Dirichlet prior (α = 1) on the interpolation
coefficient λ and learn it during training.

6 Experiments

In order to test the effectiveness of character-based
translation, we performed experiments over a variety
of language pairs and experimental settings.

de-en fi-en fr-en ja-en
TM (en) 2.80M 3.10M 2.77M 2.13M
TM (other) 2.56M 2.23M 3.05M 2.34M
LM (en) 16.0M 15.5M 13.8M 11.5M
LM (other) 15.3M 11.3M 15.6M 11.9M
Tune (en) 58.7k 58.7k 58.7k 30.8k
Tune (other) 55.1k 42.0k 67.3k 34.4k
Test (en) 58.0k 58.0k 58.0k 26.6k
Test (other) 54.3k 41.4k 66.2k 28.5k

Table 1: The number of words in each corpus for TM and
LM training, tuning, and testing.

6.1 Experimental Setup

We use a combination of four languages with En-
glish, using freely available data. We selected
French-English, German-English, Finnish-English
data from EuroParl (Koehn, 2005), with develop-
ment and test sets designated for the 2005 ACL
shared task on machine translation.5 We also did
experiments with Japanese-English Wikipedia arti-
cles from the Kyoto Free Translation Task (Neu-
big, 2011) using the designated training and tuning
sets, and reporting results on the test set. These lan-
guages were chosen as they have a variety of inter-
esting characteristics. French has some inflection,
but among the test languages has the strongest one-
to-one correspondence with English, and is gener-
ally considered easy to translate. German has many
compound words, which must be broken apart to
translate properly into English. Finnish is an ag-
glutinative language with extremely rich morphol-
ogy, resulting in long words and the largest vocab-
ulary of the languages in EuroParl. Japanese does
not have any clear word boundaries, and uses logo-
graphic characters, which contain more information
than phonetic characters.

With regards to data preparation, the EuroParl
data was pre-tokenized, so we simply used the to-
kenized data as-is for the training and evaluation of
all models. For word-based translation in the Kyoto
task, training was performed using the provided tok-
enization scripts. For character-based translation, no
tokenization was performed, using the original text
for both training and decoding. For both tasks, we
selected as training data all sentences for which both

5http://statmt.org/wpt05/mt-shared-task
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de-en fi-en fr-en ja-en
GIZA-word 24.58 / 64.28 / 30.43 20.41 / 60.01 / 27.89 30.23 / 68.79 / 34.20 17.95 / 56.47 / 24.70
ITG-word 23.87 / 64.89 / 30.71 20.83 / 61.04 / 28.46 29.92 / 68.64 / 34.29 17.14 / 56.60 / 24.89
GIZA-char 08.05 / 45.01 / 15.35 06.91 / 41.62 / 14.39 11.05 / 48.23 / 17.80 09.46 / 49.02 / 18.34
ITG-char 21.79 / 64.47 / 30.12 18.38 / 62.44 / 28.94 26.70 / 66.76 / 32.47 15.84 / 58.41 / 24.58

en-de en-fi en-fr en-ja
GIZA-word 17.94 / 62.71 / 37.88 13.22 / 58.50 / 27.03 32.19 / 69.20 / 52.39 20.79 / 27.01 / 38.41
ITG-word 17.47 / 63.18 / 37.79 13.12 / 59.27 / 27.09 31.66 / 69.61 / 51.98 20.26 / 28.34 / 38.34
GIZA-char 06.17 / 41.04 / 19.90 04.58 / 35.09 / 11.76 10.31 / 42.84 / 25.06 01.48 / 00.72 / 06.67
ITG-char 15.35 / 61.95 / 35.45 12.14 / 59.02 / 25.31 27.74 / 67.44 / 48.56 17.90 / 28.46 / 35.71

Table 2: Translation results in word-based BLEU, character-based BLEU, and METEOR for the GIZA++ and phrasal
ITG models for word and character-based translation, with bold numbers indicating a statistically insignificant differ-
ence from the best system according to the bootstrap resampling method at p = 0.05 (Koehn, 2004).

source and target were 100 characters or less,6 the
total size of which is shown in Table 1. In character-
based translation, white spaces between words were
treated as any other character and not given any spe-
cial treatment. Evaluation was performed on tok-
enized and lower-cased data.

For alignment, we use the GIZA++ implementa-
tion of one-to-many alignment7 and the pialign im-
plementation of the phrasal ITG models8 modified
with the proposed improvements. For GIZA++, we
used the default settings for word-based alignment,
but used the HMM model for character-based align-
ment to allow for alignment of longer sentences.
For pialign, default settings were used except for
character-based ITG alignment, which used a prob-
ability beam of 10−4 instead 10−10.9 For decoding,
we use the Moses decoder,10 using the default set-
tings except for the stack size, which we set to 1000
instead of 200. Minimum error rate training was per-
formed to maximize word-based BLEU score for all
systems.11 For language models, word-based trans-
lation uses a word 5-gram model, and character-
based translation uses a character 12-gram model,
both smoothed using interpolated Kneser-Ney.

6100 characters is an average of 18.8 English words
7http://code.google.com/p/giza-pp/
8http://phontron.com/pialign/
9Improvement by using a beam larger than 10−4 was

marginal, especially with co-occurrence prior probabilities.
10http://statmt.org/moses/
11We chose this set-up to minimize the effect of tuning crite-

rion on our experiments, although it does indicate that we must
have access to tokenized data for the development set.

6.2 Quantitative Evaluation

Table 2 presents a quantitative analysis of the trans-
lation results for each of the proposed methods. As
previous research has shown that it is more diffi-
cult to translate into morphologically rich languages
than into English (Koehn, 2005), we perform exper-
iments translating in both directions for all language
pairs. We evaluate translation quality using BLEU
score (Papineni et al., 2002), both on the word and
character level (with n = 4), as well as METEOR
(Denkowski and Lavie, 2011) on the word level.

It can be seen that character-based translation
with all of the proposed alignment improvements
greatly exceeds character-based translation using
one-to-many alignment, confirming that substring-
based information is necessary for accurate align-
ments. When compared with word-based trans-
lation, character-based translation achieves better,
comparable, or inferior results on character-based
BLEU, comparable or inferior results on METEOR,
and inferior results on word-based BLEU. The dif-
ferences between the evaluation metrics are due to
the fact that character-based translation often gets
words mostly correct other than one or two letters.
These are given partial credit by character-based
BLEU (and to a lesser extent METEOR), but marked
entirely wrong by word-based BLEU.

Interestingly, for translation into English,
character-based translation achieves higher ac-
curacy compared to word-based translation on
Japanese and Finnish input, followed by German,
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fi-en ja-en
ITG-word 2.851 2.085
ITG-char 2.826 2.154

Table 3: Human evaluation scores (0-5 scale).

Ref: directive on equality
Source Unk. Word: tasa-arvodirektiivi
(13/26) Char: equality directive

Ref: yoshiwara-juku station
Target Unk. Word: yoshiwara no eki
(5/26) Char: yoshiwara-juku station

Ref: world health organisation
Uncommon Word: world health
(5/26) Char: world health organisation

Table 4: The major gains of character-based translation,
unknown, hyphenated, and uncommon words.

and finally French. This confirms that character-
based translation is performing well on languages
that have long words or ambiguous boundaries, and
less well on language pairs with relatively strong
one-to-one correspondence between words.

6.3 Qualitative Evaluation
In addition, we performed a subjective evaluation of
Japanese-English and Finnish-English translations.
Two raters evaluated 100 sentences each, assigning
a score of 0-5 based on how well the translation con-
veys the information contained in the reference. We
focus on shorter sentences of 8-16 English words to
ease rating and interpretation. Table 3 shows that
the results are comparable, with no significant dif-
ference in average scores for either language pair.

Table 4 shows a breakdown of the sentences for
which character-based translation received a score
of at 2+ points more than word-based. It can be seen
that character-based translation is properly handling
sparsity phenomena. On the other hand, word-based
translation was generally stronger with reordering
and lexical choice of more common words.

6.4 Effect of Alignment Method
In this section, we compare the translation accura-
cies for character-based translation using the phrasal
ITG model with and without the proposed improve-
ments of substring co-occurrence priors and look-
ahead parsing as described in Sections 4 and 5.2.

fi-en en-fi ja-en en-ja
ITG +cooc +look 28.94 25.31 24.58 35.71
ITG +cooc -look 28.51 24.24 24.32 35.74
ITG -cooc +look 28.65 24.49 24.36 35.05
ITG -cooc -look 27.45 23.30 23.57 34.50

Table 5: METEOR scores for alignment with and without
look-ahead and co-occurrence priors.

Figure 5 shows METEOR scores12 for experi-
ments translating Japanese and Finnish. It can be
seen that the co-occurrence prior gives gains in all
cases, indicating that substring statistics are effec-
tively seeding the ITG aligner. The introduced look-
ahead probabilities improve accuracy significantly
when substring co-occurrence counts are not used,
and slightly when co-occurrence counts are used.
More importantly, they allow for more aggressive
beam pruning, increasing sampling speed from 1.3
sent/s to 2.5 sent/s for Finnish, and 6.8 sent/s to 11.6
sent/s for Japanese.

7 Conclusion and Future Directions

This paper demonstrated that character-based trans-
lation can act as a unified framework for handling
difficult problems in translation: morphology, com-
pound words, transliteration, and segmentation.

One future challenge includes scaling training up
to longer sentences, which can likely be achieved
through methods such as the heuristic span prun-
ing of Haghighi et al. (2009) or sentence splitting
of Vilar et al. (2007). Monolingual data could also
be used to improve estimates of our substring-based
prior. In addition, error analysis showed that word-
based translation performed better than character-
based translation on reordering and lexical choice,
indicating that improved decoding (or pre-ordering)
and language modeling tailored to character-based
translation will likely greatly improve accuracy. Fi-
nally, we plan to explore the middle ground between
word-based and character based translation, allow-
ing for the flexibility of character-based translation,
while using word boundary information to increase
efficiency and accuracy.

12Similar results were found for character and word-based
BLEU, but are omitted for lack of space.
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Coşkun Mermer and Ahmet Afşın Akın. 2010. Unsu-
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