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Why Incorporate Prior Knowledge!

have: unlabeled data

This approach does not
scale to every task and
domain of interest.

However, we already
know a lot about most
problems of interest.

linguist annotators

Example: Document Classification

Documents Labels

EEEEEE 00

e Prior Knowledge:

® |abeled features: information about the label
distribution when word w is present

sentiment polarity newsgroups classification
positive negative baseball Mac politics
memorable terrible hit Apple senate
perfect boring Braves Macintosh taxes
exciting mess runs Powerbook | liberal




Example: Information Extraction

W. H. Enright. Improving the efficiency of matrix operations
in the numerical solution of stiff ordinary differential
research PAPErs: |equations. ACM Trans. Math. Softw., [27-136, June 1978.

extraction from

® Prior Knowledge:

® |abeled features:

® the word ACM should be labeled either journal or
booktitle most of the time

® non-Markov (long-range) dependencies:

® each reference has at most one segment of each type

Example: Part-of-speech Induction

Tags Text

0.0. career European

institutions must become more
. . . . attractive. Too many young, new...

® Prior Knowledge:

® linguistic knowledge: each sentence should have a verb

® posterior sparsity: the total number of different POS tags
assigned to each word type should be small




Example: Dependency Grammar Induction

Yo

root John hit the ball with the bat

® Prior Knowledge:
® linguistic rules: nouns are usually dependents of verbs

® noisy labeled data: target language parses should be
similar to aligned parses in a resource-rich source language

/\%\\/{////_\\\

El sector avicola tiene caracteristicas muy especificas .

The poultry sector has very specific characteristics .

\_VV\%/

Example:Word Alignment

must become more attractive.

21\

europeias tém de se tornar mais atractiva.

A career with the European

Uma carreira nas

e Prior Knowledge:

® Bijectivity: alignment should be mostly one-to-one

® Symmetry: source—target and target—source
alignments should agree




This Tutorial

In general, how can we leverage such knowledge
and an unannotated corpus during learning?

Notation & Models

input variables (documents, sentences): X

structured output variables (parses, sequences):

unstructured output variables (labels): Yy
input / output variables for entire corpus: XY
probabilistic model parameters: 0
generative models: pe(X,y)
discriminative models: po(y]x)

model feature function: f(X> Y>




Learning Scenarios

e Unsupervised:
® unlabeled data + prior knowledge

® Lightly Supervised:
® unlabeled data + “informative” prior knowledge
® .. provides specific information about labels

® Semi-Supervised:

® |abeled data + unlabeled data + prior knowledge

Running Example #1:
Document Classification

e model: Maximum Entropy Classifier (Logistic Regression)

poy) = 7 exp(t-£(x.v)

e setting: lightly supervised; no labeled data
e prior knowledge:

® |abeled features: information about the label
distribution when word w is present

® label is often hockey or baseball when game is present




Running Example #2:
Word Alignment

e model: first-order Hidden Markov Model (HMM)
N

po(y,x) = po(o) | [ po(vilyi—1)pe(x:ly:)
1=1
sabemos e cammo null

B .00
sefting: unsupervise
® prior knowledge: @ @ ‘ ‘

® Bijectivity: alignment should be mostly one-to-one

Problem

model data output

A Yo Y3

006"

jugaban de una manera animada y muy cordial

it was an"animated,”Very convivial game

This output does not agree with prior knowledge!
* six target words align to source word animada
* five source words do not align with any target word




Limited Approach: Labeling Data

approach: Convert prior knowledge to labeled data.

Prototypes (+ cluster features):
= = * [Haghighi & Klein 06]
prior Others:
knowledge == — * [Raghavan &Allan 07]
= * [Schapire et al. 02]

limitation: Often unclear how to do conversion
o Example #1: often (not always) game — {hockey,baseball}

o Example #2: alignment should be mostly one-to-one

Limited Approach: Bayesian Approach

approach: Encode prior knowledge with a prior on parameters.
a o Specifying p(0)
vi ./ T\ v  hatural: “9 should be small (or sparse)”

[Johnson 07], among many others

possible: “4; should be close to §,”
X% X ( informative prior ) [Dayanik et al. 0]

limitation: Our prior knowledge is not about parameters!
Parameters are difficult to interpret; hard to get desired effect.

o Example #1: often (not always) game — {hockey,baseball}

o Example #2: alignment should be mostly one-to-one




Limited Approach: Augmenting Model

approach: Encode prior knowledge with

. . . y2 y3
additional variables and dependencies. ,

O 0O O

X4 X5 X3

limitation: can be difficult to get desired effect

o Example #1: often (not always) game — {hockey,baseball}

limitation; may make exact inference intractable

o Example #2: Bijectivity makes inference #P-complete

This Tutorial

develop:
e alanguage for directly encoding prior knowledge
e methods for learning with knowledge in this language
® ( approximations to modeling this language directly )
o (loosely) these methods perform mappings for us:

® encoded prior knowledge "= parameters ()

® encoded prior knowledge A~ labeling |~ |[-||-




A Language for Encoding Prior Knowledge

Our prior knowledge is about distributions over latent
output variables. (output variables are interpretable)

Specifically, we know some properties of this distribution:

o Example #1: often (not always) game—{hockey,baseball}

Formulation: know about the expectations of some
functions under distribution over latent output variables

Constraint Features

e constraint feature function: ¢(x,y)
o Example #: 9. (x,y) = 1(y = )1 (w € x)

® for document X, returns a vector with a 1 in the Ith
position if y is the [th label and the word w is in x

N
o Example #2: ¢(x,y) = > 1(y; =m)
i=1
® returns a vector with mth value = number of target
words in sentence X that align with source word m




Expectations of Constraint Features

e Example #1: Corpus expectation:
1
E,, [6(X. V)] = = 3" polylx)éu(x,)
W y

® vector with expected distribution over labels for
documents that contain w (Cuw is the count of w)

e Example #2: Per-example expectation:
Ey [6(x,y)] =Y po(yx)é(x,y)

y
® vector with mth value = expected number of target
words that align with source word m

Expressing Preferences

® express preferences using target values: ¢

® Example #1: E;, [0, (X,Y)] =~ ¢

® |[abel distribution for game is close to [407% 40% 20%)]

® Example #2: E,,[¢(x,y)] < ¢

® expected number of target words that align with each
source word is at most one




Preview: Labeled Features
User Experiments [Druck et al. 08]

PC vs. Mac

2 minutes, 100 ~15 minutes, 100
features labeled documents labeled
(or skipped): (or skipped):
82% accuracy 78% accuracy

0.9F

o
©
T

targets set with
simple heuristic:
majority label gets
90% of mass

En-Pt Pt-En En-Es

g complete set of
§ o7} labeled features
g PC [ Mac
o[ dos | mac
ibm | apple
| hp |quadra
-+ -GE
. . . . . . _ |——ER dx
0.40 100 200 300 400 500 600 700 800
labeling time in seconds
Preview: Word Alignment
[Graca et al. 10]
B HMM [ HMM + Bijectivity Constraint
95
86.25
77.5
68.75
60

Es-En




Overview of the Frameworks

Running Example

Model Family: conditional exponential models
exp(f - f(X,Y))
Z(X)

Z(X) =) exp(f-f(X,Y))

pe(Y|X) =

f(X,Y) are model features




Choosing parameters 6

Model Family: conditional exponential models
exp(f-f(X,Y))
Z(X)

pe(Y|X) =

Objective: maximize observed data likelihood

max  logpo(YL|X1) + logp(6) < L(0:Dy)

Note: Frameworks also suitable for
generative models (no labeled data necessary)

Visual Example: Maximum Likelihood

Model: p(Y|X) = H eXP(ZBEf) -0)

Objective: ~ max log pe(YL|X1) — 0.1|6]]3




A language for prior information

The expectations of user-defined constraint
features (X, Y) are close to some value ¢

E[¢p(X,Y)] = ¢

Running Example:

Want to ensure that 25% of unlabeled
documents are about politics
® constraint features

b(x. y) 1 if y is “politics”
X) — .
Y 0 otherwise

* preferred expected value

¢ =0.25
* Expectation w.r.t. unlabeled data




Constraint-Driven Learning
M. Chang, L. Ratinov, D. Roth (2007).

Motivation: Hard EM algorithm with preferences

Hard EM:
E-Step: set Y = argmax log ps(Y|X)
Y

M-Step: set 8 = argmax log pg (Y|X)
0

Constraint Priven Learning:

E-Step: set Y = argmax  log py(Y|X)—penalty(Y)
Y

M-Step: set § = argmax  log py(Y|X)
0

Constraint-Driven Learning

Motivation: Hard EM algorithm with preferences
Constraint Priven Learning:
E-Step: set Y = argmax  log pg(Y|X)—penalty(Y)
M-Step: set 0 = argjnax log pe (Y| X)

* penalties encode esimilar information as E[¢] ~ ¢

* more on this later *

* E-Step can be hard; use beam search




Visual Example: Constraint Driven Learning

max logpo(Yr|XL) = 0.1]0]5 st. ¢(Y)=2

A

where Y are “imagined” labels and ¢[Y] = count(+,Y)

Posterior Regularization
J. Graga, K. Ganchey, B. Taskar (2007).

Motivation: EM algorithm with sane posteriors

EM:
E-Step: set ¢(Y) = arg min Dk, (q(Y)]||pe(Y]X))

q
M-Step: set 6 = argmax E,y)[ps (Y |X)]
0

Constrained EM:

E-Step: set ¢(Y) = arg erlin Dk1.(¢(Y)]|pe(y]x))
q€

M-Step: set 0 = argmax E v [pg(Y|X)]
0




Posterior Regularization

Motivation: EM algorithm with sane posteriors

ldea: E[¢] ~ é provide constraints

define Q: set of ¢ such that E,[¢] = ¢
run EM-like procedure but use proposal ¢ € Q

Objective:
max  L(0; D) — Dxr(Q || po(Y X))
where
Dk, is Kullback-Leibler divergence
X = Dy are the input variables for unlabeled corpus
Y is label for entire unlabeled corpus

Posterior Regularization
Hard constraints:

max  L£(6;Dz) — min Dxr(q(Y)]l pe(YX))

Q= {a(0): [Eatov)] =3 < e

Soft constraints:

Dxr(a(Y)[| po(Y[X)) +
( || Eqlo(Y)] = 6] )

max L(0; Dr,) — min
q

2




Visual Example: Posterior Regularization

max logpy(Yr|X1) = 0.1]16]5 — Dkr(Qllps)

where: Dk1,(Qllpg) = mqin DkL(q||pe) s.t. Eg[¢] =2

- o
o
o
o O o
o
o +

Generalized Expectation Constraints
G. Mann, A. McCallum (2007).

Motivation: augment log-likelihood with cost for “bad”
posteriors.

Objective:

mas £(0; D) — | Byyxod] — 4]

where Epe(y|x) [(b] :Epg (Y|X) [¢(X7 Y)]
— Zpg (Y[X)o(X,Y) is short-hand
Y

Optimization: gradient descent on ¢




A visual comparison of the frameworks

Objective: Generalized Expectation Constraints

max logpe(Yr|X1) — 0.1[|6]5 — 500[|Ep, [¢] — 2|5

Types of constraints
Constraint Priven Learning: Penalized Viterbi
arg max log po(Y|X) — [[6(X,Y) = ¢ls
e Easyif ||[¢(X,Y) — gBHB decompose as the model.
p(Y|X) = [ [ pe(yelX) and
X Y) bl = Y 0K,y

e Otherwise:

e Beam search

* Integer linear program




Types of constraints
Posterior Regularization: KL projection
min Dict(alpo) st [Bqle] = dll5 < e
e Usually easy if ¢(Y, X) decompose as the model:
p(Y[X) = Hpc YelX)

and = ¢(Y|X) = Hqc ye|X)

= Z Pe(X,ye)

* Otherwise: Sample (eg K. Bellare, G. Druck, and A. McCallum, 2009)

Types of constraints

Generalized Expectation Constraints: Direct gradient

max £(0; Dr) — HEp9<Y|x>[¢] ~¢ 5

o Usually easy if: (Y, X)
e decomposes as the model ¢(X,Y) Zqzbc (X,ye)

e Can compute E[¢p x f] * more on this later *
e Unstructured
* Sequence, Grammar (semiring trick)

¢ Otherwise: sample or approximate the gradient.




A Bayesian View: Measurements
P. Liang, M. Jordan, D. Klein (2009)

Xz, 0

Yy,

Objective: mode of 6 given observations

max logp(6) + D logpe(ylx) = £(0; Dr)
(x,y)GDL

A Bayesian View: Measurements

Objective: mode of 6 given observations

max L(0; Dr) +log Ep, (vx) [p(@fb(X»Y))}




What's wrong with this picture?

Objective: mode of 0 given observations
max  £(0; D) +10g By, (vix) [p(416(X, Y)))

Example: Exactly 25% of articles are “politics”

P(BI6(X,Y)) =1 (&= 6(X,Y))

What is the probability exactly 25% of the articles are
labeled "“politics™?

E,, (vx) [1((/5 = ¢(X, Y))]

How do we optimize this with respect to 0?

What's wrong with this picture?

Example: Compute prob: 25% of docs are “politics”.

Naively:
Article | p(“politics”) 0.2 x (1 —0.4) x (1 —0.1) x (1 — 0.6)
I 0.2 +...+
§ 8-‘: (1 -0.2) x (1—0.4) x (1 —0.1) x 0.6
4 0.6

in this case we can use a DP, but if
there are many constraints, that doesn’t
work.
Easier: What is the expected number of “politics” articles?

024+04+0.1+0.6




Probabilities and Expectations

difficult to compute expectations of arbitrary functions but...
Usvally: #(X,Y)decomposes as a sum

e.g. 25% of articles are “politics”

WX Y)= S sxy)

instances

Idea: approximate

E,,vix) [p (& | o(X, Y))] ~p (q3 | Epvix) [fb(X,Y)])

Probabilities and Expectations

Approximation: E,,, v(x) [p (qB | qﬁﬂ ~p (q3 | Epovix) [qﬁ])
U
Objective: max L(0;Dy,) + logp (qg ’ E,, vx) [¢]>

Example: » <<§ | E[¢]> is Gaussian
= 1ogp (6| Bla)) s ||Blg) - 4

so for appropriate log p (qg ‘ E[gb]) this is identical to GE!




Optimizing GE objective
GE Objective:
Ogk = max L(0; D) — ‘

Epo(vix)[0(X,Y)] - éHB

* Gradient involves covariance
Cov(¢,f) = E[¢p x f]| — E[¢] x E[f]
this can be hard because
E[¢ x f] = Zp x £(Y)

and the usual dynamlc programs (inside outside, forward
backward) can’t compute this.

Optimizing GE Objective

Y2\ ¥a

El¢ x f] =Y p(Y)$(Y) x £(Y)
Y

6(Y) % £(Y) = [Z Slyi)| % lz f<yj>]

Maintaining bothy,, and y;in the DP is expensive

** Semiring trick can help for some problems *
E.g. if inference is a hypergraph problem.




A Variational Approximation

GE Objective:
Oc = max L£(85D1) — |6~ By, v [6(X, V)|

* Can be hard to compute Cov(¢, f) in gradient.

B

ldea: use variational approximation ¢(Y) ~ py(Y|X)

maxg ,y) £(0;Dr)—Dkr (Q(Y) || pG(Y’X)) - ‘

B,[6(X.Y)] ~ ||

* Note: this is the PR objective *

Approximating with the mode

PR Objective:
maxyg (y) L(0; Dr)—Dk1y, (q(Y) || PG(Y‘X)) - ‘

B,o(X.Y)] ~ 4
sometimes minimizing the KL is hard.
ldea: use hard assignment ¢(Y) =~ 1(Y = Y):

* Dir (¢(Y) || po(Y|X)) becomes log p(Y)

. HEqW(X,Y)] — chﬁbecomes logp(¢ | (X, Y))

* use EM-like procedure to optimize

Constraint Priven Learning Objective:

max L(6; Dr) + log pe(Y) + log p(d|¢(X, Y))




Visual Summary

| Measurements |

4 AN
log E[pn (¢|9)] ~ log px (¢|E[¢])

/ N\

variational approximation;
Jensen’s inequality

Generalized variational R Posterior
Expectation approximation | Regularization
. MAP MAP
Distribution approximation approximation '
Matching y Coupled Semi-
Constraint|  _____ Supervised
Dithian | o Learning
Learning

Applications

o Unstructured problems:

® Document Classification

e Sequence problems:
® Information Extraction
®  Pos-Induction

®  Word Alignment

o Tree problems:

®  Grammar Induction




Document Classification

Documents Labels
e Model: Max. Entropy Classifier (Logistic Regression)

B exp(e . f(X, y))
po(ylx) = Zy exp(6 - f(x,y))

e Challenge: What if we have no labeled data?

® cannot use standard unsupervised Iearningzz po(ylx)=1
y

Labeled Features

® often we can still provide some light supervision

o prior knowledge: labeled features

sentiment polarity newsgroups classification
positive negative baseball Mac politics
memorable terrible hit Apple senate
perfect boring Braves Macintosh taxes
exciting mess runs Powerbook | liberal

e formally: have an estimate of the distribution over labels
for documents that contain word w: @,




Leveraging Labeled Features with GE
[Mann & McCallum 07], [Druck et al. 08]

e constraint feature: ¢,,(x,y) = 1(y = ))1(w € x)

® for a document X, returns a vector with a 1 in the Ith
position if y is the Ith label and the word w is in X

e expectation: label distribution for docs that contain w
= B lu(x.v)
o GE penalty: KL di)\c/ergence from target distribution
Dk ( ¢w|\ Z By (y1) [Pw (%, 9)])

testing accuracy

User Experiments with Labeled Features
[Druck et al. 08]

f— PC vs. Mac targets set with

~2 tes, 1 ~15 mlnutes 100 . .
minutes, 100 simple heuristic:

features labeled documents labeled

| (or skipped): (or skipped): 1  majority label gets
Y. 82%accuracy  78% accuracyy 90% of mass
0.8f .
complete set of
o7} labeled features
PC Mac
| dos | mac
ibm | apple
| ] hp |quadra
dx

0.4
0

100 200 300 400 500 600 700 800
labeling time in seconds




Experiments with Labeled Features
[Druck et al. 08]

estimated speed-up over . . .
labeling documents learning about “unlabeled features” through

covariance improves generalization

\
3.5x \
\ 6.5x

80 | 5x

75

70

65

60

sentiment (50)  webkb (100) newsgroups (500)

B GE (model contains only labeled features)
W GE (model also contains unlabeled features)

Information Extraction: Example Tasks

e citation extraction:

Cousot, P.and Cousot, R. 1978. Static determination of
dynamic properties of recursive procedures. In Proceedings of
the IFIP Conference on Programming Concepts, E. Neuhold,
Ed. North-Holland Pub. Co., 237-277.

e apartment listing extraction:

Detached single family house. 3 bedrooms | 1/2 baths. Almost
1000 square feet in living area. | car garage. New pergo floor
and tile kitchen floor. New interior/exterior paint. Close to
shopping mall and bus stop. Near 101/280.Available July I,
2004. If you are interested, email for more details.




Information Extraction: Markov Models

® models for sequence labeling based IE

e Hidden Markov Model (HMM); Q.Q.Q

o (¥, %) = po(yo Hpe yilyi—1)pe(xily:)
=1

o conditional Random Field (CRF):

po(ylx) =

Information Extraction: Labeled Features
[Mann & McCallum 08], [Liang et al. 09]

apartments example -
labeled features: expectation:
ROOMMATES respectful a Z Z Epg (yi|x) [qu (X7 Yi, Z)]
*phone* x ot .
label distribution when q is true
FEATURES laundry
wodel: Linear Chain CRF
constraint features:
) = 1(y: = ;
bq(X, 93 1) (v =Dalx, 1) note: Semiring trick makes GE
vector with a 1 in the Ith O(L?) instead of O(L3) as in
position if y is the Ith label [Mann & McCallum 08]

and predicate q is true (i.e.w
is present at i)




Information Extraction: Labeled Features
[Haghighi & Klein 06], [Mann & McCallum 08], [Liang et al. 09]

aparitment listing extraction

B Prototype * accurate with constraints alone
B GE (KL) e outperform fully supervised with
850 Measurements/PR  constraints and labeled data

800 supervised CRF (100) [MMO08]

750

700

650

0 labeled 10 labeled 00 labeled

Limitations of Markov Models

° pygdi(ﬂ‘ed: Cousot, P.and Cousot, R. 1978. Static determination of
dynamic properties of recursive procedures. In Proceedings of

the IFIP Conference on Programming Concepts, E. Neuhold,
Ed. North-Holland Pub. Co., 237-277.

® prediction has two author and two title segments:
® error #1: Neuhold, Ed. should be editor

® error #2: North-Holland Pub. Co., should be
publisher

® A Markov model cannot represent that at most one segment
of each type appears in each reference.




Long-Range Constraints
[Chang et al. 07] [Bellare et al. 09]

® “Each field is a contiguous sequence of tokens and appears
at most once in a citation.”

e constraint feature: counts the number of segments of
each type

® constrained to be < | using PR or CODL
e additional constraints: 10 labeled features such as:
® pages—pages

® proc.—~booktitle

Long-Range Constraints
[Chang et al. 07] [Bellare et al. 09]

B CRF [ CRF+PR constraints improve both
HMM B HMM+CODL  CRF (PR) and HMM (CODL)

90

80

70
) I
50

5 labeled 20 labeled




Other Applications in
Information Extraction

citation model |method| description
[Mann et al. 07] MaxEnt GE constraints on
label marginals
[Druck et al. 09] CRF GE actively labeled
features
Mgiillllzrri %9] allgggFent GE labeled features
[Singh et al. 10] semié:l‘l;ljzrkov PR labeled gazetteers
constraints derived
[Druck et al. 10] HMM PR trom labeled data

Pos Induction

Low Tag Ambiguity
[Graca et al. 09]

Distribution of
word ambiguity
E[degree] = 10000 E[degree] = 1.5 0 " Supervised —
gl HMM — — |
JJ car \
. 6 | ~ -
VB object —f S~
offensive - 4t S -
NN . - T~
romantic 2 \\ _—
being 0

0

200 400 600 800 1000 1200 1400 1600 1800

rank of word by L,L




arun into town.
of the mile run.
run gold.

run errands.

run for mayor.

Measuring Tag Ambiguity

[Graca et al. 09]
N ' ADJ Prep ADV Sum
wlol]ojole *Pick a particular word type: run
T LU L L *Stack all occurrences
S T B B *Calculate posterior probabilit
3 Toe T o To Tos alculate posterior probability
03 | 07 *Take the maximum for each tag

o | o] o
¥ Max
[ 09 [ 07| o1 | 06|02

Sum ¥

eSum the maxes

¢wtz’ ‘Word type w has hidden state t at occurrence i

Iglin Eq(y) [¢wti] < Cwt

2.5
el /goo — Z Cwt
wt
Tag Sparsity
[Graga et al. 09]
Average ambiguity
Distribution of difference
word ambiguity 5
S
o " Supervised — é 3.75
sl HMM — — | L
v HMM+Sp - - - =
, 6 Sl ; 2.5
. 4} T -~ go
RN 9 |25
2 \\‘ -~ E:
° 0 2;)0 4.00 6;)0 8.00 1(;00 12.00 14;00 1(;00 1800 0
rank of word by L,L En Pt Es
B HMM B LILMax




Results
[Graga et al. 09]

B HMM B HMM+Sp
80

6.5 % Average Improvement

725 3.8 6.7

65

57.5

50

Word Alignments

[Graca et al. 10]

® Bijectivity constraints:

® Each word should align to at most one other word

e Symmetry constraints:

® Directional models should agree




Bijectivity Constraints
[Graga et al. 10]

— —
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Symmetry Constraints
[Graga et al. 10]

A
_ﬁ
012 3 4 por| B
0O0® - - - no b'
1 « - .« . . hay
?H(Y|X) 2 - ® ® @  cstadisticas
3 e.
012 3 4 —>
0® - - - no Dot
1 ° « - hay
p Q(Y|X) 2 ® - « - estadisticas
3 - @

2% 6‘1‘9{/&? ‘e@'b&(:;‘
i +1 ye 7 and 7 =3
Feature: ¢(x,y) = -1 ye% and ;=i
0 othervvlse

Constraint: E,[¢(x,y)] =0




Symmetry Constraints
[Graga et al. 10]

size

Before prajection: After prajection:
01 2 3 4 01 2 3 4
0o - - - no 0 e - - - - no
?G(YIX) 1 « -« . . hay 1 o - ® hay 7( )
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3 T e. 3 L e.
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3 0. 3 . 0.
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"o T " Tty
S Sy
Results
[Graga et al. 10]
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Results
[Graca et al. 10]
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Dependency Parsing
DMV Model
[Graga et al. 04]
e =N
X N \' ADJ N
Regularization creates sparse grammars

po(x,y) = eroot(V)
'estop(nost0p| V right,false) * 9child(N| V,right)
'astop(stop\V,right,true) ’ 05top(nostop|V,/eft,false) : 0child(N|V,Ieft)




Dependency Parsing

® Transfer annotations from another language

® [Ganchev et al.09]

® Constrain the number of child/parent
relations

e [Gillenwater et al. I I]

® Use linguistic rules

® [Druck et al. 09] [Naseem et al. 10]

Dependency Parsing

Transfer annotations
[Gancheyv et al. 09]

/\%\\m

El sector avicola tiene caracteristicas muy especificas .

=

The poultry sector has very specific characteristics .

A
® Use information from a resource rich
language
® Make the annotation transfer robust

® Preserve n % of the edges




Dependency Parsing

Transfer annotations
[Gancheyv et al. 09]

/\f—\\m

El sector avicola tiene caracteristicas muy especificas .

=

The poultry sector has very specific characteristics .

\_‘y/\/\%
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Eq [¢(X7 Y)] Z b

Dependency Parsing

Transfer annotations
[Gancheyv et al. 09]
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Dependency Parsing

Posterior Sparsity
[Graca et al. 10]

® ML learns very ambiguous grammars
® all productions have some probability

® constrain the number of possible
productions

Dependency Parsing

Posterior Sparsity
[Gillenwater et al. | 1]

=
a
\ = & [5] 5
\ oz I 1Tz 1T 1T 3
= > < =z > < =2 > <
0.4
N v Vv
Sparsity s vorking
0.4
ap 4 6 0
3 is working




Dependency Parsing

Posterior Sparsity
[Gillenwater et al. | 1]
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Dependency Parsing

Posterior Sparsity
[Gillenwater et al. | 1]
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Dependency Parsing

Linguistic Rules
[Naseem et al. 10]

Small set of
universal rules

Root — Auxiliary
Root — Verb

Verb — Noun
Verb — Pronoun
Verb — Adverb
Verb — Verb

Noun — Adjective
Noun — Article
Noun — Noun
Noun — Numeral

Preposition — Noun

Adjective — Adverb

Auxiliary — Verb

P(x,y)

= | if edge in rule set

EQ[¢(X7Y)] 2 b

B DMmv

80

Dependency Parsing

Linguistic Rules
[Naseem et al. 10]
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Dependency Parsing:
Applications using Other Models

e Tree CRF

® [Druck et al.09]

o MST Parser

® [Ganchev et al.09]

Other Applications

e Multi view learning:
® [Ganchev et al. 08]

o Relation extraction:
® [Chenetal ll]




Implementation Tips and Tricks

Off-the-Shelf Tools: MALLET

http://mallet.cs.umass.edu

off-the-shelf support for labeled features

models: MaxEnt Classifier, Linear Chain CRF (one and two
label constraints)

methods: GE and PR

constraints on label distributions for input features
GE penalties: KL divergence, /2 (+ soft inequalities)
PR penalties: /5 (+ soft inequalities)

in development: Tree CRF, /; and other penalties




Off-the-Shelf Tools: MALLET

http://mallet.cs.umass.edu

o import data in SYMLight-like or CONLLO3-like formats

positive interesting:2 film:1 ... U.N. NNP B-NP B-ORG
negative tired:1 sequel:1 ... official NN I-NP O
positive best:1 recommend:2 ... heads VBZ B-VP O

e import constraints in a simple text format:

tired negative:0.8 positive:0.2 U.N. B-ORG:0.7,0.9
best positive:0.9 negative:0.1 B-VP 0:0.95,

e casily specify method options (i.e. SimpleTagger):

java cc.mallet.fst.semi_supervised.tui.SemiSupSimpleTagger \
--train true --test lab --loss 12 --learning ge \
unlabeled.txt test.txt constraints.txt

New GE Constraints: MALLET

http://mallet.cs.umass.edu

® Java Interfaces for implementing NewW GE constraints
® covariance computation implemented (MaxEnt, CRF)

® primarily need to write methods to:

compute constraint features and expectations

compute GE objective value

compute GE objective gradient (but not covariance)

e restriction: constraints must factor with model

e restriction; GE objective must be differentiable




New PR Constraints: MALLET

http://mallet.cs.umass.edu

® Java Interfaces for implementing NeW PR constraints
® inference algorithms implemented (MaxEnt, CRF)

® primarily need to write methods for E-step (projection):

compute constraint features and expectations

compute scores under q for E-step

compute objective function for E-step

compute gradient for E-step

e restriction: constraints must factor with model

GE Implementation Advice

e computing covariance (required for gradient);
e trick: compute cov. of composite constraint feature
o example: 3 penalty: ¢c(x,y) = > _ 2(¢ — E[g))o(x,y)
¢

e result: only need to store vectors of size dim(f) in
computation, rather than covariance matrix

o trick: efficient gradient computation in hypergraphs
® use semiring algorithms of [Li & Eisner 09]

e result: same time complexity as supervised (w. both)




GE Implementation Advice

e parameter regularization:

° 63 regularization encourages bootstrapping by penalizing

very large parameter values:
e |

e optimization; non-convex
e usually L-BFGS still preferable (use “restart trick”)
® zero initialization usually works well

® other init: supervised, MaxEnt, GE in simpler model

Off-the-Shelf Tools: PR Toolkit

http://code.google.com/p/pr-toolkit/

off-the-shelf support for PR
e models:
® MaxEnt Classifier, HMM,DMV

applications:

® Word Alignment, Pos Induction, Grammar Induction

constraints: posterior sparsity, bijectivity, agreement
® No command line mode

® Smaller support base




PR Implementation example:
Word Alignment - Bijectivity

e Learning: EM, PR

e void eStep(counts, lattices);
e void mStep(counts);

° lattice constraint.project(lattice);
e Model: HMM

e Tlattice computePosteriors(lattice);
o void addCount(lattice, counts);

e void updateParameters(counts);
e Constraints: Bijectivity

e lattice project(lattice);

PR Implementation example:
EM

class EM { void eStep(counts, lattices) {

. counts.clear(Q);
model ; for(l : lattices) {
model . computePosterior(l);
model .addCount(l,counts);

void em(n){ 1 ¥
lattices= model.getlLattices();
counts = model.counts();
for(i=0; i< n; i++) { void mStep(counts) {
eStep(counts, lattices); model.updateParameters(counts);
mStep(counts);
3
1




PR Implementation example:
PR

class PR { void eStep(counts, lattices) {
. counts.clear(Q);
model; for(l : lattices){
constraint; model . computePosterior(l);
constraint.project(l);
model .addCount(1l,counts);
void em(n){ }
lattices= model.getLattices(); }

counts = model.counts();
for(i=0; i< n; i++) {

eStep(counts, lattices); void mStep(counts) {
) mStep(counts); model .updateParameters(counts);
1
1
PR Implementation example:
class HMWM {

void getCounts(){
“return copy of params structures

»

obsProb, transProbs,initProbs;

. . . void getlLattices(){
lattice computerPosteriors(lattice){ “return structure of all lattices
“Run forward backward” in the corpus”

i 1

void addCount(lattice,counts){
“Add posteriors to count table”

void updateParams(counts){
“Normalize counts”
“Copy counts to params table”

1




PR Implementation example:
Bijective constraints

® Constraint: returns a vector with mth value = number of
target words in sentence x that align with source word m

Pxy) =D 1mi=m) Q={q:Blé(xy) <1}

1=1
e Primal; Hard

Dk1.(Q|pg) = arg min Dk, (q|pe)

e Dual: Easy !

argmax —b" - A —log Z(A) — [|All2
A>0

Z(\) = po(ylx) exp(=A - ¢(x,y))

PR Implementation example:
Bijective Constraints

class BijectiveConstraints {

model ;

lattice project(lattice){

void updateModel(nhewlLambda){
lattice_ = lattice*exp(newLambda);
computerPosteriors(lattice)

obj = BijectiveObj(model,lattice);

Optimizer.optimize(obj);

1 double getObj(){
obj = -dot(lambda,b);
obj -= lattice.likelihood;
obj -= 12Norm(lambda);

1
class BijectiveObj { double[] gethad(){ .
. grad = lattice.posteriors - b;
lattice; grad -= norm(lambda);

return grad;

1




Other Software Packages

® Learning Based Java:

® http://cogcomp.cs.illinois.edu/page/software_view/| |

e support for Constraint-Driven Learning
o Factorie:

® http://code.google.com/p/factorie/

e support for GE and PR in development




Rich Prior Knowledge in Learning for Natural
Language Processing

Bibliography

For a more up-to-date bibliography as well as additional information about
these methods, point your browser to: http://sideinfo.wikkii.com/

1 Constraint-Driven Learning

Constraint driven learning (CoDL) was first introduced in Chang et al. [2007],
and has been used also in Chang et al. [2008]. A further paper on the topic is
in submission [Chang et al., 2010].

2 Generalized Expectation

Generalized Expectation (GE) constraints were first introduced by Mann and
McCallum [2007]' and were used to incorporate prior knowledge about the label
distribution into semi-supervised classification. GE constraints have also been
used to leverage “labeled features” in document classification [Druck et al., 2008]
and information extraction [Mann and McCallum, 2008, Druck et al., 2009b,
Bellare and McCallum, 2009], and to incorporate linguistic prior knowledge
into dependency grammar induction [Druck et al., 2009a].

3 Posterior Regularization

The most clearly written overview of Posterior Regularization (PR) is Ganchev
et al. [2010]. PR was first introduced in Graca et al. [2008], and has been
applied to dependency grammar induction [Ganchev et al., 2009, Gillenwater
et al., 2009, 2011, Naseem et al., 2010], part of speech induction [Graga et al.,
2009a], multi-view learning [Ganchev et al., 2008], word alignment [Graca et al.,
2008, Ganchev et al., 2009, Graga et al., 2009b], and cross-lingual semantic
alignment [Platt et al., 2010]. The framework was independently discovered
by Bellare et al. [2009] as an approximation to GE constraints, under the name
Alternating Projections, and used under that name also by Singh et al. [2010]
and Druck and McCallum [2010] for information extraction. The framework
was also independently discovered by Liang et al. [2009] as an approximation to

'In Mann and McCallum [2007] the method was called Ezpectation Regularization.



a Bayesian model motivated by modeling prior information as measurements,
and applied to information extraction.

4 Closely related frameworks

Quadrianto et al. [2009] introduce a distribution matching framework very
closely related to GE constraints, with the idea that the model should pre-
dict the same feature expectations on labeled and undlabeled data for a set of
features, formalized as a kernel.

Carlson et al. [2010] introduce a framework for semi-supervised learning
based on constraints, and trained with an iterative update algorithm very similar
to CoDL, but introducing only confident constraints as the algorithm progresses.

Gupta and Sarawagi [2011] introduce a framework for agreement that is
closely related to the PR-based work in Ganchev et al. [2008], with a slightly
different objective and a different training algorithm.
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