
Proceedings of the ACL-HLT 2011 Student Session, pages 58–63,
Portland, OR, USA 19-24 June 2011. c©2011 Association for Computational Linguistics

Optimistic Backtracking
A Backtracking Overlay for Deterministic Incremental Parsing

Gisle Ytrestøl
Department of Informatics

University of Oslo
gisley@ifi.uio.no

Abstract

This paper describes a backtracking strategy
for an incremental deterministic transition-
based parser for HPSG. The method could
theoretically be implemented on any other
transition-based parser with some adjust-
ments. In this paper, the algorithm is evaluated
on CuteForce, an efficient deterministic shift-
reduce HPSG parser. The backtracking strat-
egy may serve to improve existing parsers, or
to assess if a deterministic parser would bene-
fit from backtracking as a strategy to improve
parsing.

1 Introduction

Incremental deterministic parsing has received in-
creased awareness over the last decade. Process-
ing linguistic data linearly is attractive both from
a computational and a cognitive standpoint. While
there is a rich research tradition in statistical parsing,
the predominant approach derives from chart pars-
ing and is inherently non-deterministic.

A deterministic algorithm will incrementally ex-
pand a syntactic/semantic derivation as it reads the
input sentence one word/token at the time. There are
a number of attractive features to this approach. The
time-complexity will be linear when the algorithm is
deterministic, i.e. it does not allow for later changes
to the partial derivation, only extensions to it. For a
number of applications, e.g. speech recognition, the
ability to process input on the fly per word, and not
per sentence, can also be vital. However, there are
inherent challenges to an incremental parsing algo-
rithm. Garden paths are the canonical example of

sentences that are typically misinterpret due to an
early incorrect grammatical assumption.

(1) The horse raced past the barn fell.

The ability to reevaluate an earlier grammatical as-
sumption is disallowed by a deterministic parser.
Optimistic Backtracking is an method designed to
locate the incorrect parser decision in an earlier
stage if the parser reaches an illegal state, i.e. a state
in which a valid parse derivation cannot be retrieved.
The Optimistic Backtracking method will try to lo-
cate the first incorrect parsing decision made by the
parser, and replace this decision with the correct
transition, and resume parsing from this state.

2 Related Work

Incremental deterministic classifier-based parsing
algorithms have been studied in dependency pars-
ing (Nivre and Scholz, 2004; Yamada and Mat-
sumoto, 2003) and CFG parsing (Sagae and Lavie,
2005). Johansson and Nugues (2006) describe
a non-deterministic implementation to the depen-
dency parser outlined by Nivre and Scholz (2004),
where they apply ann-best beam search strategy.

For a highly constrained unification-based for-
malism like HPSG, a deterministic parsing strategy
could frequently lead to parse failures. Ninomiya
et al. (2009) suggest an algorithm for determinis-
tic shift-reduce parsing in HPSG. They outline two
backtracking strategies for HPSG parsing. Their ap-
proach allows the parser to enter an old state if pars-
ing fails or ends with non-sentential success, based
on the minimal distance between the best candidate

58



and the second best candidate in the sequence of
transitions leading up to the current stage. Further
constraints may be added, i.e. restricting the number
of states the parser may backtrack. This algorithm
is expanded by using a beam-thresholding best-first
search algorithm, where each state in the parse has a
state probability defined by the product of the prob-
abilities of the selecting actions that has been taken
to reach the state.

3 CuteForce

Optimistic Backtracking is in this paper used to
evaluate CuteForce, an incremental deterministic
HPSG parser currently in development. Simi-
lar to MaltParser (Nivre et al., 2007), it employs
a classifier-basedoracle to guide the shift-reduce
parser that incrementally builds a syntactic/semantic
HPSG derivation defined by LinGO English Re-
source Grammar (ERG) (Flickinger, 2000).

Parser Layout CuteForce has a more complex
transition system than MaltParser in order to facil-
itate HPSG parsing. The sentence input bufferβ is
a list of tuples with token, part-of-speech tags and
HPSG lexical types (i.e. supertags (Bangalore and
Joshi, 1999)).

Given a set of ERG rulesR and a sentence buffer
β, a parser configuration is a tuplec = (α, β, ι, π)
where:

• α is a stack of “active” edges1

• β is a list of tuples of word formsW ,
part of speech tagsPOS and lexical
types LT derived from a sentencex =
((W1, POS1, LT1), ...(Wn, POSn, LTn)).

• ι is the current input position inβ

• π is a stack of passive edges instantiating a
ERG rule

The stack of passive edgesπ makes up the full
HPSG representation of the input string if the string
is accepted.

1An “active” edges in our sense is a hypothesis of an ap-
plication of a binary rule where the left daughter is known (an
element ofπ), and the specific binary ERG rule and the right
daughter is yet to be found.

Transition System The shift-reduce parser has
four different transitions, two of which are param-
eterized with a unary or binary ERG rule, which are
added to the passive edges, hence building the HPSG
structure. The four transitions are:

• ACTIVE – (adds an active edge to stackα, and
incrementsι)

• UNIT(R1) – (adds unary passive edge toπ in-
stantiating unary ERG rule(R1))

• PASSIVE(R2) – (popsα and adds binary pas-
sive edge toπ instantiating binary ERG rule
(R2))

• ACCEPT – (terminates the parse of the sen-
tence.π represents the HPSG derivation of the
sentence)

Derivation Example Figure 1 is a derivation ex-
ample from Redwoods Treebank (Oepen et al.,
2002). We note that the tree derivation consists
of unary and binay productions, corresponding to
the UNIT(R1) and PASSIVE(R2) parser transitions.
Further, the pre-terminal lexical types have ale suf-
fix, and are provided together with the terminal word
form in the input buffer for the parser.

sb-hdmc c

sp-hdn c

d - prt-div le

“some”

aj-hdnnorm c

v j-nb-pas-trdlr

v pasodlr

v np* le

“specialized”

n ms ilr

n - m le

“software”

hd-cmpu c

v vp mdl-p le

“can”

hd-cmpu c

v n3s-bseilr

v np* le

“narrate”

hdn bnp c

np-hdncpd c

hdn bnp-pnc

w hyphenplr

n - pl le

“RSS-”

w periodplr

n pl olr

n - mc le

“feeds.”

Figure 1: HPSG derivation from Redwoods Treebank.

Parsing Configuration Mode CuteForce can op-
erate in three different oracle configurations: HPSG
Unification mode, CFG approximation mode and
unrestricted mode.

In HPSG Unification mode, the parser validates
that no oracle decisions lead to an invalid HPSG
derivation. All UNIT and PASSIVE transitions are

59



an implicit unification. For each parsing stage, the
parsing oracle returns a ranked list of transitions.
The highest-ranked transition not violating a unifi-
cation constraint will be executed. If no transition
yields a valid unification, parsing fails for the given
sentence.

In CFG mode, a naive CFG approximation of the
ERG is employed to guide the oracle. The CFG ap-
proximation consists of CFG rules harvested from
the treebanks used in training the parser – for this
purpose we have used existing Redwoods treebanks
used in training, and augmented with derivations
from WikiWoods, in total 300,000 sentences. Each
ERG rule instantiation, using the identifiers shown
in Figure 1 as non-terminal symbols, will be treated
as a CFG rule, and each parser action will be val-
idated against the set of CFG rules. If the parser
action yields a CFG projection not found among the
valid CFG rules in the CFG approximation, the CFG
filter will block this transition. If the parser arrives
at a state where the CFG filter blocks all further tran-
sitions, parsing fails.

In unrestricted mode, the oracle chooses the high-
est scoring transition without any further restrictions
imposed. In this setting, the parser typically reaches
close to 100 % coverage – the only sentences not
covered in this setting are instances where the parser
enters an infinite unit production loop. Hence, we
will only evaluate the parser in CFG and Unification
mode in this paper.

4 Optimistic Backtracking

Optimistic Backtracking can be added as an overlay
to a transition-based parser in order to evaluate the
parser in non-deterministic mode. The overlay has
a linear time-complexity. This backtracking method
is, to the best of our knowledge, the only method that
applies ranking rather than some probability-based
algorithm for backtracking. This aspect is critical
for classification-based parsing oracles that do not
yield a probability score in the ranking of candidate
transitions.

Treating backtracking as a ranking problem has
several attractive features. It may combine global
and local syntactic and semantic information related
to each candidate transition, contrary to a probabilis-
tic approach that only employs the local transition

probability. Utilizing global information also seems
more sound from a human point of view. Consider
sentence (1), it’s first when the second verb (fell) is
encountered that we would re-evaluate our original
assumption, namely thatraced may not be the head
verb of the sentence. Thatfell indeed is a verb is
surely relevant information for reconsideringraced
as the head of a relative clause.

When the parser halts, the backtracker will rank
each transition produced up until the point of fail-
ure according to which transition is most likely to be
the first incorrect transition. When the best scoring
transition is located, the parser will backtrack to this
position, and replace this transition with the pars-
ing oracle’s second-best scoring transition for this
current parsing state. If the parser later comes to
another halt, only the transitions occurring after the
first backtrack will be subject to change. Hence, the
backtracker will always assume that its last back-
track was correct (thus beingOptimistic). Having
allowed the parser to backtrack unrestrictedly, we
could theoretically have reached close to 100 %
coverage, but the insights of parsing incrementally
would have become less pronounced.

The search space for the backtracker isn ∗ m

wheren is the number of candidate transitions, and
m is the total number of parser transitions. InOp-
timistic Backtracking we disregard them dimension
altogether by always choosing the second-best tran-
sition candidate ranked by the parsing oracle, as-
suming that the second-ranked transition in the given
state actually was the correct transition. Hence we
reduce the search-space to then-dimension. In this
paper, using CuteForce as HPSG parser, this as-
sumption holds in about 80-90 % of the backtracks
in CFG mode, in HPSG Unification mode this num-
ber is somewhat lower.

4.1 Baseline

As a baseline for identifying the incorrect transition,
we use a strategy inspired by Ninomiya et al. (2009),
namely to pick the candidate transition with the min-
imal probability difference between the best and the
second best transition candidate. However, since we
do not have true probability, a pseudo-probability
is computed by taking the dot product of the fea-
ture vector and weight-vector for each best-scoring
(P) and second-best scoring (P2) candidate transi-

60



tion, and use the proportion of the second-best score
over the joint probability of the best and second-best
scoring transition: P2

P+P2

In our development test set of 1794 sentences, we
ran the parser in CFG and HPSG unification mode
in deterministic and non-deterministic mode. The
baseline results are found in Table 1 (CFG-BL) and
Table 2 (UNI-BL). In CFG mode (Table 1), we ob-
tain a 51.2 % reduction in parsing failure. In unifica-
tion mode (Table 2) the parser is much more likely
to fail, as the parse derivations are guaranteed to
be a valid HPSG derivation. Baseline backtracking
yields a mere 10 % reduction in parsing failures.

4.2 Feature Model

Each candidate transition is mapped to a feature
vector that provides information about the transi-
tion. The task for the ranker is to identify the first
incorrect transition in the sequence of transitions.
The feature model used by the ranker employs fea-
tures that can roughly be divided in three. First, the
transition-specific features provide information on
the nature of the candidate transition and surround-
ing transitions. Here we also have features related to
the pseudo-probability of the transition (provided by
the parsing oracle), and the oracle score distance be-
tween the best-scoring and second-best scoring tran-
sition for each given state. Secondly we have fea-
tures related to the last token that was processed by
the parser before it reached an invalid state, and the
information on the incomplete HPSG derivation that
was built at that state. These features are used in
combination with local transition-specific features.
Third, we have features concerning the preliminary
HPSG derivation in the actual state of the transition.

Feature Types The list of transitions T =t0, t1, ...
tn comprises the candidate transitions that are sub-
ject to backtracking upon parsing failure. The fea-
ture types used by the backtracker includes:

• the pseudo-probability of the best scoring (P)
and second best scoring (P2) transition

• the transition category of the current transition

• the probability proportion of the second best
scoring transition over the joint probability
P2

P+P2

• the transition number in the list of applicable
candidates, and the number of remaining tran-
sitions, relative to the list of candidates

• the last lexical tag and part-of-speech tag that
were processed before parsing failure

• the head category of the HPSG derivation and
the left daughter unification candidate for the
HPSG derivation in the current position

• the lexical tag relative to the current position in
the buffer

The backtracker is trained as a linear SVM us-
ing SV M rank (Joachims, 2006). Totally, the feature
vector maps 24 features for each transition, includ-
ing several combinations of the feature types above.

5 Evaluation

In this paper we trained CuteForce with data from
Redwoods Treebank, augmented with derivations
from WikiWoods (Flickinger et al., 2010). The test
set contains a random sample of 1794 sentences
from the Redwoods Treebank (which was excluded
from the training data), with an average length of 14
tokens. Training data for the backtracker is extracted
by parsing derivations from WikiWoods determin-
istically, and record transition candidates each time
parsing fails, labeling the correct backtracking can-
didate, backtrack to this point, and resume parsing
from this state.

5.1 Results

The first column (CFG-NB and UNI-NB) in Table 1
and 2 indicates the scores when the parser is run in
deterministic mode, i.e. without backtracking. The
second and third column contain results for baseline
andOptimistic backtracking.Coverage refers to the
proportion of sentences that received a parse.Pre-
cision refers to the backtracker’s precision with re-
spect to identifying the incorrect transition among
the candidate transitions.∼ BT Cand is the aver-
age number of candidate transitions the backtracker
ranks when trying to predict the incorrect transition,
and∼ BT Cand,1st is the number of candidates at
the initial point-of-failure.Exact Matches is the to-
tal number of parse derivations which are identical
to the gold standard.

For Ms per Sent (milliseconds per sentence) it
should be said that the code is not optimized, es-

61



pecially with respect to the HPSG unification algo-
rithm2. How the figures relate to one another should
however give a good indication on how the compu-
tational costs vary between the different configura-
tions.

CFG -NB CFG -BL CFG -Opt
Coverage 0.754 0.880 0.899
Precision N/A 0.175 0.235
∼BT Cand N/A 26.1 30.6
∼BT Cand,1st N/A 51.5 51.5
Exact Matches 727 746 742
Ms per Sent 10.7 45.0 72.5

Table 1: Results – CFG mode

UNI -NB UNI -BL UNI -Opt
Coverage 0.574 0.598 0.589
Precision N/A 0.183 0.206
∼BT Cand N/A 12.89 20.12
∼BT Cand,1st N/A 51.6 51.6
Exact Matches 776 777 776
Ms per Sent 1801.4 5519.1 5345.2

Table 2: Results – HPSG unification mode

5.2 CFG approximation

The number of failed sentences is greatly reduced
when backtracking is enabled. Using baseline back-
tracking, the reduction is 51.2 %, whereasOpti-
mistic backtracking has a 59.1 % reduction in parse
failures. Further,Optimistic Backtracker performs
substantially better than baseline in identifying in-
correct transitions.

The average number of candidate transitions
ranged from 26 to 30 for the baseline andOptimistic
backtracking strategy. It’s interesting to observe that
even with a success rate of about 1/5 in identifying
the incorrect transition, the coverage is still greatly
increased. That backtracking manages to recover
so many sentences that initially failed, even if it
does not manage to identify the incorrect transition,
would seem to indicate that even when mistaken, the
backtracker is producing a good prediction. On the
other hand, the exact match score does not improve
the same way as the coverage, this is directly related

2Specifically, the current unification back-end preforms
non-destructive unification, i.e. it does not take advantage of
the deterministic nature of CuteForce

to the fact that the backtracker still has relatively low
precision, as only a perfect prediction would leave
the parser capable of deriving an exact match.

The success rate of about 0.23 in picking the in-
correct transition in a set of in average 30 candidates
indicates that treating the backtracking as a ranking
problem is promising. The precision rate in itself is
however relatively low, which serves as an indica-
tion of the difficulty of this task.

5.3 HPSG Unification

In unification mode the we see no substantive dif-
ference between deterministic mode, and baseline
andOptimistic backtracking, and practically no im-
provement in the quality of the parses produced.
In Table 2 we see that the only striking difference
between the figures for the parser in backtracking
mode and deterministic mode is the efficiency – the
time consumption is increased by approximately a
factor of 3.

5.4 Conclusion

The findings in this paper are specific to CuteForce.
It is however very likely that the results would be
similar for other deterministic HPSG parsers.

In CFG mode, the number of failed parses are
more than halved compared to deterministic mode.
It is likely that further increase could be obtained by
relaxing constraints in theOptimistic algorithm.

In Unification mode, we experienced only a slight
increase in coverage. By relaxing theOptimistic
constraints, the time-complexity would go up. Con-
sidering how little the parser benefited from back-
tracking in unification mode withOptimistic con-
straints, it seems implausible that the parser will
improve considerably without a heavy relaxation of
the constraints in theOptimistic algorithm. If do-
ing so, the attractive features of the parser’s inher-
ently deterministic nature will be overshadowed by
a very large number of backtracks at a heavy compu-
tational cost. Hence, it’s hard to see that such a semi-
deterministic approach could have any advantages
over other non-deterministic HPSG parsers neither
in computational cost, performance or on a cogni-
tive level.

62



Acknowledgements

The author would like to thank Stephan Oepen (Uni-
versity of Oslo) and Joakim Nivre (Uppsala Uni-
versity) for their valued input and inspiring feed-
back during the writing of this paper, and in the
PhD project. Experimentation and engineering was
made possible through access to the TITAN high-
performance computing facilities at the University
of Oslo (UiO), and we are grateful to the Scientific
Computation staff at UiO, as well as to the Norwe-
gian Metacenter for Computational Science.

References

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: an approach to almost parsing.Compu-
tational Linguistics, pages 237–265.

Dan Flickinger, Stephan Oepen, and Gisle Ytrestøl.
2010. Wikiwoods: Syntacto-semantic annotation
for english wikipedia. InProceedings of the Sev-
enth conference on International Language Resources
and Evaluation (LREC’10). European Language Re-
sources Association (ELRA).

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types.Natural Language En-
gineering, 6 (1):15 – 28.

Thorsten Joachims. 2006. Training linear SVMs in lin-
ear time. InProceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 217–226. ACM.

Richard Johansson and Pierre Nugues. 2006. Investi-
gating multilingual dependency parsing. InProceed-
ings of the Tenth Conference on Computational Nat-
ural Language Learning, pages 206–210. Association
for Computational Linguistics.

Takashi Ninomiya, Nobuyuki Shimizu, Takuya Mat-
suzaki, and Hiroshi Nakagawa. 2009. Deterministic
shift-reduce parsing for unification-based grammars
by using default unification. InProceedings of the
12th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 603–611.
Association for Computational Linguistics.

Joakim Nivre and Mario Scholz. 2004. Determinis-
tic dependency parsing of English text. InProceed-
ings of the 20th international conference on Computa-
tional Linguistics. Association for Computational Lin-
guistics.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. Maltparser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(2):95–135.

Stephan Oepen, Kristina Toutanova, Stuart Shieber, Chris
Manning, Dan Flickinger, and Thorsten Brants. 2002.
The LinGO Redwoods treebank. Motivation and pre-
liminary applications. InProceedings of the 19th In-
ternational Conference on Computational Linguistics.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. InProceed-
ings of the Ninth International Workshop on Parsing
Technology, pages 125–132. Association for Compu-
tational Linguistics.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statisti-
cal dependency analysis with support vector machines.
In Proceedings of the 8th International Workshop on
Parsing Technologies, pages 195–206.

63


