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Why Incorporate Prior Knowledge?

have: unlabeled data

option: hire

linguist annotators

This approach does not 
scale to every task and 
domain of interest.

However, we already 
know a lot about most 
problems of interest.

Example: Document Classification 

• Prior Knowledge: 

• labeled features: information about the label 
distribution when word w is present
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Documents Labels

newsgroups classification

baseball Mac politics ...
hit Apple senate ...

Braves Macintosh taxes ...
runs Powerbook liberal ...

sentiment polarity

positive negative

memorable terrible

perfect boring

exciting mess



Example: Information Extraction

• Prior Knowledge: 

• labeled features: 

• the word ACM should be labeled either journal or 
booktitle most of the time

• non-Markov (long-range) dependencies:

• each reference has at most one segment of each type

W. H. Enright. Improving the efficiency of matrix operations 
in the numerical solution of stiff ordinary differential 
equations. ACM Trans. Math. Softw., 4(2), 127-136, June 1978.

extraction from 
research papers:

Example: Part-of-speech Induction

• Prior Knowledge: 

• linguistic knowledge: each sentence should have a verb

• posterior sparsity: the total number of different POS tags 
assigned to each word type should be small

Tags
A career with the European 
institutions must become more 
attractive. Too many young, new...

Text



Example: Dependency Grammar Induction

• Prior Knowledge: 

• linguistic rules: nouns are usually dependents of verbs

• noisy labeled data: target language parses should be 
similar to aligned parses in a resource-rich source language 

Example: Word Alignment

• Prior Knowledge: 

• Bijectivity: alignment should be mostly one-to-one

• Symmetry: source→target and target→source 
alignments should agree

A career with the European institutions must become more attractive. 

Uma carreira nas instituições europeias têm de se tornar mais atractiva. 



This Tutorial

In general, how can we leverage such knowledge 
and an unannotated corpus during learning?

Notation & Models

input variables (documents, sentences):

structured output variables (parses, sequences):

unstructured output variables (labels):

input / output variables for entire corpus: 

probabilistic model parameters:

generative models:

discriminative models:

model feature function:  

pθ(y|x)
pθ(x,y)

x

y

θ

f(x,y)

X Y

y



Learning Scenarios

• Unsupervised: 

• unlabeled data + prior knowledge

• Lightly Supervised: 

• unlabeled data + “informative” prior knowledge

• i.e. provides specific information about labels 

• Semi-Supervised: 

• labeled data + unlabeled data + prior knowledge

Running Example #1:
Document Classification

• model: Maximum Entropy Classifier (Logistic Regression) 

• setting: lightly supervised; no labeled data

• prior knowledge: 

• labeled features: information about the label 
distribution when word w is present

• label is often hockey or baseball when game is present

pθ(y|x) =
1

Z(x)
exp(θ · f(x, y))



Running Example #2:
Word Alignment

• model: first-order Hidden Markov Model (HMM)

• setting: unsupervised

• prior knowledge: 

• Bijectivity: alignment should be mostly one-to-one

1 1 2 3

we know the way

sabemos       el       camino      null
1 2 3 0

pθ(y,x) = pθ(y0)
N�

i=1

pθ(yi|yi−1)pθ(xi|yi)

Problem

⇒
This output does not agree with prior knowledge!

• six target words align to source word animada
• five source words do not align with any target word 

gameconvivialvery,animatedanwasit

cordialmuyyanimadamaneraunadejugaban

model data output

x1 x2 x3

y1 y2 y3

+



Limited Approach: Labeling Data

limitation: Often unclear how to do conversion

• Example #1: often (not always) game → {hockey,baseball} 

• Example #2: alignment should be mostly one-to-one

prior 
knowledge
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approach: Convert prior knowledge to labeled data.

Prototypes (+ cluster features):    
•  [Haghighi & Klein 06]

Others: 
• [Raghavan & Allan 07]                                      
• [Schapire et al. 02]

Limited Approach: Bayesian Approach

approach: Encode prior knowledge with a prior on parameters.

limitation: Our prior knowledge is not about parameters! 
Parameters are difficult to interpret; hard to get desired effect.

• Example #1: often (not always) game → {hockey,baseball}

• Example #2: alignment should be mostly one-to-one

natural: “   should be small (or sparse)”θ

( informative prior )
possible: “    should be close to   ”θi θ̃i

p(θ)specifying 

x1 x2 x3

y1 y2 y3

θα

[Dayanik et al. 06]

[Johnson 07], among many others



Limited Approach: Augmenting Model

limitation: can be difficult to get desired effect

• Example #1: often (not always) game → {hockey,baseball}

limitation: may make exact inference intractable

• Example #2: Bijectivity makes inference #P-complete

x1 x2 x3

y1

y2 y3

z1approach: Encode prior knowledge with 
additional variables and dependencies.

This Tutorial

develop:

• a language for directly encoding prior knowledge

• methods for learning with knowledge in this language

• ( approximations to modeling this language directly )

• (loosely) these methods perform mappings for us: 

• encoded prior knowledge            parameters

• encoded prior knowledge            labeling 

θ
--- --- 

----- -- -- 
--- ---- 

--- --- --- 

--- --- 
----- -- -- 
--- ---- 

--- --- --- 

--- --- 
----- -- -- 
--- ---- 

--- --- --- 

��



A Language for Encoding Prior Knowledge

Our prior knowledge is about distributions over latent 
output variables. (output variables are interpretable)

Specifically, we know some properties of this distribution:

• Example #1: often (not always) game→{hockey,baseball}

Formulation: know about the expectations of some 
functions under distribution over latent output variables

Constraint Features

• constraint feature function: 

• Example #1: 

• for document x, returns a vector with a 1 in the lth 
position if y is the lth label and the word w is in x

• Example #2: 

• returns a vector with mth value = number of target 
words in sentence x that align with source word m

φ(x,y)

φw(x, y) = 1(y = l)1(w ∈ x)

φ(x,y) =
N�

i=1

1(yi = m)



Expectations of Constraint Features

• Example #1:  Corpus expectation: 

• vector with expected distribution over labels for 
documents that contain w (     is the count of w)

• Example #2:  Per-example expectation: 

• vector with mth value = expected number of target 
words that align with source word m 

Epθ [φ(X,Y)] =
1

cw

�

x

�

y

pθ(y|x)φw(x, y)

Epθ [φ(x,y)] =
�

y

pθ(y|x)φ(x,y)

cw

Expressing Preferences

• express preferences using target values: 

• Example #1:                           

• label distribution for game is close to [40% 40% 20%]

• Example #2:                           

• expected number of target words that align with each 
source word is at most one

φ̃

Epθ [φw(X,Y)] ≈ φ̃

Epθ [φ(x,y)] ≤ φ̃



Preview: Labeled Features
User Experiments [Druck et al. 08]
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~2 minutes, 100 
features labeled 

(or skipped): 
82% accuracy

~15 minutes, 100 
documents labeled 

(or skipped):
78% accuracy

PC vs. Mac

complete set of 
labeled features

PC Mac
dos mac
ibm apple
hp quadra
dx

targets set with 
simple heuristic: 

majority label gets 
90% of mass

Preview:  Word Alignment
[Graça et al. 10]
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Overview of the Frameworks

Running Example

Model Family: conditional exponential models

                   are model features

pθ(Y|X) =
exp(θ · f(X,Y))

Z(X)

Z(X) =
�

Y

exp(θ · f(X,Y))

f(X,Y)



                Choosing parameters

Model Family: conditional exponential models

Objective: maximize observed data likelihood

Note: Frameworks also suitable for 
generative models (no labeled data necessary)                   

θ

pθ(Y|X) =
exp(θ · f(X,Y))

Z(X)

max
θ

log pθ(YL|XL) + log p(θ)
def
= L(θ;DL)

Visual Example: Maximum Likelihood

Model:                                      

Objective:

-

+

o
o

o

o
o

o o

o

max
θ

log pθ(YL|XL)− 0.1�θ�22

p(Y|X) =
�

i

exp(yixi · θ)
Z(xi)



A language for prior information

The expectations of user-defined constraint 
features             are close to some value φ(X,Y) φ̃

E[φ(X,Y)] ≈ φ̃

Running Example:

Want to ensure that 25% of unlabeled 
documents are about politics
• constraint features

 

• preferred expected value

• Expectation w.r.t. unlabeled data

φ(x,y) =

�
1 if y is “politics”

0 otherwise

φ̃ = 0.25



Constraint-Driven Learning

Motivation: Hard EM algorithm with preferences

Hard EM: 

Constraint Driven Learning:

M-Step: set θ = argmax
θ

log pθ(Ŷ|X)

E-Step: set Ŷ = argmax
Y

log pθ(Y|X)−penalty(Y)

M-Step: set θ = argmax
θ

log pθ(Ŷ|X)

E-Step: set Ŷ = argmax
Y

log pθ(Y|X)

M. Chang, L. Ratinov, D. Roth (2007).

Constraint-Driven Learning

Motivation: Hard EM algorithm with preferences

Constraint Driven Learning:

• penalties encode similar information as 

* more on this later *

• E-Step can be hard; use beam search

E-Step: set Ŷ = argmax
Y

log pθ(Y|X)−penalty(Y)

M-Step: set θ = argmax
θ

log pθ(Ŷ|X)

E[φ] ≈ φ̃



Visual Example: Constraint Driven Learning

    where     are “imagined” labels andŶ

-

+

o
o

o

o
o

o o

o

φ[Ŷ] = count(+, Ŷ)

max
θ,Ŷ

log pθ(YL|XL)− 0.1�θ�22 s.t. φ(Ŷ) = 2

Posterior Regularization

Motivation: EM algorithm with sane posteriors

EM:

Constrained EM:

E-Step: set q(Y) = argmin
q

DKL(q(Y)||pθ(Y|X))

M-Step: set θ = argmax
θ

Eq(Y)[pθ(Y|X)]

E-Step: set q(Y) = argmin
q∈Q

DKL(q(Y)||pθ(y|x))

M-Step: set θ = argmax
θ

Eq(Y)[pθ(Y|X)]

J. Graça, K. Ganchev, B. Taskar (2007).



Posterior Regularization

Motivation: EM algorithm with sane posteriors

Idea:                  provide constraints

Objective:

E[φ] ≈ φ̃

define Q: set of q such that Eq[φ] ≈ φ̃

max
θ

L(θ;DL)−DKL(Q || pθ(Y|X))

run EM-like procedure but use proposal q ∈ Q

where
DKL is Kullback-Leibler divergence
X = DU are the input variables for unlabeled corpus
Y is label for entire unlabeled corpus

Posterior Regularization

Hard constraints:

Soft constraints:

max
θ

L(θ;DL) − min
q∈Q

DKL(q(Y)|| pθ(Y|X))

Q =

�
q(Y) :

���Eq[φ(Y)] = φ̃
���
2

2
≤ �

�

max
θ

L(θ;DL) − min
q

� DKL(q(Y)|| pθ(Y|X)) +

α
���Eq[φ(Y)] = φ̃

���
2

2

�



Visual Example: Posterior Regularization 

 where: 

-

+

o
o

o

o
o

o o

o

max
θ

log pθ(YL|XL)− 0.1�θ�22 − DKL(Q||pθ)

DKL(Q||pθ) = min
q

DKL(q||pθ) s.t. Eq[φ] = 2

Generalized Expectation Constraints

Motivation: augment log-likelihood with cost for “bad” 
posteriors.

Objective:

where

                                                                    is short-hand

Optimization: gradient descent on    

max
θ

L(θ;DL)−
���Epθ(Y|X)[φ] − φ̃

���
β

Epθ(Y|X)[φ] =Epθ(Y|X)[φ(X,Y)]

=
�

Y

pθ(Y|X)φ(X,Y)

θ

G. Mann, A. McCallum (2007). 



A visual comparison of the frameworks

Objective: Generalized Expectation Constraints

-

+

o
o

o

o
o

o o

o

max
θ

log pθ(YL|XL)− 0.1�θ�22 − 500�Epθ [φ]− 2�22

Types of constraints

Constraint Driven Learning: Penalized Viterbi

• Easy if                           decompose as the model.

                 and

• Otherwise:

• Beam search

• Integer linear program 

p(Y|X) =
�

c

pc(yc|X)

argmax
Y

log pθ(Y|X) − �φ(X,Y)− φ̃�β

�φ(X,Y)− φ̃�β

�φ(X,Y)− φ̃�β =
�

c

δc(X,yc)



Types of constraints

Posterior Regularization: KL projection

• Usually easy if               decompose as the model:

     and

• Otherwise: Sample (e.g. K. Bellare, G. Druck, and A. McCallum, 2009)

φ(Y,X)

p(Y|X) =
�

c

pc(yc|X)

q(Y|X) =
�

c

qc(yc|X)

φ(X,Y) =
�

c

φc(X,yc)

⇒

min
q

DKL(q||pθ) s.t. �Eq[φ]− φ̃�β ≤ �

Types of constraints

Generalized Expectation Constraints: Direct gradient

• Usually easy if:

• decomposes as the model

• Can compute                * more on this later *

• Unstructured

• Sequence, Grammar (semiring trick)

• Otherwise: sample or approximate the gradient.

φ(Y,X)

max
θ

L(θ;DL)−
���Epθ(Y|X)[φ] − φ̃

���
β

φ(X,Y) =
�

c

φc(X,yc)

E[φ× f ]



A Bayesian View: Measurements

Objective: mode of    given observations

XL θ X

YL Y

φ(X,Y)

b

Figure 4.1: The model used by Liang et al. [2009], using our notation. We have separated
treatment of the labeled data (XL,YL) from treatment of the unlabeled data X.

and produce some value φ(X,Y), which is never observed directly. Instead, we observe

some noisy version b ≈ φ(X,Y). The measured values b are distributed according to

some noise model pN(b|φ(X,Y)). Liang et al. [2009] note that the optimization is convex

for log-concave noise and use box noise in their experiments, giving b uniform probability

in some range near φ(X,Y).

In the Bayesian setting, the model parameters θ as well as the observed measurement

values b are random variables. Liang et al. [2009] use the mode of p(θ|XL,YL,X,b) as a

point estimate for θ:

arg max
θ

p(θ|XL,YL,X,b) = arg max
θ

�

Y

p(θ,Y,b|X,XL,YL), (4.6)

with equality because p(θ|XL,YL,X,b) ∝ p(θ,b|XL,YL,X) =
�

Y p(θ,Y,b|X,XL,YL). Liang et al. [2009] focus on computing p(θ,Y,b|X,XL,YL).

They define their model for this quantity as follows:

p(θ,Y,b|X,XL,YL) = p(θ|XL,YL) pθ(Y|X) pN(b|φ(X,Y)) (4.7)

where the Y and X are particular instantiations of the random variables in the entire unla-

beled corpus X. Equation 4.7 is a product of three terms: a prior on θ, the model probability

pθ(Y|X), and a noise model pN(b|φ). The noise model is the probability that we observe

a value, b, of the measurement features φ, given that its actual value was φ(X,Y). The

idea is that we model errors in the estimation of the posterior probabilities as noise in the

measurement process. Liang et al. [2009] use a uniform distribution over φ(X,Y) ± �,

which they call “box noise”. Under this model, observing b farther than � from φ(X,Y)

has zero probability. In log space, the exact MAP objective, becomes:

max
θ

L(θ) + log Epθ(Y|X)

�
pN(b|φ(X,Y))

�
. (4.8)

31

max
θ

log p(θ) +
�

(x,y)∈DL

log pθ(y|x) = L(θ;DL)

θ

P. Liang, M. Jordan, D. Klein (2009)

Objective: mode of    given observations

A Bayesian View: Measurements

XL θ X

YL Y

φ(X,Y)

b

Figure 4.1: The model used by Liang et al. [2009], using our notation. We have separated
treatment of the labeled data (XL,YL) from treatment of the unlabeled data X.

and produce some value φ(X,Y), which is never observed directly. Instead, we observe

some noisy version b ≈ φ(X,Y). The measured values b are distributed according to

some noise model pN(b|φ(X,Y)). Liang et al. [2009] note that the optimization is convex

for log-concave noise and use box noise in their experiments, giving b uniform probability

in some range near φ(X,Y).

In the Bayesian setting, the model parameters θ as well as the observed measurement

values b are random variables. Liang et al. [2009] use the mode of p(θ|XL,YL,X,b) as a

point estimate for θ:

arg max
θ

p(θ|XL,YL,X,b) = arg max
θ

�

Y

p(θ,Y,b|X,XL,YL), (4.6)

with equality because p(θ|XL,YL,X,b) ∝ p(θ,b|XL,YL,X) =
�

Y p(θ,Y,b|X,XL,YL). Liang et al. [2009] focus on computing p(θ,Y,b|X,XL,YL).

They define their model for this quantity as follows:

p(θ,Y,b|X,XL,YL) = p(θ|XL,YL) pθ(Y|X) pN(b|φ(X,Y)) (4.7)

where the Y and X are particular instantiations of the random variables in the entire unla-

beled corpus X. Equation 4.7 is a product of three terms: a prior on θ, the model probability

pθ(Y|X), and a noise model pN(b|φ). The noise model is the probability that we observe

a value, b, of the measurement features φ, given that its actual value was φ(X,Y). The

idea is that we model errors in the estimation of the posterior probabilities as noise in the

measurement process. Liang et al. [2009] use a uniform distribution over φ(X,Y) ± �,

which they call “box noise”. Under this model, observing b farther than � from φ(X,Y)

has zero probability. In log space, the exact MAP objective, becomes:

max
θ

L(θ) + log Epθ(Y|X)

�
pN(b|φ(X,Y))

�
. (4.8)

31

max
θ

L(θ;DL) + logEpθ(Y|X)

�
p(φ̃|φ(X,Y))

�

θ



What's wrong with this picture?

Objective: mode of    given observations

Example: Exactly 25% of articles are “politics”

What is the probability exactly 25% of the articles are 
labeled ``politics''?

How do we optimize this with respect to  ?

max
θ

L(θ;DL) + logEpθ(Y|X)

�
p(φ̃|φ(X,Y))

�θ

θ

p(φ̃|φ(X,Y)) = 1
�
φ̃ = φ(X,Y)

�

Epθ(Y|X)

�
1(φ̃ = φ(X,Y))

�

What's wrong with this picture?

Example: Compute prob:  25% of docs are “politics”.

    Naively:

      in this case we can use a DP, but if 
there are many constraints, that doesn’t 
work.

Easier: What is the expected number of “politics” articles?

Article p(“politics”)
1 0.2
2 0.4
3 0.1
4 0.6

0.2 + 0.4 + 0.1 + 0.6

0.2× (1− 0.4)× (1− 0.1)× (1− 0.6)

+ . . .+

+(1− 0.2)× (1− 0.4)× (1− 0.1)× 0.6



Probabilities and Expectations

difficult to compute expectations of arbitrary functions but...

Usually:             decomposes as a sum

e.g. 25% of articles are “politics”

Idea: approximate 

φ(X,Y)

φ(X,Y) =
�

instances

φ(x,y)

Epθ(Y|X)

�
p
�
φ̃ | φ(X,Y)

��
≈ p

�
φ̃ | Epθ(Y|X) [φ(X,Y)]

�

Probabilities and Expectations

Approximation:

Objective:

Example:                      is Gaussian     

                                              is 

so for appropriate                           this is identical to GE!

Epθ(Y|X)

�
p
�
φ̃ | φ

��
≈ p

�
φ̃ | Epθ(Y|X) [φ]

�

max
θ

L(θ;DL) + log p
�
φ̃ | Epθ(Y|X) [φ]

�

log p
�
φ̃ | E[φ]

�
⇒
p
�
φ̃ | E[φ]

�

log p
�
φ̃ | E[φ]

�

⇓

���E[φ]− φ̃
���
2

2



Optimizing GE objective
GE Objective:

• Gradient involves covariance

this can be hard because

and the usual dynamic programs (inside outside, forward 
backward) can’t compute this.

Cov(φ, f) = E[φ× f ]−E[φ]×E[f ]

E[φ× f ] =
�

Y

p(Y)φ(Y)× f(Y)

OGE = max
θ

L(θ;DL)−
���Epθ(Y|X)[φ(X,Y)]− φ̃

���
β

Optimizing GE Objective

Maintaining both     and      in the DP is expensive

* Semiring trick can help for some problems *

x1 x2 x3 x3

y1 y2 y3 y4

E[φ× f ] =
�

Y

p(Y)φ(Y)× f(Y)

φ(Y)× f(Y) =

�
�

i

φ(yi)

�
×




�

j

f(yj)





yi yj

   E.g. if inference is a hypergraph problem.



A Variational Approximation
GE Objective:

• Can be hard to compute                   in gradient. 

Idea: use variational approximation

* Note: this is the PR objective *

q(Y) ≈ pθ(Y|X)

maxθ,q(Y) L(θ;DL)−DKL

�
q(Y) || pθ(Y|X)

�
−

���Eq[φ(X,Y)] − φ̃
���
β

Cov(φ, f)

OGE = max
θ

L(θ;DL)−
���φ̃−Epθ(Y|X)[φ(X,Y)]

���
β

Approximating with the mode

PR Objective: 

sometimes minimizing the KL is hard.  

Idea: use hard assignment                               :
•                                     becomes 

•                                  becomes 

• use EM-like procedure to optimize

Constraint Driven Learning Objective:

maxθ,q(Y) L(θ;DL)−DKL

�
q(Y) || pθ(Y|X)

�
−

���Eq[φ(X,Y)] − φ̃
���
β

q(Y) ≈ 1(Y = Ŷ)

���Eq[φ(X,Y)] − φ̃
���
β

log p(Ŷ)DKL

�
q(Y) || pθ(Y|X)

�

log p(φ̃ | φ(X, Ŷ))

max
θ,Ŷ

L(θ;DL) + log pθ(Ŷ) + log p(φ̃|φ(X, Ŷ))



Visual Summary

Measurements

Generalized
Expectation

Distribution
Matching

Posterior
Regularization

Coupled Semi-
Supervised
Learning

Constraint
Driven
Learning

Distribution
Matching

variational approximation;
Jensen’s inequality

variational
approximation

MAP
approximation

MAP
approximation

logE[pN (φ̃|φ)] ≈ log pN (φ̃|E[φ])

Applications

• Unstructured problems:

• Document Classification

• Sequence problems:

• Information Extraction

• Pos-Induction 

• Word Alignment

• Tree problems:

• Grammar Induction



Document Classification

• Model: Max. Entropy Classifier (Logistic Regression)

• Challenge: What if we have no labeled data?

• cannot use standard unsupervised learning:
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Documents Labels

pθ(y|x) =
exp(θ · f(x, y))�
y exp(θ · f(x, y))

�

y

pθ(y|x)=1

Labeled Features

• often we can still provide some light supervision

• prior knowledge: labeled features

• formally: have an estimate of the distribution over labels 
for documents that contain word w: φ̃w

newsgroups classification

baseball Mac politics ...
hit Apple senate ...

Braves Macintosh taxes ...
runs Powerbook liberal ...

sentiment polarity

positive negative

memorable terrible

perfect boring

exciting mess



Leveraging Labeled Features with GE
[Mann & McCallum 07], [Druck et al. 08]

• constraint feature: 

• for a document x, returns a vector with a 1 in the lth 
position if y is the lth label and the word w is in x

• expectation: label distribution for docs that contain w

• GE penalty: KL divergence from target distribution

φw(x, y) = 1(y = l)1(w ∈ x)

1

cw

�

x

Epθ(y|x)[φw(x, y)]

DKL

�
φ̃w||

1

cw

�

x

Epθ(y|x)[φw(x, y)]
�

User Experiments with Labeled Features
[Druck et al. 08]
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features labeled 

(or skipped): 
82% accuracy

~15 minutes, 100 
documents labeled 

(or skipped):
78% accuracy

PC vs. Mac

complete set of 
labeled features

PC Mac
dos mac
ibm apple
hp quadra
dx

targets set with 
simple heuristic: 

majority label gets 
90% of mass



Experiments with Labeled Features
[Druck et al. 08]
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sentiment (50) webkb (100) newsgroups (500)

GE (model contains only labeled features)
GE (model also contains unlabeled features)

15x
3.5x

6.5x

learning about “unlabeled features” through 
covariance improves generalization

estimated speed-up over 
labeling documents

Information Extraction: Example Tasks

• citation extraction: 

• apartment listing extraction: 

Detached single family house. 3 bedrooms 1 1/2 baths.  Almost 
1000 square feet in living area. 1 car garage. New pergo floor 
and tile kitchen floor. New interior/exterior paint. Close to 
shopping mall and bus stop. Near 101/280. Available July 1, 
2004. If you are interested, email for more details.

Cousot, P. and Cousot, R. 1978. Static determination of 
dynamic properties of recursive procedures. In Proceedings of 
the IFIP Conference on Programming Concepts, E. Neuhold, 
Ed. North-Holland Pub. Co., 237-277.



Information Extraction: Markov Models

• models for sequence labeling based IE

• Hidden Markov Model (HMM):  

• Conditional Random Field (CRF):  

pθ(y,x) = pθ(y0)
N�

i=1

pθ(yi|yi−1)pθ(xi|yi)

pθ(y|x) =
1

Z(x)
exp(

N�

i=1

θ · f(x, yi−1, yi))

expectation:

label distribution when q is true

model: Linear Chain CRF

note: Semiring trick makes GE 
O(L2) instead of O(L3) as in 
[Mann & McCallum 08]

Information Extraction: Labeled Features
[Mann & McCallum 08], [Liang et al. 09]

ROOMMATES respectful

CONTACT *phone*

FEATURES laundry

apartments example 
labeled features:

1

cq

�

x

�

i

Epθ(yi|x)[φq(x, yi, i)]

constraint features:

vector with a 1 in the lth 
position if y is the lth label 
and predicate q is true (i.e. w 
is present at i)

φq(x, yi, i) = 1(yi = l)q(x, i)



Information Extraction: Labeled Features
[Haghighi & Klein 06], [Mann & McCallum 08], [Liang et al. 09]

apartment listing extraction

Prototype
GE (KL)
Measurements/PR

650

700

750

800

850

0 labeled 10 labeled 100 labeled

supervised CRF (100) [MM08]

• accurate with constraints alone 
• outperform fully supervised with 

constraints and labeled data

Limitations of Markov Models

• predicted: 

• prediction has two author and two title segments:

• error #1: Neuhold, Ed. should be editor

• error #2: North-Holland Pub. Co., should be 
publisher

• A Markov model cannot represent that at most one segment 
of each type appears in each reference.

Cousot, P. and Cousot, R. 1978. Static determination of 
dynamic properties of recursive procedures. In Proceedings of 
the IFIP Conference on Programming Concepts, E. Neuhold, 
Ed. North-Holland Pub. Co., 237-277.



Long-Range Constraints
[Chang et al. 07] [Bellare et al. 09]

• “Each field is a contiguous sequence of tokens and appears 
at most once in a citation.”

• constraint feature: counts the number of segments of 
each type

• constrained to be ≤ 1 using PR or CODL

• additional constraints: 10 labeled features such as:

• pages→pages 

• proc.→booktitle

Long-Range Constraints
[Chang et al. 07] [Bellare et al. 09]

constraints improve both 
CRF (PR) and HMM (CODL)

50
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5 labeled 20 labeled

CRF CRF + PR
HMM HMM + CODL



citation model method description

[Mann et al. 07] MaxEnt GE constraints on 
label marginals

[Druck et al. 09] CRF GE actively labeled 
features

[Bellare & 
McCallum 09] 

alignment 
CRF GE labeled features

[Singh et al. 10] semi-Markov 
CRF

PR labeled gazetteers 

[Druck et al. 10] HMM PR constraints derived 
from labeled data

Other Applications in 
Information Extraction

Pos Induction
Low Tag Ambiguity

[Graça et al. 09] 

JJ
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NN

car
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E[degree] = 1.5E[degree] = 10000
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Supervised
HMM

Distribution of 
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N V ADJ Prep ADV

0.9 0.1 0 0 0

0.7 0.1 0.1 0 0.1

0.1 0.3 0 0.6 0

0.3 0.6 0 0 0.1

0.3 0.7 0 0 0

•Pick a particular word type: run
•Stack all occurrences

•Calculate posterior probability 
•Take the maximum for each tag
•Sum the maxes

a run into town.

of the mile run.

run gold.

run errands.

run for mayor.

Sum

1

Sum

1

1

1

1

1

0.9 0.7 0.1 0.6 0.2

Max

Sum
2.5

Measuring Tag Ambiguity
[Graça et al. 09] 

φwti :Word type w  has hidden state t at occurrence i

min
cwt

Eq(y)[φwti] ≤ cwt

�1/�∞ =
�

wt

cwt

Tag Sparsity
[Graça et al. 09] 
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Results
[Graça et al. 09] 
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6.5 % Average Improvement

Word Alignments
[Graça et al. 10] 

• Bijectivity constraints:

• Each word should align to at most one other word

• Symmetry constraints:

• Directional models should agree



Bijectivity Constraints
[Graça et al. 10]

Bijective Constraints

0 1 2 3 4 5 6 7 8
0 � � ♣ ♣ ♣ ♣ ♣ ♣ ♣ jugaban

�
≤ 1
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Bijective Constraints - After projection
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51 / 74Feature: 

Constraint: 

φ(x,y) =
N�

i=1

1(yi = m)

Eq[φ(x,y)] ≤ 1

Symmetry Constraints
[Graça et al. 10]

Feature:

Constraint: 

Symmetric - Original posteriors

0 1 2 3 4

−→p θt (z | x)
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3 ♣ ♣ ♣ ♣ ①.

no statistical

data
exists

.

pθt

q

←−pθt

−→pθt
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Eq[φ(x,y)] = 0

φ(x,y) =






+1 y ∈ −→y and −→y i = j

−1 y ∈ ←−y and ←−y j = i

0 otherwise

−→p θ(y|x)

←−p θ(y|x)



Symmetry Constraints
[Graça et al. 10]

Before projection: After projection:

Symmetric - After projection

E-Step qs(z) = arg min
q(z)∈Qs

KL [qs(z) || pθt (z | xs)]
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M-Step Does not change
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−→p θ(y|x)

←−p θ(y|x)

−→q (y)

←−q (y)

Results
[Graça et al. 10]
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Results
[Graça et al. 10]
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Dependency Parsing
DMV Model
[Graça et al. 04]

Dependency model with valence

(Klein and Manning, ACL 2004)

x

y

Regularization
N

creates
V

sparse
ADJ

grammars
N

pθ(x, y) = θroot(V )

·θstop(nostop|V ,right,false) · θchild(N|V ,right)

·θstop(stop|V ,right,true) · θstop(nostop|V ,left,false) · θchild(N|V ,left)

. . .

3/9



Dependency Parsing

• Transfer annotations from another language

• [Ganchev et al. 09]

• Constrain the number of child/parent 
relations

• [Gillenwater et al. 11]

• Use linguistic rules

• [Druck et al. 09] [Naseem et al. 10]

Dependency Parsing
Transfer annotations

[Ganchev et al. 09]

• Use information from a resource rich 
language

• Make the annotation transfer robust

• Preserve n % of the edges



Dependency Parsing
Transfer annotations

[Ganchev et al. 09]

Eq[φ(x,y)] =
1

|Cx|
�

y∈Cx

q(y|x)

Eq[φ(x,y)] ≥ b

Dependency Parsing
Transfer annotations

[Ganchev et al. 09]
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Dependency Parsing
Posterior Sparsity

[Graça et al. 10]

• ML learns very ambiguous grammars

• all productions have some probability

• constrain the number of possible 
productions

Dependency Parsing
Posterior Sparsity
[Gillenwater et al. 11]

Measuring ambiguity on distributions over trees
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Dependency Parsing
Posterior Sparsity
[Gillenwater et al. 11]

GILLENWATER, GANCHEV, GRAÇA, PEREIRA, TASKAR
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Figure 14: Posterior edge probabilities for an example sentence from the Spanish test corpus. Top
is Gold, middle is EM, and bottom is PR.

since then it does not have to pay the cost of assigning a parent with a new tag to cover each noun
that does not come with a determiner.

Table 4 contrasts the most frequent types of errors EM, SDP, and PR make on several test sets
where PR does well. The “acc” column is accuracy and the “errs” column is the absolute number
of errors of the key type. Accuracy for the key “parent POS truth/guess → child POS” is computed
as a function of the true relation. So, if the key is pt/pg → c, then accuracy is:

acc =
# of pt → c in Viterbi parses
# of pt → c in gold parses

. (25)

In the following subsections we provide some analysis of the results from Table 4.

7.1 English Corrections

Considering English first, there are several notable differences between EM and PR errors. Similar
to the example for Spanish, the direction of the noun-determiner relation is corrected by PR. This is
reflected by the VB/DT → NN key, the NN/VBZ → DT key, the NN/IN → DT key, the IN/DT →
NN key, the NN/VBD → DT key, the NN/VBP → DT key, and the NN/VB → DT key, which for
EM and SDP have accuracy 0. PR corrects these errors.

A second correction PR makes is reflected in the VB/TO → VB key. One explanation for the
reason PR is able to correctly identify VBs as the parents of other VBs instead of mistakenly making
TO the parent of VBs is that “VB CC VB” is a frequently occurring sequence. For example, “build
and hold” and “panic and bail” are two instances of the “VB CC VB” pattern from the test corpus.
Presented with such scenarios, where there is no TO present to be the parent of VB, PR chooses the
first VB as the parent of the second. It maintains this preference for making the first VB a parent of
the second when encountered with “VB TO VB” sequences, such as “used to eliminate”, because it
would have to pay an additional penalty to make TO the parent of the second VB. In this manner,
PR corrects the VB/TO → VB key error of EM and SDP.

26

Gold:

DVM:

DMV+Sparsity:

Dependency Parsing
Posterior Sparsity
[Gillenwater et al. 11]
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Dependency Parsing
Linguistic Rules
[Naseem et al. 10]

Using Universal Linguistic Knowledge to Guide Grammar Induction

Tahira Naseem, Harr Chen, Regina Barzilay

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

{tahira, harr, regina} @csail.mit.edu

Mark Johnson

Department of Computing

Macquarie University

mark.johnson@mq.edu.au

Abstract

We present an approach to grammar induc-

tion that utilizes syntactic universals to im-

prove dependency parsing across a range of

languages. Our method uses a single set

of manually-specified language-independent

rules that identify syntactic dependencies be-

tween pairs of syntactic categories that com-

monly occur across languages. During infer-

ence of the probabilistic model, we use pos-

terior expectation constraints to require that a

minimum proportion of the dependencies we

infer be instances of these rules. We also auto-

matically refine the syntactic categories given

in our coarsely tagged input. Across six lan-

guages our approach outperforms state-of-the-

art unsupervised methods by a significant mar-

gin.
1

1 Introduction

Despite surface differences, human languages ex-

hibit striking similarities in many fundamental as-

pects of syntactic structure. These structural corre-

spondences, referred to as syntactic universals, have

been extensively studied in linguistics (Baker, 2001;

Carnie, 2002; White, 2003; Newmeyer, 2005) and

underlie many approaches in multilingual parsing.

In fact, much recent work has demonstrated that

learning cross-lingual correspondences from cor-

pus data greatly reduces the ambiguity inherent in

syntactic analysis (Kuhn, 2004; Burkett and Klein,

2008; Cohen and Smith, 2009a; Snyder et al., 2009;

Berg-Kirkpatrick and Klein, 2010).

1
The source code for the work presented in this paper is

available at http://groups.csail.mit.edu/rbg/code/dependency/

Root→ Auxiliary Noun→ Adjective

Root→ Verb Noun→ Article

Verb→ Noun Noun→ Noun

Verb→ Pronoun Noun→ Numeral

Verb→ Adverb Preposition→ Noun

Verb→ Verb Adjective→ Adverb

Auxiliary→ Verb

Table 1: The manually-specified universal dependency

rules used in our experiments. These rules specify head-

dependent relationships between coarse (i.e., unsplit)

syntactic categories. An explanation of the ruleset is pro-

vided in Section 5.

In this paper, we present an alternative gram-

mar induction approach that exploits these struc-

tural correspondences by declaratively encoding a

small set of universal dependency rules. As input

to the model, we assume a corpus annotated with

coarse syntactic categories (i.e., high-level part-of-

speech tags) and a set of universal rules defined over

these categories, such as those in Table 1. These

rules incorporate the definitional properties of syn-

tactic categories in terms of their interdependencies

and thus are universal across languages. They can

potentially help disambiguate structural ambiguities

that are difficult to learn from data alone — for

example, our rules prefer analyses in which verbs

are dependents of auxiliaries, even though analyz-

ing auxiliaries as dependents of verbs is also consis-

tent with the data. Leveraging these universal rules

has the potential to improve parsing performance

for a large number of human languages; this is par-

ticularly relevant to the processing of low-resource

Small set of 
universal rules = 1 if edge in rule set

Eq[φ(x,y)] ≥ b

φ(x,y)

Dependency Parsing
Linguistic Rules
[Naseem et al. 10]
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Dependency Parsing:
Applications using Other Models

• Tree CRF
• [Druck et al. 09]

• MST Parser
• [Ganchev et al. 09]

Other Applications

• Multi view learning:
• [Ganchev et al. 08]

• Relation extraction:
• [Chen et al. 11]



Implementation Tips and Tricks

Off-the-Shelf Tools: MALLET
http://mallet.cs.umass.edu

• off-the-shelf support for labeled features

• models: MaxEnt Classifier, Linear Chain CRF (one and two 
label constraints)

• methods: GE and PR

• constraints on label distributions for input features

• GE penalties:  KL divergence,     (+ soft inequalities)

• PR penalties:     (+ soft inequalities)

• in development: Tree CRF,      and other penalties

�22

�22

�1



Off-the-Shelf Tools: MALLET
http://mallet.cs.umass.edu

• import data in SVMLight-like or CoNLL03-like formats

• import constraints in a simple text format:

• easily specify method options (i.e. SimpleTagger):

positive interesting:2 film:1 ...
negative tired:1 sequel:1 ...
positive best:1 recommend:2 ...

U.N.       NNP  B-NP  B-ORG 
official   NN   I-NP  O 
heads      VBZ  B-VP  O 

tired negative:0.8 positive:0.2
best positive:0.9 negative:0.1

U.N. B-ORG:0.7,0.9
B-VP O:0.95,

java cc.mallet.fst.semi_supervised.tui.SemiSupSimpleTagger \
--train true --test lab --loss l2 --learning ge \
unlabeled.txt test.txt constraints.txt

New GE Constraints: MALLET
http://mallet.cs.umass.edu

• Java Interfaces for implementing new GE constraints

• covariance computation implemented (MaxEnt, CRF)

• primarily need to write methods to:

• restriction: constraints must factor with model

• restriction: GE objective must be differentiable

compute constraint features and expectations

compute GE objective value

compute GE objective gradient (but not covariance)



New PR Constraints: MALLET
http://mallet.cs.umass.edu

• Java Interfaces for implementing new PR constraints

• inference algorithms implemented (MaxEnt, CRF)

• primarily need to write methods for E-step (projection):

• restriction: constraints must factor with model

compute constraint features and expectations

compute scores under q for E-step
compute objective function for E-step

compute gradient for E-step

GE Implementation Advice

• computing covariance (required for gradient): 

• trick: compute cov. of composite constraint feature

• example:     penalty: 

• result: only need to store vectors of size            in 
computation, rather than covariance matrix

• trick: efficient gradient computation in hypergraphs

• use semiring algorithms of [Li & Eisner 09] 

• result: same time complexity as supervised (w. both)

φc(x,y) =
�

φ

2(φ̃−E[φ])φ(x,y)�22

dim(f)



GE Implementation Advice

• parameter regularization: 

•     regularization encourages bootstrapping by penalizing 
very large parameter values:

• optimization: non-convex

• usually L-BFGS still preferable (use “restart trick”)

• zero initialization usually works well

• other init: supervised, MaxEnt, GE in simpler model

�22

>

Off-the-Shelf Tools: PR Toolkit
http://code.google.com/p/pr-toolkit/

• off-the-shelf support for PR

• models:  

• MaxEnt Classifier, HMM,DMV

• applications:  

• Word Alignment, Pos Induction, Grammar Induction

• constraints: posterior sparsity, bijectivity, agreement

• No command line mode

• Smaller support base



PR Implementation example:
Word Alignment - Bijectivity

• Learning: EM, PR

• void eStep(counts, lattices);

• void mStep(counts);

• lattice constraint.project(lattice);

• Model: HMM

• lattice computePosteriors(lattice);

• void addCount(lattice, counts);

• void updateParameters(counts);

• Constraints: Bijectivity

• lattice project(lattice);

PR Implementation example:
EM

class EM {

 model;

 	

void em(n){
 lattices= model.getLattices();
 counts = model.counts();	 	 	
 for(i=0; i< n; i++) {	 	 	
	 eStep(counts, lattices);
	 mStep(counts);
 }
}
	

void eStep(counts, lattices) {	
	 counts.clear();
	 for(l : lattices)  {		 	
	  model.computePosterior(l);
	  model.addCount(l,counts);	
	 }
}	

void mStep(counts) {
	 model.updateParameters(counts);
}

......

}



PR Implementation example:
PR

class PR {

 model;
 constraint;
	

void em(n){
 lattices= model.getLattices();
 counts = model.counts();	 	 	
 for(i=0; i< n; i++) {	 	 	
	 eStep(counts, lattices);
	 mStep(counts);
 }
}
	

void eStep(counts, lattices) {	
	 counts.clear();
	 for(l : lattices){	 	 	
	  model.computePosterior(l);
    constraint.project(l);
	  model.addCount(l,counts);	
	 }
}	

void mStep(counts) {
	 model.updateParameters(counts);
}

......

}

PR Implementation example:
HMM

class HMM {

 obsProb, transProbs,initProbs;
	

lattice computerPosteriors(lattice){
 “Run forward backward”
}
	
void addCount(lattice,counts){
 “Add posteriors to count table”
}

void updateParams(counts){
 “Normalize counts”
 “Copy counts to params table”
}

void getCounts(){
 “return copy of params structures”
}

void getLattices(){
 “return structure of all lattices 
in the corpus”
}

......

}



PR Implementation example:
Bijective constraints

• Constraint: returns a vector with mth value = number of 
target words in sentence x that align with source word m

φ(x,y) =
N�

i=1

1(yi = m) Q = {q : Eq[φ(x,y)] ≤ 1}

• Primal: Hard

DKL(Q|pθ) = argmin
q

DKL(q|pθ)

• Dual: Easy
argmax

λ≥0
−bT · λ− logZ(λ)− ||λ||2

Z(λ) =
�

y

pθ(y|x) exp(−λ · φ(x,y))

PR Implementation example:
Bijective Constraints

class BijectiveConstraints {
model;

lattice project(lattice){
 obj = BijectiveObj(model,lattice);
 Optimizer.optimize(obj);
}
	
}

class BijectiveObj {
  lattice;
  

void updateModel(newLambda){
 lattice_ = lattice*exp(newLambda);
 computerPosteriors(lattice)
}

double getObj(){
  obj = -dot(lambda,b);
  obj -= lattice.likelihood;
  obj -= l2Norm(lambda);
}

double[] getGrad(){
 grad = lattice.posteriors - b;
 grad -= norm(lambda);
 return grad;
}



Other Software Packages

• Learning Based Java:  

• http://cogcomp.cs.illinois.edu/page/software_view/11

• support for Constraint-Driven Learning

• Factorie:   

• http://code.google.com/p/factorie/

• support for GE and PR in development



Rich Prior Knowledge in Learning for Natural
Language Processing

Bibliography

For a more up-to-date bibliography as well as additional information about
these methods, point your browser to: http://sideinfo.wikkii.com/

1 Constraint-Driven Learning

Constraint driven learning (CoDL) was first introduced in Chang et al. [2007],
and has been used also in Chang et al. [2008]. A further paper on the topic is
in submission [Chang et al., 2010].

2 Generalized Expectation

Generalized Expectation (GE) constraints were first introduced by Mann and
McCallum [2007]1 and were used to incorporate prior knowledge about the label
distribution into semi-supervised classification. GE constraints have also been
used to leverage “labeled features” in document classification [Druck et al., 2008]
and information extraction [Mann and McCallum, 2008, Druck et al., 2009b,
Bellare and McCallum, 2009], and to incorporate linguistic prior knowledge
into dependency grammar induction [Druck et al., 2009a].

3 Posterior Regularization

The most clearly written overview of Posterior Regularization (PR) is Ganchev
et al. [2010]. PR was first introduced in Graca et al. [2008], and has been
applied to dependency grammar induction [Ganchev et al., 2009, Gillenwater
et al., 2009, 2011, Naseem et al., 2010], part of speech induction [Graça et al.,
2009a], multi-view learning [Ganchev et al., 2008], word alignment [Graca et al.,
2008, Ganchev et al., 2009, Graça et al., 2009b], and cross-lingual semantic
alignment [Platt et al., 2010]. The framework was independently discovered
by Bellare et al. [2009] as an approximation to GE constraints, under the name
Alternating Projections, and used under that name also by Singh et al. [2010]
and Druck and McCallum [2010] for information extraction. The framework
was also independently discovered by Liang et al. [2009] as an approximation to

1In Mann and McCallum [2007] the method was called Expectation Regularization.



a Bayesian model motivated by modeling prior information as measurements,
and applied to information extraction.

4 Closely related frameworks

Quadrianto et al. [2009] introduce a distribution matching framework very
closely related to GE constraints, with the idea that the model should pre-
dict the same feature expectations on labeled and undlabeled data for a set of
features, formalized as a kernel.

Carlson et al. [2010] introduce a framework for semi-supervised learning
based on constraints, and trained with an iterative update algorithm very similar
to CoDL, but introducing only confident constraints as the algorithm progresses.

Gupta and Sarawagi [2011] introduce a framework for agreement that is
closely related to the PR-based work in Ganchev et al. [2008], with a slightly
different objective and a different training algorithm.
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