Beyond Structured Prediction:
Inverse Reinforcement Learning

Hal Daumé I11 Acknowledgements
Computer Science Some slides:
University of Maryland Stuart Russell
me@hal3.name Dan Klein
J. Drew Bagnell
A Tutorial at ACL 2011 Nathan Ratliff -
Portland, Oregon Stephane Ross e T
e / NP
S ay, 19 J p e / S \
unﬂi‘ 19 June 2011 Discussions/Feedback: o \-(:, e 5
\‘;N . # A MLRG Sprlng 201 0 T‘h(‘ man n:'(' z\l tasty >nuci\\'i\]|
18 36
é”'Rw !\"5
NLP as transduction Structured prediction 101
Task Input Output Learn a function mapping inputs to complex outputs:
Machine Ces deux principes se tiennent a Both principles lie at the X - Y
Translation la croisée de la philosophie, de crossroads of philosophy,
la politique, de I'économie, de la politics, economics, [—{[/—Aj h
sociologie et du droit. sociology, and law. Input Spacej{ Decoding JQutput Spac

[
[

Argentina was still obsessed W|th the
Falkland Islands even in 1994, 1

years after its defeat in the 74—da wal
with Britain. The country's overriding
foreign policy aim continued to be
winning sovereignty over the islands.

Document
Summarization

The Falkland |5Iands A

war, in 1982, wa:
fought between

Britain and Argentina. />\

Syntactic The man ate a big /\
Analysis sandwich. F O /'/\ _ %

The man ate a big sandwich

...many more...

[[can][can][a]|can]

Why is structure important?

> Correlations among outputs
> Determiners often precede nouns
> Sentences usually have verbs

> Global coherence

> |t just doesn't make sense to have three determiners next to
each other

> My objective (aka “loss function”) forces it
> Translations should have good sequences of words
> Summaries should be coherent

Outline: Part Il

> Refresher on Reinforcement Learning
> Markov Decision Processes
> Qlearning
> Inverse Reinforcement Learning
> Determining rewards given policies
> Maximum margin planning
> Apprenticeship Learning
> Searn
> Dagger

> Discussion

Outline: Part |

> What is Structured Prediction?
> Refresher on Binary Classification
> What does it mean to learn?
> Linear models for classification
> Batch versus stochastic optimization
> From Perceptron to Structured Perceptron
> Linear models for Structured Prediction
> The “argmax” problem
> From Perceptron to margins
> Learning to Search
> Stacking
> Incremental Parsing

Refresher on
Binary Classification

&

What does it mean to learn? ®

> Informally:
> to predict the future based on the past

> Slightly-less-informally:
> to take labeled examples and construct a function that will
label them as a human would

> Formally:
> Given:
> A fixed unknown distribution D over X*Y
> Aloss function over Y*Y
> A finite sample of (x,y) pairs drawn i.i.d. from D

> Construct a function f that has low expected loss with
respectto D

: : PN
Linear models for binary classification’

> Decision boundary

is the set of \

“uncertain”points

> Linear decision
boundaries are f; -
characterized by
weight vectors

X D(x) w 2w Pi(x)
“ BIAS : 1 BIAS : -3 M(=3) +
free free : 1 free 4 [EDICOIE
» |money : 1 money : 2 e +
money the Y 0 the Y 0 oo 4+
DAY ;‘3

Feature extractors

> A feature extractor @ maps examples to vectors

Dear Sir. W=dear
W=sir
First, I must solicit)
W=this
your confidence in
this transaction, cee
this is by virture of W=wish
its nature as being .
utterly confidencial MISSPELLED :
and top secret. .. NAMELESS

[ASp——

o

ALL_CAPS
NUM_URLS

oo

> Feature vectors in NLP are frequently sparse

The perceptron
> Inputs = feature values
> Params = weights

> Sumi s the response

> If the response is:
> Positive, output +1
> Negative, output -1

5 — s —
> When training, P
update on errors:

w=w+yp(x)

“Error” when:

yw-p(x)<0

Why does that update work? %

> When yw™.(x)<0 , updater""=w"'+y¢(x)

wold

whew

yw' b (x)=y (W' +y b (x)|b(x)
=\yW""’¢(X)l+gy¢(X)¢(xz

<0

DV<

Support vector machines with slack ®

> Explicitly optimize
the margin

~

\f2\\\ +

> Allow some “noisy”
points to be
misclassified

min
w,E

st Yawo(x,)+ [E,

Support vector machines

> Explicitly optimize B \f\
the margin \ 2 L%

> Enforce that ~
all training points

are correctly f; =
classified
max all points are .

margin S.t. e
5 correctly classified

MaX margin s.t. y,wp(x,)=1, Vn

MRy | S.t. y,wp(x)>=1, Vn

Batch versus stochastic optimization -

> Batch = read in all the data, then process it
> Stochastic = (roughly) process a bit at a time

min 1, > Forn=1..N:
~|lwl+cC

we SIWI+CX g, o It v)<6

st. y,w(x,)+E =1 > w=wty,p(x,)
, Vn
£=0, Vn

&

®

Stochastically optimized SVMs

Implementation Note:
_ V\Ileigrtshri{]l_ﬁge_lis StLtOhW From Perceptron
l Gost of double storage. to Structured Perceptron

» Forn=1..N: For n=1..N:
> If y,w(x,)<1 > If y,wp(x,)<0
> w=w+y ¢(x,) > w=w+y ¢(x,)
. 1
> w=(l———|w
o

Perceptron with multiple classes . Perceptron with multiple classes v2 .
> Store separate weight w*P(x) > Originally:
vector for each class biggest
Wy, Wy, ...y W Lowe [we [wy
/ w
> Forn=1..N: > Forn=1..N: > Forn=1..N:
> Predict: w3 P(x) -0 (x) » Predict: - Predict:
biggest 2
y=argmax, w, $(x,) biggest y=argmax,wop(x,) y=argmax,w-(x,,k)
S If g2y -0y, - W2y,
vy ?' Why does this Wy=wy—blx,) w=w=d(x,,)
Wy":Wy"+d)(Xn) = = do the right thing? Wy":Wy"+d)(Xn) +¢(Xn’yn)

Features for structured prediction .
> Allowed to encode anything you want
[Pro|[Md |[Vb || Dt |[Nn |

| I |[can]|[can|[a |[can]

b(x,y)=
T Pra P 1 has verb i,
can Md = L has am lewow O
can Vb - 1 1. Kas n 1L i
2 Dt - 1L 1 hHEs #h wgb @ L
can Nn g1 1 has n rgt 1
- 5 |

> Output features, Markov features, other features

#
Argmax for sequences .

> If we only have output and Markov features, we can use
Viterbi algorithm:

we[Pro-Pro]

we[l_Pro]

iw-[can_Pro]

_ _ !w-[can_Vb]
]

(plus some work to account for boundary conditions)

Structured perceptron ®

Enumeration
over all outputs

Enumeration
over 1..K

> Forn=1..N: > Forn=1..N:

> Predict: > Predict:
y=argmax, w-$(x,,k) y=argmax, w-¢p(x,,k)
s Ty#y; s ty=y;
w=w—b(x,.5) w=w-h(x,.5) g
+d(x,,y,) +p(x,,y,) 3
-
3

Structured perceptron as ranking

> Forn=1..N:
> Run Viterbi: y=argmax, w-$(x,,k)
I yEy, wEw—a(x,, 7)+d(x,,y,)

> When does this make an update?

Pro |[Md || Vb || Dt |[Nn
Pro || Md || Md Dt || Vb
Pro || Md || Md Dt Nn
Pro || Md Nn Dt mMd
Pro || Md Nn Dt Nn
Pro || Md || Vb Dt || Md
Pro || Md || Vb Dt || Vb

[I |[can][can][a |[can]

From perceptron to margins

Mﬂi@ze Minimize min ,
Margin Errors W,E EHWH +Czn En,j/

min 1

1

2
W,E E”WH +Czn En Response
for other

sit. y,wo(x,)+E=21 | st wop(x,,y,)

, Vn

FEach point is correctly
classified, modulo §

Each true output is more
highly ranked, modulo §

_W'(I)(Xn’j/)
+&>1,Vn,y#y,

Ranking margins

> Some errors are worse than others...

[Pro|[Md |[Vb || Dt || Nn

Margin
f one

Pro || Md || Md Dt || Vb

Pro || Md Md Dt Nn

Pro || Md Nn Dt Md

Pro || Md Nn Dt Nn

Pro || Md || Vb Dt || Md

Pro || Md || Vb Dt || Vb

| 1 Jlcan][can][a][can

&

[SOdTNIP ‘siuepuBYO0YS] (GOYTINE ‘[e+ieyse]]

[SOYTINP ‘SIIEPUBLOOUS] {GOHTIIP ‘e+iexsel]

From perceptron to margins
¢(X1,Y1) min l 2 R
w,E 1l +CQ E, s

Response R
for truth SEPPIONSS
for other

s.t. w-p(x,,y,)
_W'(I)(Xn’j/)
+&>1,Vn,y#y,

Each true output is more
highly ranked, modulo §

Accounting for a loss function

> Some errors are worse than others...

[Pro|[Md |[Vb |[Dt |[Nn |

argin

f ly,y)

&

[SOYTNP ‘suepuBYO0YS] (GOYTINP ‘[e+ieyse]]

[SOYTNP ‘stuepuByYO0YS | (GOYTINP ‘[B+ieysel]

Accounting for a loss function

[SOYTINP ‘SIIEPUBLOOUS] {GOHTINI ‘[e+iexsel]

Stochastically optimizing Markov nets”

Ot
-

> Forn=1..N:

> Augmented Viterbi:

y=argmax,w-¢(x,,k)
+1(y,, k)

~ Wyzy;

w=w—a(x,.5)

>

w=|1—

+d(x,,y,)

—|w
CN

> Forn=1..N:
> Viterbi:

y=argmax, w-p(x,,

s Ty=y;
w=w—o(x,,J)
+dp(x,,y,)

k)

[2osteiSIV ‘fe+yiey]

Augmented argmax for sequences

> Add “loss” to each wrong node!

we[Pro-Pro]

iw-[can_Pro]

!w-[can_Vb]

[+] |« ? ' What are we

= = assuming here?

Learning to Search

[SOYTINP ‘SIUEPUBLOOUS] {GOHTINI ‘e-+ieysel]

@

Argmax is hard! Stacking
> Classic formulation of structured prediction: > Click to add an outline
something we learn
score (X, y) = to make “good” x,y pairs
score highly

> Attest time:
flx) = argmaxyeyscore(x,y)
> Combinatorial optimization problem

> Efficient only in very limiting cases
> Solved by heuristic search: beam + A* + local search

Incremental parsing, early 90s style . Incremental parsing, mid 2000s style .
\
s
Train a classifier
to make decisions Train a classifier
to make decisions
g
= NP | =
Right g :o?
Left ‘i g
>
| I/Pro |[can/Md | |[can/Vb][a/Dt ||[can/Nn g | I/Pro |[can/Md || can/Vb | 2

Learning to beam-search

> Forn=1..N:

> If y#y,
w=w—a(x ,7)

+o(x,,,)

> M@"s
V=argmatw-b (x,.k)

X

[NP NP |

| I/Pro |[can/Md || can/Vb |

40 Hal Daumé Ill (me@hal3.name)

Learning to beam-search

SP2IRL @ ACL2010

P 18

‘ ‘ — 4 a1

> For n=1..N:
> Run beam search until
truth falls out of beam
> Update weights
immediately!
> Restart at truth

X

NP NP

| I/Pro |[can/Md || can/Vb |

42 Hal Daumé Ill (me@hal3.name)

SP2IRL @ ACL2010

#0710V “eoy+suljjo0]

7

[60HTAIP ‘Te+NX {GOTINDI ‘NoJeN+a]

Learning to beam-search

‘ — P

P 18

> For n=1..N:

> Update weights
immediately!

> Run beam search until
truth falls out of beam

X

[NP NP |

| I/Pro |[can/Md || can/Vb |

41 Hal Daumé Ill (me@hal3.name)

Incremental parsing results

SP2IRL @ ACL2010

88 T T T T
--8- No early update, no repeated use of examples
-& Early update, no repeated use of examples
a7 —4— Early update, repeated use of examples

©
(=2

F-measure parsing accuracy
[o-]
- a1

84
831 e B 4
P a- e m—m e —
8o L L L L
1 2 3 4 5 6
Number of passes over training data
43 Hal Daumé Ill (me@hal3.name) SP2IRL @ ACL2010

#0710V “eoy+suyjo9]

7

#0710V “eoy+suyjo9]

Generic Search Formulation

> Search Problem:
> Search space
> Operators
> Goal-test function
> Path-cost function

> Search Variable:
> Enqueue function

Varying the Enqueue
function can give us DFS,
BFS, beam search, A*
search, ete...

> nodes =
MakeQueue(S0)

> while nodes is not empty

> node :=
RemoveFront(nodes)

> if node is a goal state
return node

> next := Operators(node)

> nodes := Enqueue(nodes,
next)

> fail

Search-based Margin

> The margin is the amount by which we are correct:

o 9w

T®(x,b,) -

(x,81)

¢(x/b1) el

> Note that the margin and hence linear separability is
also a function of the search algorithm!

[60HTAIP ‘[e+nX GOTINDI ‘NoseN+a]

@

[60HTAIP ‘[e+nX GOTINDI ‘NoseN+a]

Online Learning Framework (LaSO)

> nodes := MakeQueue(S0)
> while nodes is not empty
> node := RemoveFront(nodes)

> if none of {node} U nodes is y-good ornode is a goal & not y-

good

m Where should we have gone?
> sibs = S|bI|ngs(node y

> w = update(w, x, sibs, {node} U nodes)
> nodes := MakeQueue(sibs)

> else
> if node is a goal Continue search. ..

> next := Operators(node)
> nodes := Enqueue(nodes, next)

Syntactic chunking Results

&

Monotonicity: for any
node, we can tell if it
can lead to the correct
solution or not

]

ol ‘noreN+Q

N

Update our weights based on
the good and the bad choices

[6OYTAIM ‘fe+n

@

945 -
) <+—— Large Margin © <+ Large Margin (Exac) * gg::fcﬂp
& Eeam 2] 24 min * Percepuon
& LaSOp-1
L * “ LaSOp-5
Lad) “\ * LaSOp-25
Large Margm ;meh :E" C ﬁgZ?xa‘,‘.
ez 5 == =) Bes: prior LaSOa-5
4 min resuls LaSOa-25
[Zhang+Damerau+Johnson LaSOa-exact —
o B3¢ 2002J; iming unknown S
L Z C
8 ~—_ _ Sandard - =
] ™ Percepion | 22 Min o
[Updates 3
[Collins 2002] =
|, = —
o
- -
33 min =
o1
Semi-CRF modal '><
K25} P
¥
=)
=
gzt 1 L L L L ’ -
Q 500 1000 1500 2000 2500 3000 3500 g
«©

Training Time (minutes)

Tagging+chunking results

o7 ~

23 min
Large Margin
2~ (beam 25/50)
965 - =
- 0 /
8 \ Large Margin
5 (baam 10) Suzon model
8 Zmin [Sutton+McCallum 2004]
© % 3 min
jo)]
1=
= .
5 1 min
)
= 955~
g’ * Suton
= LasOp-1
g LaSOp-5
= LaSOp-10
£ LaSOp-25
5 = * LaS0p-50
N » o LaSOa-1
LasQa-5
LaSQa-10
LaS0Qa-25
LaS0a-50
945 1 .)
1 10" e P

Training Time (hours) [log scale]

What if our model sucks?

> Sometimes our model cannot produce the “correct”
output
> canonical example: machine translation

“‘Bold” update

Current

Hypothesis Reference

ood

Best
achievable
output

N-best list
or “optimal
decoding”
or...

[60HTAIP ‘[e+nX GOTINDI ‘NoseN+a]

@

[9070V ‘e+buer €070V ‘Y20l

Variations on a beam

> QObservation:

> \We needn't use the same beam size for
training and decoding

> Varying these values independently yields:
Decoding

Beam
1 5 10 25 50

o> 1 939 928 919 91.3 909
S E 5 905 943 944 941 94.1
£ 10 895 943 944 942 942
©m 25 887 942 945 943 943
F 50 884 942 944 942 944

Local versus bold updating...

Machine Translation Performance (Bleu)
35.5

35
34.5 M Bold
34 M Local
[J Pharoah
335
33
325

Monotonic Distortion

[6OYTAIP ‘[e+nX SOTINOI ‘NoseN+a]

@

&

Take-home messages ~ Ifnot, this can be
a really bad ideal!
[Kulesza+Pereira, NIPS07]

> If you can predict (ie., solve argmax) you can learn (use
structured perceptron)

> If you can do loss-augmented search, you can do max
margin (add two lines of code to perceptron)

> If you can do beam search, you can learn using LaSO
(with no loss function)

> If you can do beam search, you can learn using Searn
(with any loss function)

Refresher on
Reinforcement
Learning

Coffee Break!!!

Reinforcement learning

> Basic idea:
> Receive feedback in the form of rewards
> Agent’s utility is defined by the reward function
> Must learn to act to maximize expected rewards
> Change the rewards, change the learned behavior

> Examples:
> Playing a game, reward at the end for outcome
> Vacuuming, reward for each piece of dirt picked up
> Driving a taxi, reward for each passenger delivered

&

> Optimal policy maximizes expected if followed

. . L _ %
Markov decision processes Markov Decision Processes
What are the values (expected future rewards) of > An MDP is defined by:
states and actions? > Asetofstatessf] S
> Asetof actions afl A . -
> A transition function T(s,a,s’) EXN
_ > Prob thatafromsleadsto s’
Q(s,al)* = 30 -)
> i.e., P(s'|s,a) 2 =1
V(s)* = 30 > Also called the model
> Areward function R(s, a, s')
> Sometimes just R(s) or R(s’) 1 | swarr
Q(s,a2)* = 23 > A start state (or distribution)
—_— > Maybe a terminal state 1 5 3 4
> MDPs are a family of non- 0.8
\ deterministic search problems '
Q(s,a3)* =17 > Total utility is one of: 0.1 0.1
Z r,or z yrrr
t t
Solving MDPs Example Optimal Policies
> In deterministic single-agent search problem, want an
optimal plan, or sequence of actions, from start to a
goal ||| |||
> In an MDP, we want an optimal policy n(s) . .
> A policy gives an action for each state ! == . | =
A

- | - ' - | - | -
> Defines a reflex agent "o =001 —y
S) = S)=

3 —_— —_— —_—
? 1 | | = ||

Optimal policy 2 [
when R(s, a, §) = A A = | = |1

-0.04 for all non- - | -— | -—
terminals s ! ? ‘ - ‘ = | | ‘

1 2 3 4

R(s) = -0.4 R(s) = -2.0

Optimal Utilities)

> Fundamental operation: compute
the optimal utilities of states s (all
at once)

> Why? Optimal values define
optimal policies!

3 | 0812 | oses | 0otz

> Define the utility of a state s:
V'(s) = expected return starting in *
s and acting optimally v | o | won | oo

> Define the utility of a g-state (s,a):
Q’(s,a) = expected return starting
in s, taking action a and
thereafter acting optimally 2|t t &=

> Define the optimal policy:
'(S) = optimal action from state s oo

: : .
Solving MDPs / memoized recursion .

> Recurrences:
Vo(s) =0
Vi (s) = max Q; (s,)

Qi(s,a) =>_T(s,a,s") [R(s, a,s) + ’y\/;*,l(s’)}

S/
m;(s) = argmax Q} (s, a)
a

> Cache all function call results so you never repeat
work

> What happened to the evaluation function?

The Bellman Equations

> Definition of utility leads to a simple
one-step lookahead relationship
amongst optimal utility values:
Optimal rewards = maximize over
first action and then follow optimal

policy

> Formally: '
V*(s) = m{?xQ*(s,a)

Q™ (s,a) =Y T(s,a,s") [R(s, a,s) + ﬂ/V*(s')}

V*(s) = m;]xZT(s,a,,) {R(s,a, §') + ’yV*(s/)}

Q-Value lteration

> Value iteration: iterate approx optimal values
> Start with V;(s) = 0, which we know is right (why?)
> Given V/, calculate the values for all states for depth
i+1:

Vig1(s) — max}_T(s,a,) [R(s,a8') + 7 Vi(s")]
> But Q-values are more useful!
> Start with Q,(s,a) = 0, which we know is right (why?)

> Given Q;, calculate the g-values for all g-states for
depth i+1:

Qi—l—l(s'/ a’) — Z T(S7 a, S/) |:R(§ a, S/) + ma?XQi(s/v LL/)

RL = Unknown MDPs . Q-Learning &

> If we knew the MDP (i.e., the reward function and > Learn Q*(s,a) values
transition function): > Receive a sample (s,a,s’,r)
> Value iteration leads to optimal values > Consider your old estimate: Q(s,a)
> Q-value iteration leads to optimal Q-values > Consider your new sample estimate:
> Will always converge to the truth Q" (s,a) =3 T(s,a,) [R(S’ a,5') + 7 max Q* (s, a')

> Reinforcement learning is what we do when we do not

know the MDP > Incorporate the new estimate into a running average:
> All we observe is a trajectory
> (Sp,anly, Spanly Sgasls ...) sample = R(s,a,s") + max Qs a)

Q(s,a) — (1 — a)Q(s,a) + () [sample]

. PR & . &
Exploration / Exploitation Q-Learning
> Several schemes for forcing exploration > In realistic situations, we cannot possibly learn about
> Simplest: random actions (¢ greedy) every single state!
> Every tir.ne step, flip a coin ’ > Too many states to visit them all in training
> With probability &, act randomly > Too many states to hold the g-tables in memory
> With probability 1-¢, act according to current policy > Instead, we want to generalize:
. . > Learn about some small number of training states from
> Problems with random actions? experience g
> You do explore the space, but keep thrashing around once > Generalize that experience to new, similar states:
learning is done
> One solution: lower ¢ over time Q(s,a) = wif1(s, a)Fwofo(s,a)+.. . Fwnfn(s, a)

> Another solution: exploration functions
> Very simple stochastic updates:

Q(s,a) — Q(s,a) + alerror]

w; — w; + alerror] f;(s,a)

&

Inverse
Reinforcement
Learning

(aka Inverse Optimal Control)

Why inverse RL? .

> Computational models for animal learning

> “In examining animal and human behavior we must consider
the reward function as an unknown to be ascertained
through empirical investigation.”

> Agent construction

> “An agent designer [...] may only have a very rough idea of
the reward function whose optimization would generate
'desirable’ behavior.”

> eg., “Driving well”

> Multi-agent systems and mechanism design

> learning opponents’ reward functions that guide their actions
to devise strategies against them

Inverse RL: Task
> Given:
> measurements of an agent's behavior over time, in

a variety of circumstances

> if needed, measurements of the sensory inputs to
that agent

> if available, a model of the environment.

Y

Determine: the reward function being optimized

Y

Proposed by [Kalman68]
First solution, by [Boyd94]

Y

IRL from Sample Traject

> Optimal policy available through s¢
(eg., driving a car)

Warning: need to be
careful to avoid
trivial solutions!

> Want to find Reward function that makes this policy look
as good as possible

> Write R, (s)=w(s) so the reward is linear

and V’;(So) be the value of the starting state

max ;f(va*<so>—va'<<so>)

How good does the How good does the
“optimal policy” look? some other policy look?

&

[00NDI “l1essny+6N]

Apprenticeship Learning via IRL
> For t=1,2,...

> Inverse RL step:
Estimate expert’s reward function R(s)= w'¢(s) such
that under R(s) the expert performs better than all
previously found policies {r}.

> RL step:
Compute optimal policy =, for the estimated reward w

“Nice” driver

[FONOI ‘BN+HBeqqY]

Car Driving Experiment

> No explicit reward function at all!

> Expert demonstrates proper policy via 2 min. of driving
time on simulator (1200 data points).

> 5 different “driver types” tried.

> Features: which lane the caris in, distance to closest
car in current lane.

> Algorithm run for 30 iterations, policy hand-picked.
> Movie Time! (Expert left, IRL right)

“Evil” driver

[FONOI ‘BN+IBRqaY]

Planning as structured prediction

Tt | - e path cwst ravelregior

T 2 - e B v v 1o

Optimizing MMP

> Forn=1..N:

> Augmented planning:
Run A* on current (augmented) «
to get g-state visitation frequenci

> Update: w:W+ZZ[ﬁ<S:a)_I

P2IRL @ ACL201
woce 1 - 4rsing

> Shrink: — 1_L
W (CN)W

®

[SOSdIN ‘e+yined]

[SOSdIN ‘Te+iined]

Maximum margin planning

> Let p(s,a) denote the probability of reaching g-state
(s,a) under current model w

max margin s.t. planner run with w
yields human output
Q-state visitation
frequency by human
min u(s,a)w-¢p(x,,s,a)

1 2
EHWH s.t. —f(s,a)w-¢p(x,,s,a)>1

Q-state visitation , Vn,s,a
frequency by planner
All trajectories,
and all g-states

Maximum margin planning movies

[SOSdIN ‘[e+yined]

[SOSdIN ‘Te+iiped]

Parsing via inverse optimal control

>

State space = all partial parse trees over the full
sentence labeled “S”

Actions: take a partial parse and split it anywhere in the
middle

Transitions: obvious
Terminal states: when there are no actions left
Reward: parse score at completion

Apprenticeship

Learning

[60r 1N ‘Hersdazg+naN]

@

Parsing via inverse optimal control

90
85
80
75
70
60 .
Small Medium Large
B Maximum M Projection [Perceptron B Appren-
Likelihood ticeship
Learning

B Maximum B Maximum [Policy
Margin Entropy Matching

Integrating search and learning

Input: Le homme mange I' croissant.

\ Output: The man ate a croissant.
Hyp: The man ate a croissant
Hyp: The man ate Cov:
Cov:
I' croissant.
Hyp: The man ate a fox
Cov:
croissant.
Hyp: The man ate happy
L Cov:
0

Hyp: The man ate a

Hyp: The man ate a Cov:

Cov:

croissant.

[60r 1N ‘Hersdazg+naN]

@

[60r TN “nosey+pIojBuRT+Q (GO TNDI ‘NOIBN+A]

Reducing search to classification

> Natural chicken and egg problem:
> Want h to get low expected future loss
> ... on future decisions made by h
> ... and starting from states visited by h
> lterative solution

\ h(t1)

Input: Le homme mange I" croissant.
Output: The man ate a croissant.

Hyp: The man ate a croissant

Hyp: The man ate Cov: —» Loss =0
Cov:
I' croissant.
Hyp: The man ate a fox
h(t) Cov: —» Loss=1.8
croissant.
Hyp: The man ate happy
Cov: —» Loss =1.2
I
= Hyp: The man ate a
Hyp: The man
AR WIIENEDE Cov: | —» Loss =05
croissant. 2

—» Loss =0

Example task: summarization

G
il That's perfect!

Standard approach is
sentence ex ractlon but that
is often deemed to “coarse”
to produce
%NOd very short summaries.
e wish to also drop words
and phrases => document
compression

Ar entina was still obsessed
the Falkland Islands
even in 1994, 1 Years
after its defeat in the 74-day
war with Britain. The country's
overriding foreign policy aim
continued to be winnin
sovereignty over the islands.

The Falkland islands
war, in 1982, was

fought between
Britain and Argentina.

[60MA ‘Nose+piojbueT+(]

[60MA ‘Nose+piojbueT+(]

Theoretical results

Theorem: After 273In T iterations,
the loss of the learned policy
is bounded as follows:

C
L(h)<L(hy)+2TInTI,, + (1+InT)—

Loss of the
optimal policy

Average
multiclass
classification
loss

per-step
loss

Structure of search

> Lay sentences out sequentially
> Generate a dependency parse of each
sentence |

Mark each root as a frontier node

o
after its defeat in me 74-day

warw(lilh B?laln Thelcounlry‘s
overriding foreign policy aim 3 .
connnueg to bengl’r)mmy ” Repeat.

sovereignty over the |s?ands

> Choose a frontier node node to add to the
summary

> Add all its children to the frontier
> Finish when we have enough words

(o] (SRl o o] [elge} ® o o0 o o oo o e o e o

¢ @ ee 00 @ O ® © 00 O © © 00 © © e © @ @ ee ©

LCIER eI o] e ©

\/ el o o 0 el e o 0

S1 S2 S3 S4 S5 Sn

(O =frontier node @ = summary node

&

[60MA ‘Nose+piojbueT+(]

&

[60MA ‘Nose+piojbueT+(]

Example output (40 word limit)

Sentence Extraction + Compression:

Argentina and Britain announced an agreement, nearly
eight years after they fought a 74-day war a populated
+13 archipelago off Argentina's coast. Argentina gets out

ial royal visitor since the end of the
Falklands war in 1982.

Vine Growth (Searn):
Argentina and Britain announced to restore full ties,
eight years after they fought a 74-day war over the
+24 Falkland islands. Britain invited Argentina's minister
Cavallo/to LondoflinFI992NinltheNirst official visit since
the Falklands war in 1982.

Learning to Drive

6| Diplomatic ties restored 3 Falkland war was in 1982

5| Major cabinet member visits 3 Cavallo visited UK

5| Exchanges were in 1992 2 War was 74-days lorjg
3| War between Britain and Argentina

[60MTIN ‘nose+piojbue+q]

DAgger: Dataset Aggregation = Theoretical Guarantees .
Collect trajectories with expert
Best policy 1 in sequence T1[1:N] guarantees:
J(r)<T(exy +yx)F+FO(T/N)
Avg. Loss on lterations

Avg. R t of TT|1:N
Aggregate Dataset vg. Regret o [] of DAgger

96

Experiments: Racing Game

Output:

Steering in [-1,1]

Resized to 25x19
pixels (1425
features)

B~) B - = M v Pagew Safety~ Tor

Bt |

ODSCTvVatiors @ Unknown Zone | Protected Mode: On “a v

> ThefOloA s faT. . 2 it/ e doveliu . BN s 5 *

Average Falls per Lap

45

w
T

Average Falls/Lap

—*—DAgger

~=-SMiILe(0.1)

- Supervi:

sed

0 o.‘s 1 15
Number of Training Data

Test-time Execution

FP5: 24

Selected Actions:

2

2.5

x 10

4

98

Average Distance per Stage

3200

3000

@ k2
g E-F A
gzsoo I\E.-E—‘{‘—EE‘I“'I ; s z-‘L;:z {,i
9D 24001 'E /I—-P,‘E-E'?-? » e 3
g g T g N w1 3
o 5 22001 L 4
g g 2000 b
Q @
m 2 1800} ,
i
S
P 16001 —#—DAgger b
1ol FTT T T T BT T < Seam()) |9
/ ~* Searn(0.4)
12001 ~T SMIiLe(0.1) | q
" Supervised
it \ . T T
0 1 2 3 4 6 8 9 10

5 7
Number of Training Data e

Discussion

Perceptron vs. LaSO vs. Searn)

@ Incremental perceptron

X Un-learnable decision

Relationship between SP and IRL ~ ®

> Formally, they're (nearly) the same problem
> See humans performing some task
> Define some loss function
> Try to mimic the humans

> Difference is in philosophy:
> (I)RL has little notion of beam search or dynamic
programming
> SP doesn't think about separating reward estimation from
solving the prediction problem
> ()RL has to deal with stochastiticity in MDPs

Important Concepts

> Search and loss-augmented search for margin-based
methods

> Bold versus local updates for approximate search
> Training on-path versus off-path

> Stochastic versus deterministic worlds

> Q-states / values

> Learning reward functions vs. matching behavior

Open problems

> How to do SP when argmax is intractable....
> Bad: simple algorithms diverge [Kulesza+Pereira, NIPS07]
> Good: some work well [Finley+Joachims, ICMLO8]
> And you can make it fast! [Meshi+al, ICML10]

> How to do SP with delayed feedback (credit assignment)
> Kinda just works sometimes [D, ICML09; Chang+al, ICML10]
» Generic RL also works [Branavan+al, ACLO9; Liang+al, ACL09]

> What role does structure actually play?
> Little: only constraints outputs [Punyakanok+al, IJCAI05]
> Little: only introduces non-linearities [Liang+al, ICMLOg]
> Lots: 7?7

&

Hal's Wager

> Give me a structured prediction problem where:
> Annotations are at the lexical level
> Humans can do the annotation with reasonable agreement
> You give me afew thousand labeled sentences

> Then | can learn reasonably well...
> ...using one of the algorithms we talked about

> Why do | say this?
> Lots of positive experience
> I'm an optimist
> | want your counter-examples!

Software

> Sequence labeling
> Mallet http://mallet.cs.umass.edu
> CRF++ http://crfpp.sourceforge.net

> Search-based structured prediction
> LaSO http://hal3.name/TagChunk
> Searn http://hal3.name/searn

> Higher-level “feature template” approaches
> Alchemy http://alchemy.cs.washington.edu
> Factorie http://code.google.com/p/factorie

&

Summary)

Y

Y

Stuff we talked about explicitly)

&

Structured prediction is easy if you can do argmax
search (esp. loss-augmented!)

Label-bias can kill you, so iterate (Searn)
Stochastic worlds modeled by MDPs
IRL is all about learning reward functions

IRL has fewer assumptions

> More general

> Less likely to work on easy problems
We're a long way from a complete solution
Hal's wager: we can learn pretty much anything

Thanks! Questions?

&

Apprenticeship learning via inverse reinforcement learning, P. Abbeel and A. Ng. ICML, 2004.

Incremental parsing with the Perceptron algorithm. M. Collins and B. Roark. ACL 2004.

Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms. M.
Collins. EMNLP 2002.

Search-based Structured Prediction. H. Daumé Il J. Langford and D. Marcu. Machine Learning, 2009.
Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction. H. Daumé Ill and D.
Marcu. ICML, 2005.

An End-to-end Discriminative Approach to Machine Translation. P. Liang, A. Bouchard-Coté, D. Klein, B. Taskar.
ACL 2006.

Statistical Decision-Tree Models for Parsing. D. Magerman. ACL 1995.

Training Parsers by Inverse Reinforcement Learning. G. Neu and Cs. Szepesvdri. Machine Learning 77, 2009.
Algorithms for inverse reinforcement learning, A. Ng and A. Russell. ICML, 2000.

(Online) Subgradient Methods for Structured Prediction. N. Ratliff, J. Bagnell, and M. Zinkevich. AlStats 2007.
Maximum margin planning. N. Ratliff, J. Bagnell and M. Zinkevich. ICML, 2006.

Learning to search: Functional gradient techniques for imitation leaming. N. Ratliff, D. Silver, and J. Bagnell.
Autonomous Robots, Vol. 27, No. 1, July, 2009.

Reduction of Imitation Leaming to No-Regret Online Learning. S. Ross, G. Gordon and J. Bagnell. AlStats 2011.
Max-Margin Markov Networks. B. Taskar, C. Guestrin, V. Chatalbashev and D. Koller. JMLR 2005.

Large Margin Methods for Structured and Interdependent Output Variables. |. Tsochantaridis, T. Joachims, T.
Hofmann, and Y. Altun. JMLR 2005.

Learning Linear Ranking Functions for Beam Search with Application to Planning. Y. Xu, A. Fern, and S. Yoon.
JMLR 2009.

Maximum Entropy Inverse Reinforcement Learning. B. Ziebart, A. Maas, J. Bagnell, and A. Dey. AAAI 2008.

References

See also:

http:/iwww.cs.utah.edu/~suresh/mediawiki/index.php/MLRG
http://braque.cc/ShowChannel?handle=P5BVAC34

Other good stuff

> Reinforcement learning for mapping instructions to actions. S.R.K. Branavan, H. Chen, L. Zettlemoyer and R.
Barzilay. ACL, 2009.

> Driving semantic parsing from the world's resp . J. Clarke, D. Goldh , M.-W. Chang, D. Roth. CoNLL 2010.

> New Ranking Algorithms for Parsing and Tagging: Kemels over Discrete Structures, and the Voted Perceptron.
M.Collins and N. Duffy. ACL 2002.

4 Unsupervised Search-based Structured Prediction. H. Daumé Ill. ICML 2009.

4 Training structural SVMs when exact inference is intractable. T. Finley and T. Joachims. ICML, 2008.

> Structured learning with approximate inference. A. Kulesza and F. Pereira. NIPS, 2007.

> Conditional random fields: Probabilistic models for ing and labeling data. J. Lafferty, A. McCallum,
F. Pereira. ICML 2001.

> ilation: trading for features. P. Liang, H. Daume, D. Klein. ICML 2008.

> Learning semantic comespondences with less supervision. P.Liang, M. Jordan and D. Klein. ACL, 2009.

> ization Bounds and Consi: for Labeling. D. McAllester. In Predicting Structured Data, 2007.

> Maximum entropy Markov models for ii i ion and A. McCallum, D. Freitag, F. Pereira.
ICML 2000.

> FACTORIE: Efficient P ilistic Prog ing for Relati Factor Graphs via Imperative D jons of
Inference and Leaming. A. McCallum, K. Rohanemanesh, M. Wick, K. Schultz, S. Singh. NIPS Workshop on
Probabilistic Programming, 2008

> Learning iently with app via dual losses. O. Meshi, D. Sontag, T. Jaakkola, A. Globerson.
ICML 2010.
> Learning and ir over ined output. V. Pi k k, D. Roth, W. Yih, D. Zimak. 1JCAI, 2005.

> Boosting Structured Prediction for Imitation Learning. N. Ratliff, D. Bradley, J. Bagnell, and J. Chestnutt. NIPS 2007.
> Efficient Reductions for Imitation Learning. S. Ross and J. Bagnell. AISTATS, 2010.
> Kemel Dependency Estimation. J. Weston, O. Chapelle, A. Elisseeff, B. Schoelkopfand V. Vapnik. NIPS 2002.

&

