Beyond Structured Prediction:
Inverse Reinforcement Learning

Hal Daumé I11 Acknowledgements
Computer Science Some slides:
University of Maryland Stuart Russell
me@hal3.name Dan Klein
J. Drew Bagnell
A Tutorial at ACL 2011 Nathan Ratliff -
Portland, Oregon Stephane Ross e T
e / NP
S ay, 19 J p e / S \
unﬂi‘ 19 June 2011 Discussions/Feedback: o \-(:, e 5
\‘;N . # A MLRG Sprlng 201 0 T‘h(‘ man n:'(' z\l tasty >nuci\\'i\]|
18 36
é”'Rw !\"5
NLP as transduction Structured prediction 101
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Argentina was still obsessed W|th the
Falkland Islands even in 1994, 1

years after its defeat in the 74—da wal
with Britain. The country's overriding
foreign policy aim continued to be
winning sovereignty over the islands.

Document
Summarization

The Falkland |5Iands A

war, in 1982, wa:
fought between

Britain and Argentina. />\

Syntactic The man ate a big /\
Analysis sandwich. F O /'/\ _ %

The man ate a big sandwich

...many more...
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Why is structure important?

> Correlations among outputs
> Determiners often precede nouns
> Sentences usually have verbs

> Global coherence

> |t just doesn't make sense to have three determiners next to
each other

> My objective (aka “loss function”) forces it
> Translations should have good sequences of words
> Summaries should be coherent

Outline: Part Il

> Refresher on Reinforcement Learning
> Markov Decision Processes
> Qlearning
> Inverse Reinforcement Learning
> Determining rewards given policies
> Maximum margin planning
> Apprenticeship Learning
> Searn
> Dagger

> Discussion

Outline: Part |

> What is Structured Prediction?
> Refresher on Binary Classification
> What does it mean to learn?
> Linear models for classification
> Batch versus stochastic optimization
> From Perceptron to Structured Perceptron
> Linear models for Structured Prediction
> The “argmax” problem
> From Perceptron to margins
> Learning to Search
> Stacking
> Incremental Parsing

Refresher on
Binary Classification
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What does it mean to learn? ®

> Informally:
> to predict the future based on the past

> Slightly-less-informally:
> to take labeled examples and construct a function that will
label them as a human would

> Formally:
> Given:
> A fixed unknown distribution D over X*Y
> Aloss function over Y*Y
> A finite sample of (x,y) pairs drawn i.i.d. from D

> Construct a function f that has low expected loss with
respectto D

: : PN
Linear models for binary classification’

> Decision boundary

is the set of \

“uncertain”points

> Linear decision
boundaries are f; -
characterized by
weight vectors
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Feature extractors

> A feature extractor @ maps examples to vectors

Dear Sir. W=dear
W=sir
First, I must solicit )
W=this
your confidence in
this transaction, cee
this is by virture of W=wish
its nature as being .
utterly confidencial MISSPELLED :
and top secret. .. NAMELESS

[ASp——

o

ALL_CAPS
NUM_URLS
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> Feature vectors in NLP are frequently sparse

The perceptron
> Inputs = feature values
> Params = weights

> Sumi s the response

> If the response is:
> Positive, output +1
> Negative, output -1

5 — s —
> When training, P
update on errors:

w=w+yp(x)

“Error” when:

yw-p(x)<0



Why does that update work? %

> When yw™.(x)<0 , updater""=w"'+y¢(x)

wold

whew

yw' b (x)=y (W' +y b (x)|b(x)
=\yW""’¢(X)l+gy¢(X)¢(xz

<0

DV<

Support vector machines with slack ®

> Explicitly optimize
the margin

~

\f2\\\ +

> Allow some “noisy”
points to be
misclassified

min
w,E

st Yawo(x,)+ [E,

Support vector machines

> Explicitly optimize B \f\
the margin \ 2 L%

> Enforce that ~
all training points

are correctly f; =
classified
max all points are .

margin  S.t. e
5 correctly classified

MaX  margin  s.t. y,wp(x,)=1, Vn

MRy | S.t. y,wp(x)>=1, Vn

Batch versus stochastic optimization -

> Batch = read in all the data, then process it
> Stochastic = (roughly) process a bit at a time

min 1, > Forn=1..N:
~|lwl+cC

we SIWI+CX g, o It v )<6

st. y,w(x,)+E =1 > w=wty,p(x,)
, Vn
£=0, Vn

&
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Stochastically optimized SVMs

Implementation Note:
_ V\Ileigrtshri{]l_ﬁge_lis StLtOhW From Perceptron
l Gost of double storage. to Structured Perceptron

» Forn=1..N: For n=1..N:
> If y,w(x,)<1 > If y,wp(x,)<0
> w=w+y ¢(x,) > w=w+y ¢(x,)
. 1
> w=(l———|w
o

Perceptron with multiple classes . Perceptron with multiple classes v2 .
> Store separate weight w*P(x) > Originally:
vector for each class biggest
Wy, Wy, ...y W Lowe [ we [ wy
/ w
> Forn=1..N: > Forn=1..N: > Forn=1..N:
> Predict: w3 P(x) -0 (x) » Predict: - Predict:
biggest 2
y=argmax, w, $(x,) biggest y=argmax,wop(x,)  y=argmax,w-(x,,k)
S If g2y -0y, - W2y,
vy ?' Why does this Wy=wy—blx,) w=w=d(x,, )
Wy":Wy"+d)(Xn) = = do the right thing? Wy":Wy"+d)(Xn) +¢(Xn’yn)




Features for structured prediction .
> Allowed to encode anything you want
[ Pro|[Md |[ Vb || Dt |[ Nn |

| I |[can]|[can|[ a |[can]

b(x,y)=
T Pra P 1 has verb i,
can Md = L has am lewow O
can Vb - 1 1. Kas n 1L i
2 Dt - 1L 1 hHEs #h wgb @ L
can Nn g1 1 has n rgt 1
- 5 |

> Output features, Markov features, other features

#
Argmax for sequences .

> If we only have output and Markov features, we can use
Viterbi algorithm:

we[Pro-Pro]

we[l_Pro]

iw-[can_Pro]

_ _ !w-[can_Vb]
]

(plus some work to account for boundary conditions)

Structured perceptron ®

Enumeration
over all outputs

Enumeration
over 1..K

> Forn=1..N: > Forn=1..N:

> Predict: > Predict:
y=argmax, w-$(x,,k) y=argmax, w-¢p(x,,k)
s Ty#y; s ty=y;
w=w—b(x,.5) w=w-h(x,.5) g
+d(x,,y,) +p(x,,y,) 3
-
3

Structured perceptron as ranking

> Forn=1..N:
> Run Viterbi: y=argmax, w-$(x,,k)
I yEy, wEw—a(x,, 7)+d(x,,y,)

> When does this make an update?

Pro |[ Md || Vb || Dt |[ Nn
Pro || Md || Md Dt || Vb
Pro || Md || Md Dt Nn
Pro || Md Nn Dt mMd
Pro || Md Nn Dt Nn
Pro || Md || Vb Dt || Md
Pro || Md || Vb Dt || Vb

[ I |[can][can ][ a |[can]




From perceptron to margins

Mﬂi@ze Minimize min ,
Margin Errors W,E EHWH +Czn En,j/

min 1

1

2
W,E E”WH +Czn En Response
for other

sit. y,wo(x,)+E=21 | st wop(x,,y,)

, Vn

FEach point is correctly
classified, modulo §

Each true output is more
highly ranked, modulo §

_W'(I)(Xn’j/)
+&>1,Vn,y#y,

Ranking margins

> Some errors are worse than others...

[Pro|[ Md |[ Vb || Dt || Nn

Margin
f one

Pro || Md || Md Dt || Vb

Pro || Md Md Dt Nn

Pro || Md Nn Dt Md

Pro || Md Nn Dt Nn

Pro || Md || Vb Dt || Md

Pro || Md || Vb Dt || Vb

| 1 Jlcan][can][ a ][can
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[SOYTINP ‘SIIEPUBLOOUS] {GOHTIIP ‘e+iexsel]

From perceptron to margins
¢(X1,Y1) min l 2 R
w,E 1l +CQ E, s

Response R
for truth SEPPIONSS
for other

s.t. w-p(x,,y,)
_W'(I)(Xn’j/)
+&>1,Vn,y#y,

Each true output is more
highly ranked, modulo §

Accounting for a loss function

> Some errors are worse than others...

[Pro|[ Md |[ Vb |[ Dt |[ Nn |

argin

f ly,y)

&
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Accounting for a loss function

[SOYTINP ‘SIIEPUBLOOUS] {GOHTINI ‘[e+iexsel]

Stochastically optimizing Markov nets”

Ot
-

> Forn=1..N:

> Augmented Viterbi:

y=argmax,w-¢(x,,k)
+1(y,, k)

~ Wyzy;

w=w—a(x,.5)

>

w=|1—

+d(x,,y,)

—|w
CN

> Forn=1..N:
> Viterbi:

y=argmax, w-p(x,,

s Ty=y;
w=w—o(x,,J)
+dp(x,,y,)

k)

[2osteiSIV ‘fe+yiey]

Augmented argmax for sequences

> Add “loss” to each wrong node!

we[Pro-Pro]

iw-[can_Pro]

!w-[can_Vb]

[+ ] |« ? ' What are we

= = assuming here?

Learning to Search

[SOYTINP ‘SIUEPUBLOOUS] {GOHTINI ‘e-+ieysel]
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Argmax is hard! Stacking
> Classic formulation of structured prediction: > Click to add an outline
something we learn
score ( X, y) = to make “good” x,y pairs
score highly

> Attest time:
flx) = argmaxyeyscore(x,y)
> Combinatorial optimization problem

> Efficient only in very limiting cases
> Solved by heuristic search: beam + A* + local search

Incremental parsing, early 90s style . Incremental parsing, mid 2000s style .
\
s
Train a classifier
to make decisions Train a classifier
to make decisions
g
= NP | =
Right g :o?
Left ‘i g
>
| I/Pro |[can/Md | |[can/Vb ][ a/Dt ||[can/Nn g | I/Pro |[can/Md || can/Vb | 2



Learning to beam-search

> Forn=1..N:

> If y#y,
w=w—a(x ,7)

+o(x,,,)

> M@"s
V=argmatw-b (x,.k)

X

[ NP NP |

| I/Pro |[can/Md || can/Vb |

40 Hal Daumé Ill (me@hal3.name)

Learning to beam-search

SP2IRL @ ACL2010

P 18

‘ ‘ — 4 a1

> For n=1..N:
> Run beam search until
truth falls out of beam
> Update weights
immediately!
> Restart at truth

X

NP NP

| I/Pro |[can/Md || can/Vb |

42 Hal Daumé Ill (me@hal3.name)

SP2IRL @ ACL2010

#0710V “eoy+suljjo0]
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Learning to beam-search

‘ — P

P 18

> For n=1..N:

> Update weights
immediately!

> Run beam search until
truth falls out of beam

X

[ NP NP |

| I/Pro |[can/Md || can/Vb |

41 Hal Daumé Ill (me@hal3.name)

Incremental parsing results

SP2IRL @ ACL2010

88 T T T T
--8- No early update, no repeated use of examples
-& Early update, no repeated use of examples
a7 —4— Early update, repeated use of examples

©
(=2

F-measure parsing accuracy
[o-]
- a1

84
831 e B 4
P a- e m—m e —
8o L L L L
1 2 3 4 5 6
Number of passes over training data
43 Hal Daumé Ill (me@hal3.name) SP2IRL @ ACL2010
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Generic Search Formulation

> Search Problem:
> Search space
> Operators
> Goal-test function
> Path-cost function

> Search Variable:
> Enqueue function

Varying the Enqueue
function can give us DFS,
BFS, beam search, A*
search, ete...

> nodes =
MakeQueue(S0)

> while nodes is not empty

> node :=
RemoveFront(nodes)

> if node is a goal state
return node

> next := Operators(node)

> nodes := Enqueue(nodes,
next)

> fail

Search-based Margin

> The margin is the amount by which we are correct:

o 9w

T®(x,b,) -

(x,81)

¢(x/b1) el

> Note that the margin and hence linear separability is
also a function of the search algorithm!

[60HTAIP ‘[e+nX GOTINDI ‘NoseN+a]

@

[60HTAIP ‘[e+nX GOTINDI ‘NoseN+a]

Online Learning Framework (LaSO)

> nodes := MakeQueue(S0)
> while nodes is not empty
> node := RemoveFront(nodes)

> if none of {node} U nodes is y-good ornode is a goal & not y-

good

m Where should we have gone?
> sibs = S|bI|ngs(node y

> w = update(w, x, sibs, {node} U nodes)
> nodes := MakeQueue(sibs)

> else
> if node is a goal Continue search. ..

> next := Operators(node)
> nodes := Enqueue(nodes, next)

Syntactic chunking Results

&

Monotonicity: for any
node, we can tell if it
can lead to the correct
solution or not

]

ol ‘noreN+Q

N

Update our weights based on
the good and the bad choices

[6OYTAIM ‘fe+n

@
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Tagging+chunking results

o7 ~

23 min
Large Margin
2~ (beam 25/50)
965 - =
- 0 /
8 \ Large Margin
5 (baam 10) Suzon model
8 Zmin [Sutton+McCallum 2004]
© % 3 min
jo)]
1=
= .
5 1 min
)
= 955~
g’ *  Suton
= LasOp-1
g LaSOp-5
= LaSOp-10
£ LaSOp-25
5 = * LaS0p-50
N » o LaSOa-1
LasQa-5
LaSQa-10
LaS0Qa-25
LaS0a-50
945 1 . )
1 10" e P

Training Time (hours) [log scale]

What if our model sucks?

> Sometimes our model cannot produce the “correct”
output
> canonical example: machine translation

“‘Bold” update

Current

Hypothesis Reference

ood

Best
achievable
output

N-best list
or “optimal
decoding”
or...

[60HTAIP ‘[e+nX GOTINDI ‘NoseN+a]
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[9070V ‘e+buer €070V ‘Y20l

Variations on a beam

> QObservation:

> \We needn't use the same beam size for
training and decoding

> Varying these values independently yields:
Decoding

Beam
1 5 10 25 50

o> 1 939 928 919 91.3 909
S E 5 905 943 944 941 94.1
£ 10 895 943 944 942 942
©m 25 887 942 945 943 943
F 50 884 942 944 942 944

Local versus bold updating...

Machine Translation Performance (Bleu)
35.5

35
34.5 M Bold
34 M Local
[J Pharoah
335
33
325

Monotonic Distortion

[6OYTAIP ‘[e+nX SOTINOI ‘NoseN+a]
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Take-home messages ~ Ifnot, this can be
a really bad ideal!
[Kulesza+Pereira, NIPS07]

> If you can predict (ie., solve argmax) you can learn (use
structured perceptron)

> If you can do loss-augmented search, you can do max
margin (add two lines of code to perceptron)

> If you can do beam search, you can learn using LaSO
(with no loss function)

> If you can do beam search, you can learn using Searn
(with any loss function)

Refresher on
Reinforcement
Learning

Coffee Break!!!

Reinforcement learning

> Basic idea:
> Receive feedback in the form of rewards
> Agent’s utility is defined by the reward function
> Must learn to act to maximize expected rewards
> Change the rewards, change the learned behavior

> Examples:
> Playing a game, reward at the end for outcome
> Vacuuming, reward for each piece of dirt picked up
> Driving a taxi, reward for each passenger delivered

&



> Optimal policy maximizes expected if followed

. . L _ %
Markov decision processes Markov Decision Processes
What are the values (expected future rewards) of > An MDP is defined by:
states and actions? > Asetofstatessf] S
> Asetof actions afl A . -
> A transition function T(s,a,s’) EXN
_ > Prob thatafromsleadsto s’
Q(s,al)* = 30 - )
> i.e., P(s'|s,a) 2 =1
V(s)* = 30 > Also called the model
> Areward function R(s, a, s')
> Sometimes just R(s) or R(s’) 1 | swarr
Q(s,a2)* = 23 > A start state (or distribution)
—_— > Maybe a terminal state 1 5 3 4
> MDPs are a family of non- 0.8
\ deterministic search problems '
Q(s,a3)* =17 > Total utility is one of: 0.1 0.1
Z r,or z yrrr
t t
Solving MDPs Example Optimal Policies
> In deterministic single-agent search problem, want an
optimal plan, or sequence of actions, from start to a
goal ||| |||
> In an MDP, we want an optimal policy n(s) . .
> A policy gives an action for each state ! == . | =
A

- | - ' - | - | -
> Defines a reflex agent "o =001 —y
S) = S)=

3 —_— —_— —_—
? 1 | | = ||

Optimal policy 2 [
when R(s, a, §) = A A = | = |1

-0.04 for all non- - | -— | -—
terminals s ! ? ‘ - ‘ = | | ‘

1 2 3 4

R(s) = -0.4 R(s) = -2.0



Optimal Utilities )

> Fundamental operation: compute
the optimal utilities of states s (all
at once)

> Why? Optimal values define
optimal policies!

3 | 0812 | oses | 0otz

> Define the utility of a state s:
V'(s) = expected return starting in  *
s and acting optimally v | o | won | oo

> Define the utility of a g-state (s,a):
Q’(s,a) = expected return starting
in s, taking action a and
thereafter acting optimally 2|t t &=

> Define the optimal policy:
'(S) = optimal action from state s oo

: : .
Solving MDPs / memoized recursion .

> Recurrences:
Vo(s) =0
Vi (s) = max Q; (s, )

Qi(s,a) =>_T(s,a,s") [R(s, a,s) + ’y\/;*,l(s’)}

S/
m;(s) = argmax Q} (s, a)
a

> Cache all function call results so you never repeat
work

> What happened to the evaluation function?

The Bellman Equations

> Definition of utility leads to a simple
one-step lookahead relationship
amongst optimal utility values:
Optimal rewards = maximize over
first action and then follow optimal

policy

> Formally: '
V*(s) = m{?xQ*(s,a)

Q™ (s,a) =Y T(s,a,s") [R(s, a,s) + ﬂ/V*(s')}

V*(s) = m;]xZT(s,a,, ) {R(s,a, §') + ’yV*(s/)}

Q-Value lteration

> Value iteration: iterate approx optimal values
> Start with V;(s) = 0, which we know is right (why?)
> Given V/, calculate the values for all states for depth
i+1:

Vig1(s) — max}_T(s,a,) [R(s,a8') + 7 Vi(s")]
> But Q-values are more useful!
> Start with Q,(s,a) = 0, which we know is right (why?)

> Given Q;, calculate the g-values for all g-states for
depth i+1:

Qi—l—l(s'/ a’) — Z T(S7 a, S/) |:R(§ a, S/) + ma?XQi(s/v LL/)



RL = Unknown MDPs . Q-Learning &

> If we knew the MDP (i.e., the reward function and > Learn Q*(s,a) values
transition function): > Receive a sample (s,a,s’,r)
> Value iteration leads to optimal values > Consider your old estimate: Q(s,a)
> Q-value iteration leads to optimal Q-values > Consider your new sample estimate:
> Will always converge to the truth Q" (s,a) =3 T(s,a,) [R(S’ a,5') + 7 max Q* (s, a')

> Reinforcement learning is what we do when we do not

know the MDP > Incorporate the new estimate into a running average:
> All we observe is a trajectory
> (Sp,anly, Spanly Sgasls ...) sample = R(s,a,s") + max Qs a)

Q(s,a) — (1 — a)Q(s,a) + () [sample]

. PR & . &
Exploration / Exploitation Q-Learning
> Several schemes for forcing exploration > In realistic situations, we cannot possibly learn about
> Simplest: random actions (¢ greedy) every single state!
> Every tir.ne step, flip a coin ’ > Too many states to visit them all in training
> With probability &, act randomly > Too many states to hold the g-tables in memory
> With probability 1-¢, act according to current policy > Instead, we want to generalize:
. . > Learn about some small number of training states from
> Problems with random actions? experience g
> You do explore the space, but keep thrashing around once > Generalize that experience to new, similar states:
learning is done
> One solution: lower ¢ over time Q(s,a) = wif1(s, a)Fwofo(s,a)+.. . Fwnfn(s, a)

> Another solution: exploration functions
> Very simple stochastic updates:

Q(s,a) — Q(s,a) + alerror]

w; — w; + alerror] f;(s,a)
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Inverse
Reinforcement
Learning

(aka Inverse Optimal Control)

Why inverse RL? .

> Computational models for animal learning

> “In examining animal and human behavior we must consider
the reward function as an unknown to be ascertained
through empirical investigation.”

> Agent construction

> “An agent designer [...] may only have a very rough idea of
the reward function whose optimization would generate
'desirable’ behavior.”

> eg., “Driving well”

> Multi-agent systems and mechanism design

> learning opponents’ reward functions that guide their actions
to devise strategies against them

Inverse RL: Task
> Given:
> measurements of an agent's behavior over time, in

a variety of circumstances

> if needed, measurements of the sensory inputs to
that agent

> if available, a model of the environment.

Y

Determine: the reward function being optimized

Y

Proposed by [Kalman68]
First solution, by [Boyd94]

Y

IRL from Sample Traject

> Optimal policy available through s¢
(eg., driving a car)

Warning: need to be
careful to avoid
trivial solutions!

> Want to find Reward function that makes this policy look
as good as possible

> Write R, (s)=w(s) so the reward is linear

and V’;(So) be the value of the starting state

max ;f(va*<so>—va'<<so>)

How good does the How good does the
“optimal policy” look? some other policy look?

&

[00NDI “l1essny+6N]



Apprenticeship Learning via IRL
> For t=1,2,...

> Inverse RL step:
Estimate expert’s reward function R(s)= w'¢(s) such
that under R(s) the expert performs better than all
previously found policies {r}.

> RL step:
Compute optimal policy =, for the estimated reward w

“Nice” driver

[FONOI ‘BN+HBeqqY]

Car Driving Experiment

> No explicit reward function at all!

> Expert demonstrates proper policy via 2 min. of driving
time on simulator (1200 data points).

> 5 different “driver types” tried.

> Features: which lane the caris in, distance to closest
car in current lane.

> Algorithm run for 30 iterations, policy hand-picked.
> Movie Time! (Expert left, IRL right)

“Evil” driver

[FONOI ‘BN+IBRqaY]



Planning as structured prediction

Tt | - e path cwst ravelregior

T 2 - e B v v 1o

Optimizing MMP

> Forn=1..N:

> Augmented planning:
Run A* on current (augmented) «
to get g-state visitation frequenci

> Update: w:W+ZZ[ﬁ<S:a)_I

P2IRL @ ACL201
woce 1 - 4rsing

> Shrink: — 1_L
W ( CN)W

®

[SOSdIN ‘e+yined]

[SOSdIN ‘Te+iined]

Maximum margin planning

> Let p(s,a) denote the probability of reaching g-state
(s,a) under current model w

max margin  s.t. planner run with w
yields human output
Q-state visitation
frequency by human
min u(s,a)w-¢p(x,,s,a)

1 2
EHWH s.t. —f(s,a)w-¢p(x,,s,a)>1

Q-state visitation , Vn,s,a
frequency by planner
All trajectories,
and all g-states

Maximum margin planning movies

[SOSdIN ‘[e+yined]

[SOSdIN ‘Te+iiped]



Parsing via inverse optimal control

>

State space = all partial parse trees over the full
sentence labeled “S”

Actions: take a partial parse and split it anywhere in the
middle

Transitions: obvious
Terminal states: when there are no actions left
Reward: parse score at completion

Apprenticeship

Learning

[60r 1N ‘Hersdazg+naN]

@

Parsing via inverse optimal control

90
85
80
75
70
60 .
Small Medium Large
B Maximum M Projection [ Perceptron B Appren-
Likelihood ticeship
Learning

B Maximum B Maximum [ Policy
Margin Entropy Matching

Integrating search and learning

Input:  Le homme mange I' croissant.

\ Output: The man ate a croissant.
Hyp: The man ate a croissant
Hyp: The man ate Cov:
Cov:
I' croissant.
Hyp: The man ate a fox
Cov:
croissant.
Hyp: The man ate happy
L Cov:
0

Hyp: The man ate a

Hyp: The man ate a Cov:

Cov:

croissant.

[60r 1N ‘Hersdazg+naN]
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Reducing search to classification

> Natural chicken and egg problem:
> Want h to get low expected future loss
> ... on future decisions made by h
> ... and starting from states visited by h
> lterative solution

\ h(t1)

Input: Le homme mange I" croissant.
Output: The man ate a croissant.

Hyp: The man ate a croissant

Hyp: The man ate Cov: —» Loss =0
Cov:
I' croissant.
Hyp: The man ate a fox
h(t) Cov: —» Loss=1.8
croissant.
Hyp: The man ate happy
Cov: —» Loss =1.2
I
= Hyp: The man ate a
Hyp: The man
AR WIIENEDE Cov: | —» Loss =05
croissant. 2

—» Loss =0

Example task: summarization

G
il That's perfect!

Standard approach is
sentence ex ractlon but that
is often deemed to “coarse”
to produce
%NOd very short summaries.
e wish to also drop words
and phrases => document
compression

Ar entina was still obsessed
the Falkland Islands
even in 1994, 1 Years
after its defeat in the 74-day
war with Britain. The country's
overriding foreign policy aim
continued to be winnin
sovereignty over the islands.

The Falkland islands
war, in 1982, was

fought between
Britain and Argentina.

[60MA ‘Nose+piojbueT+(]
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Theoretical results

Theorem: After 273In T iterations,
the loss of the learned policy
is bounded as follows:

C
L(h)<L(hy)+2TInTI,, + (1+InT)—

Loss of the
optimal policy

Average
multiclass
classification
loss

per-step
loss

Structure of search

> Lay sentences out sequentially
> Generate a dependency parse of each
sentence |

Mark each root as a frontier node

o
after its defeat in me 74-day

warw(lilh B?laln Thelcounlry‘s
overriding foreign policy aim 3 .
connnueg to bengl’r)mmy ” Repeat.

sovereignty over the |s?ands

> Choose a frontier node node to add to the
summary

> Add all its children to the frontier
> Finish when we have enough words

(o] (SRl o o] [elge} ® o o0 o o oo o e o e o

¢ @ ee 00 @ O ® © 00 O © © 00 © © e © @ @ ee ©

LCIER eI o] e ©

\/ el o o 0 el e o 0

S1 S2 S3 S4 S5 Sn

(O =frontier node @ = summary node

&
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Example output (40 word limit)

Sentence Extraction + Compression:

Argentina and Britain announced an agreement, nearly
eight years after they fought a 74-day war a populated
+13 archipelago off Argentina's coast. Argentina gets out

ial royal visitor since the end of the
Falklands war in 1982.

Vine Growth (Searn):
Argentina and Britain announced to restore full ties,
eight years after they fought a 74-day war over the
+24 Falkland islands. Britain invited Argentina's minister
Cavallo/to LondoflinFI992NinltheNirst official visit since
the Falklands war in 1982.

Learning to Drive

6| Diplomatic ties restored 3 Falkland war was in 1982

5| Major cabinet member visits 3 Cavallo visited UK

5| Exchanges were in 1992 2 War was 74-days lorjg
3| War between Britain and Argentina

[60MTIN ‘nose+piojbue+q]

DAgger: Dataset Aggregation = Theoretical Guarantees .
Collect trajectories with expert
Best policy 1 in sequence T1[1:N] guarantees:
J(r)<T(exy +yx)F+FO(T/N)
Avg. Loss on lterations

Avg. R t of TT|1:N
Aggregate Dataset vg. Regret o [ ] of DAgger
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Experiments: Racing Game

Output:

Steering in [-1,1]

Resized to 25x19
pixels (1425
features)

B~ ) B - = M v Pagew Safety~ Tor

Bt |

ODSCTvVatiors @ Unknown Zone | Protected Mode: On “a v

> ThefOloA s faT. . 2 it/ e doveliu . BN s 5 *

Average Falls per Lap

45

w
T

Average Falls/Lap

—*—DAgger

~=-SMiILe(0.1)

- Supervi:

sed

0 o.‘s 1 15
Number of Training Data

Test-time Execution

FP5: 24

Selected Actions:

2

2.5

x 10

4
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Average Distance per Stage

3200

3000
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Number of Training Data e

Discussion

Perceptron vs. LaSO vs. Searn )

@ Incremental perceptron

X Un-learnable decision

Relationship between SP and IRL ~ ®

> Formally, they're (nearly) the same problem
> See humans performing some task
> Define some loss function
> Try to mimic the humans

> Difference is in philosophy:
> (I)RL has little notion of beam search or dynamic
programming
> SP doesn't think about separating reward estimation from
solving the prediction problem
> ()RL has to deal with stochastiticity in MDPs



Important Concepts

> Search and loss-augmented search for margin-based
methods

> Bold versus local updates for approximate search
> Training on-path versus off-path

> Stochastic versus deterministic worlds

> Q-states / values

> Learning reward functions vs. matching behavior

Open problems

> How to do SP when argmax is intractable....
> Bad: simple algorithms diverge [Kulesza+Pereira, NIPS07]
> Good: some work well [Finley+Joachims, ICMLO8]
> And you can make it fast! [Meshi+al, ICML10]

> How to do SP with delayed feedback (credit assignment)
> Kinda just works sometimes [D, ICML09; Chang+al, ICML10]
» Generic RL also works [Branavan+al, ACLO9; Liang+al, ACL09]

> What role does structure actually play?
> Little: only constraints outputs [Punyakanok+al, IJCAI05]
> Little: only introduces non-linearities [Liang+al, ICMLOg]
> Lots: 7?7

&

Hal's Wager

> Give me a structured prediction problem where:
> Annotations are at the lexical level
> Humans can do the annotation with reasonable agreement
> You give me afew thousand labeled sentences

> Then | can learn reasonably well...
> ...using one of the algorithms we talked about

> Why do | say this?
> Lots of positive experience
> I'm an optimist
> | want your counter-examples!

Software

> Sequence labeling
> Mallet http://mallet.cs.umass.edu
> CRF++ http://crfpp.sourceforge.net

> Search-based structured prediction
> LaSO http://hal3.name/TagChunk
> Searn http://hal3.name/searn

> Higher-level “feature template” approaches
> Alchemy http://alchemy.cs.washington.edu
> Factorie http://code.google.com/p/factorie

&



Summary )

Y

Y

Stuff we talked about explicitly )

&

Structured prediction is easy if you can do argmax
search (esp. loss-augmented!)

Label-bias can kill you, so iterate (Searn)
Stochastic worlds modeled by MDPs
IRL is all about learning reward functions

IRL has fewer assumptions

> More general

> Less likely to work on easy problems
We're a long way from a complete solution
Hal's wager: we can learn pretty much anything

Thanks! Questions?

&
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